|
|
|
@ -506,7 +506,9 @@ void stop();
|
|
|
|
|
void get_available_commands();
|
|
|
|
|
void process_next_command();
|
|
|
|
|
|
|
|
|
|
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
|
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
|
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
|
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
@ -2461,32 +2463,34 @@ inline void gcode_G0_G1() {
|
|
|
|
|
* G2: Clockwise Arc
|
|
|
|
|
* G3: Counterclockwise Arc
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
|
|
|
if (IsRunning()) {
|
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
|
|
|
if (IsRunning()) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
|
bool relative_mode_backup = relative_mode;
|
|
|
|
|
relative_mode = true;
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
|
bool relative_mode_backup = relative_mode;
|
|
|
|
|
relative_mode = true;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
gcode_get_destination();
|
|
|
|
|
gcode_get_destination();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
|
relative_mode = relative_mode_backup;
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
|
relative_mode = relative_mode_backup;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Center of arc as offset from current_position
|
|
|
|
|
float arc_offset[2] = {
|
|
|
|
|
code_seen('I') ? code_value() : 0,
|
|
|
|
|
code_seen('J') ? code_value() : 0
|
|
|
|
|
};
|
|
|
|
|
// Center of arc as offset from current_position
|
|
|
|
|
float arc_offset[2] = {
|
|
|
|
|
code_seen('I') ? code_value() : 0,
|
|
|
|
|
code_seen('J') ? code_value() : 0
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Send an arc to the planner
|
|
|
|
|
plan_arc(destination, arc_offset, clockwise);
|
|
|
|
|
// Send an arc to the planner
|
|
|
|
|
plan_arc(destination, arc_offset, clockwise);
|
|
|
|
|
|
|
|
|
|
refresh_cmd_timeout();
|
|
|
|
|
refresh_cmd_timeout();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
|
|
@ -6484,7 +6488,7 @@ void process_next_command() {
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
// G2, G3
|
|
|
|
|
#if DISABLED(SCARA)
|
|
|
|
|
#if ENABLED(ARC_SUPPORT) & DISABLED(SCARA)
|
|
|
|
|
case 2: // G2 - CW ARC
|
|
|
|
|
case 3: // G3 - CCW ARC
|
|
|
|
|
gcode_G2_G3(codenum == 2);
|
|
|
|
@ -7423,147 +7427,149 @@ void prepare_move() {
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Plan an arc in 2 dimensions
|
|
|
|
|
*
|
|
|
|
|
* The arc is approximated by generating many small linear segments.
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
|
*/
|
|
|
|
|
void plan_arc(
|
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
|
float* offset, // Center of rotation relative to current_position
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
r_Y = -offset[Y_AXIS],
|
|
|
|
|
rt_X = target[X_AXIS] - center_X,
|
|
|
|
|
rt_Y = target[Y_AXIS] - center_Y;
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
|
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
|
|
|
|
|
if (mm_of_travel < 0.001) return;
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
|
|
|
if (segments == 0) segments = 1;
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel / segments;
|
|
|
|
|
float linear_per_segment = linear_travel / segments;
|
|
|
|
|
float extruder_per_segment = extruder_travel / segments;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
|
/**
|
|
|
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
|
|
* r_T = [cos(phi) -sin(phi);
|
|
|
|
|
* sin(phi) cos(phi] * r ;
|
|
|
|
|
*
|
|
|
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
|
|
* Plan an arc in 2 dimensions
|
|
|
|
|
*
|
|
|
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
|
|
|
*
|
|
|
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
|
|
* This is important when there are successive arc motions.
|
|
|
|
|
* The arc is approximated by generating many small linear segments.
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
|
*/
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
|
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
|
void plan_arc(
|
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
|
float* offset, // Center of rotation relative to current_position
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
r_Y = -offset[Y_AXIS],
|
|
|
|
|
rt_X = target[X_AXIS] - center_X,
|
|
|
|
|
rt_Y = target[Y_AXIS] - center_Y;
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
|
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
|
|
|
|
|
if (mm_of_travel < 0.001) return;
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
|
|
|
if (segments == 0) segments = 1;
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel / segments;
|
|
|
|
|
float linear_per_segment = linear_travel / segments;
|
|
|
|
|
float extruder_per_segment = extruder_travel / segments;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
|
|
* r_T = [cos(phi) -sin(phi);
|
|
|
|
|
* sin(phi) cos(phi] * r ;
|
|
|
|
|
*
|
|
|
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
|
|
*
|
|
|
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
|
|
|
*
|
|
|
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
|
|
* This is important when there are successive arc motions.
|
|
|
|
|
*/
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
|
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
|
|
|
|
|
|
float arc_target[NUM_AXIS];
|
|
|
|
|
float sin_Ti, cos_Ti, r_new_Y;
|
|
|
|
|
uint16_t i;
|
|
|
|
|
int8_t count = 0;
|
|
|
|
|
float arc_target[NUM_AXIS];
|
|
|
|
|
float sin_Ti, cos_Ti, r_new_Y;
|
|
|
|
|
uint16_t i;
|
|
|
|
|
int8_t count = 0;
|
|
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
|
|
|
|
|
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
|
|
|
|
|
if (++count < N_ARC_CORRECTION) {
|
|
|
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
|
|
|
r_new_Y = r_X * sin_T + r_Y * cos_T;
|
|
|
|
|
r_X = r_X * cos_T - r_Y * sin_T;
|
|
|
|
|
r_Y = r_new_Y;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
|
|
// For now, compute both at the same time.
|
|
|
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
|
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
|
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
|
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
|
|
|
count = 0;
|
|
|
|
|
}
|
|
|
|
|
if (++count < N_ARC_CORRECTION) {
|
|
|
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
|
|
|
r_new_Y = r_X * sin_T + r_Y * cos_T;
|
|
|
|
|
r_X = r_X * cos_T - r_Y * sin_T;
|
|
|
|
|
r_Y = r_new_Y;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
|
|
// For now, compute both at the same time.
|
|
|
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
|
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
|
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
|
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
|
|
|
count = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
arc_target[X_AXIS] = center_X + r_X;
|
|
|
|
|
arc_target[Y_AXIS] = center_Y + r_Y;
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
arc_target[X_AXIS] = center_X + r_X;
|
|
|
|
|
arc_target[Y_AXIS] = center_Y + r_Y;
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
|
|
|
calculate_delta(arc_target);
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
|
adjust_delta(arc_target);
|
|
|
|
|
#endif
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
|
|
|
calculate_delta(arc_target);
|
|
|
|
|
calculate_delta(target);
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
|
adjust_delta(arc_target);
|
|
|
|
|
adjust_delta(target);
|
|
|
|
|
#endif
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
|
|
|
calculate_delta(target);
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
|
adjust_delta(target);
|
|
|
|
|
#endif
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
|
|
|
|
|
|
|
|