Improve LIN_ADVANCE commentary (all configs)

master
Scott Lahteine 8 years ago
parent 9818d97587
commit b9109b2875

@ -501,14 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled.
// To get a rough start value for calibration, measure your "free filament length" between the hobbed bolt and the nozzle in cm.
// Then use the formula that fits your system, where L is the "free filament length":
// Filament diameter | 1,75mm | 3mm |
// Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
// Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 1.75
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -507,9 +507,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 1.75
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 1.75
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -509,9 +509,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 1.75
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -503,9 +503,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -503,9 +503,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -503,9 +503,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -508,9 +508,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -503,9 +503,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

@ -501,9 +501,20 @@
#define D_FILAMENT 2.85
#endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* To get a rough start value for calibration, measure your "free filament length"
* between the hobbed bolt and the nozzle (in cm). Use the formula below that fits
* your setup, where L is the "free filament length":
*
* Filament diameter | 1.75mm | 3.0mm |
* ----------------------------|-----------|------------|
* Stiff filament (PLA) | K=47*L/10 | K=139*L/10 |
* Softer filament (ABS, nGen) | K=88*L/10 | K=260*L/10 |
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)

Loading…
Cancel
Save