Add option to only check endstop when homing

master
Erik van der Zalm 13 years ago
parent 95a0b28acb
commit b99c49ec3b

@ -170,6 +170,7 @@ const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0 #define X_ENABLE_ON 0

@ -528,6 +528,8 @@ FORCE_INLINE void process_commands()
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
feedmultiply = 100; feedmultiply = 100;
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i]; destination[i] = current_position[i];
} }
@ -563,6 +565,9 @@ FORCE_INLINE void process_commands()
HOMEAXIS(Z); HOMEAXIS(Z);
current_position[2]=code_value()+add_homeing[2]; current_position[2]=code_value()+add_homeing[2];
} }
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate; feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply; feedmultiply = saved_feedmultiply;

@ -79,6 +79,8 @@ static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false; static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false; static bool old_z_max_endstop=false;
static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
@ -191,6 +193,11 @@ void endstops_hit_on_purpose()
endstop_z_hit=false; endstop_z_hit=false;
} }
void enable_endstops(bool check)
{
check_endstops = check;
}
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
// / | | \ /| |\ | // / | | \ /| |\ |
@ -309,82 +316,94 @@ ISR(TIMER1_COMPA_vect)
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR); WRITE(X_DIR_PIN, INVERT_X_DIR);
count_direction[X_AXIS]=-1; count_direction[X_AXIS]=-1;
#if X_MIN_PIN > -1 if(check_endstops) {
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); #if X_MIN_PIN > -1
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstop_x_hit=true; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
step_events_completed = current_block->step_event_count; endstop_x_hit=true;
} step_events_completed = current_block->step_event_count;
old_x_min_endstop = x_min_endstop; }
#endif old_x_min_endstop = x_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR); WRITE(X_DIR_PIN,!INVERT_X_DIR);
count_direction[X_AXIS]=1; count_direction[X_AXIS]=1;
#if X_MAX_PIN > -1 if(check_endstops) {
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); #if X_MAX_PIN > -1
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstop_x_hit=true; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
step_events_completed = current_block->step_event_count; endstop_x_hit=true;
} step_events_completed = current_block->step_event_count;
old_x_max_endstop = x_max_endstop; }
#endif old_x_max_endstop = x_max_endstop;
#endif
}
} }
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR); WRITE(Y_DIR_PIN,INVERT_Y_DIR);
count_direction[Y_AXIS]=-1; count_direction[Y_AXIS]=-1;
#if Y_MIN_PIN > -1 if(check_endstops) {
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); #if Y_MIN_PIN > -1
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstop_y_hit=true; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
step_events_completed = current_block->step_event_count; endstop_y_hit=true;
} step_events_completed = current_block->step_event_count;
old_y_min_endstop = y_min_endstop; }
#endif old_y_min_endstop = y_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR); WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
#if Y_MAX_PIN > -1 if(check_endstops) {
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); #if Y_MAX_PIN > -1
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstop_y_hit=true; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
step_events_completed = current_block->step_event_count; endstop_y_hit=true;
} step_events_completed = current_block->step_event_count;
old_y_max_endstop = y_max_endstop; }
#endif old_y_max_endstop = y_max_endstop;
#endif
}
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR); WRITE(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS]=-1;
#if Z_MIN_PIN > -1 if(check_endstops) {
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); #if Z_MIN_PIN > -1
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstop_z_hit=true; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
step_events_completed = current_block->step_event_count; endstop_z_hit=true;
} step_events_completed = current_block->step_event_count;
old_z_min_endstop = z_min_endstop; }
#endif old_z_min_endstop = z_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR); WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
count_direction[Z_AXIS]=1; count_direction[Z_AXIS]=1;
#if Z_MAX_PIN > -1 if(check_endstops) {
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); #if Z_MAX_PIN > -1
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstop_z_hit=true; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
step_events_completed = current_block->step_event_count; endstop_z_hit=true;
} step_events_completed = current_block->step_event_count;
old_z_max_endstop = z_max_endstop; }
#endif old_z_max_endstop = z_max_endstop;
#endif
}
} }
#ifndef ADVANCE #ifndef ADVANCE
@ -666,6 +685,13 @@ void st_init()
e_steps = 0; e_steps = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE #endif //ADVANCE
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#else
enable_endstops(true);
#endif
sei(); sei();
} }

@ -44,6 +44,8 @@ void st_wake_up();
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops(); void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
void enable_endstops(bool check); // Enable/disable endstop checking
void checkStepperErrors(); //Print errors detected by the stepper void checkStepperErrors(); //Print errors detected by the stepper
void finishAndDisableSteppers(); void finishAndDisableSteppers();

Loading…
Cancel
Save