Make multiple PID parameters a config option

* Adds config parameter `PID_PARAMS_PER_EXTRUDER` - allows single PID
parameters to be used where this would be preferable (e.g. dual
identical extruders)
* When disabled, will use `float Kp, Ki, Kd, Kc;` as before.
Preprocessor macros used to switch between.
* ultralcd.cpp defines extra menus for extra parameters only where
required
* M301 reports `e:xx` only if independent pid parameters enabled
* EEPROM structure still leaves space for 3 extruders worth, when undef
will save single parameter to all extruder positions, but only read the
first
* Switching off saves approx 330 B with no LCD enabled, 2634B with LCD
(RRD) enabled: this is significant.
* LCD modifications should be tested.
master
grob6000 10 years ago
parent 0877aa0fe0
commit bf2c923db5

@ -152,6 +152,8 @@
//#define PID_DEBUG // Sends debug data to the serial port. //#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term

@ -81,11 +81,11 @@ void Config_StoreSettings()
{ {
if (e < EXTRUDERS) if (e < EXTRUDERS)
{ {
EEPROM_WRITE_VAR(i,Kp[e]); EEPROM_WRITE_VAR(i,PID_PARAM(Kp,e));
EEPROM_WRITE_VAR(i,Ki[e]); EEPROM_WRITE_VAR(i,PID_PARAM(Ki,e));
EEPROM_WRITE_VAR(i,Kd[e]); EEPROM_WRITE_VAR(i,PID_PARAM(Kd,e));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
EEPROM_WRITE_VAR(i,Kc[e]); EEPROM_WRITE_VAR(i,PID_PARAM(Kc,e));
#else//PID_ADD_EXTRUSION_RATE #else//PID_ADD_EXTRUSION_RATE
dummy = 1.0f; // 1.0 = default kc dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE_VAR(dummmy); EEPROM_WRITE_VAR(dummmy);
@ -232,9 +232,9 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("PID settings:"); SERIAL_ECHOLNPGM("PID settings:");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", Kp[0]); // for compatibility with hosts, only echos values for E0 SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp,0)); // for compatibility with hosts, only echos values for E0
SERIAL_ECHOPAIR(" I" ,unscalePID_i(Ki[0])); SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D" ,unscalePID_d(Kd[0])); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#endif//PIDTEMP #endif//PIDTEMP
#ifdef FWRETRACT #ifdef FWRETRACT
@ -341,11 +341,11 @@ void Config_RetrieveSettings()
if (e < EXTRUDERS) if (e < EXTRUDERS)
{ {
// do not need to scale PID values as the values in EEPROM are already scaled // do not need to scale PID values as the values in EEPROM are already scaled
EEPROM_READ_VAR(i,Kp[e]); EEPROM_READ_VAR(i,PID_PARAM(Kp,e));
EEPROM_READ_VAR(i,Ki[e]); EEPROM_READ_VAR(i,PID_PARAM(Ki,e));
EEPROM_READ_VAR(i,Kd[e]); EEPROM_READ_VAR(i,PID_PARAM(Kd,e));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i,Kc[e]); EEPROM_READ_VAR(i,PID_PARAM(Kc,e));
#else//PID_ADD_EXTRUSION_RATE #else//PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i,dummy); EEPROM_READ_VAR(i,dummy);
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
@ -470,14 +470,18 @@ void Config_ResetDefault()
lcd_contrast = DEFAULT_LCD_CONTRAST; lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif//DOGLCD #endif//DOGLCD
#ifdef PIDTEMP #ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
for (int e = 0; e < EXTRUDERS; e++) for (int e = 0; e < EXTRUDERS; e++)
#else // PID_PARAMS_PER_EXTRUDER
int e = 0; // only need to write once
#endif // PID_PARAMS_PER_EXTRUDER
{ {
Kp[e] = DEFAULT_Kp; PID_PARAM(Kp,e) = DEFAULT_Kp;
Ki[e] = scalePID_i(DEFAULT_Ki); PID_PARAM(Ki,e) = scalePID_i(DEFAULT_Ki);
Kd[e] = scalePID_d(DEFAULT_Kd); PID_PARAM(Kd,e) = scalePID_d(DEFAULT_Kd);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
Kc[e] = DEFAULT_Kc; PID_PARAM(Kc,e) = DEFAULT_Kc;
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
} }
// call updatePID (similar to when we have processed M301) // call updatePID (similar to when we have processed M301)
updatePID(); updatePID();

@ -3209,27 +3209,29 @@ Sigma_Exit:
if (e < EXTRUDERS) // catch bad input value if (e < EXTRUDERS) // catch bad input value
{ {
if (code_seen('P')) Kp[e] = code_value(); if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
if (code_seen('I')) Ki[e] = scalePID_i(code_value()); if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
if (code_seen('D')) Kd[e] = scalePID_d(code_value()); if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
if (code_seen('C')) Kc[e] = code_value(); if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
#endif #endif
updatePID(); updatePID();
SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(MSG_OK);
#ifdef PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
SERIAL_PROTOCOL(e); SERIAL_PROTOCOL(e);
#endif // PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp[e]); SERIAL_PROTOCOL(PID_PARAM(Kp,e));
SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki[e])); SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(Kd[e])); SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:"); SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults //Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc[e]); SERIAL_PROTOCOL(PID_PARAM(Kc,e));
#endif #endif
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");

@ -126,12 +126,21 @@ static volatile bool temp_meas_ready = false;
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp); float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT); float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT); float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc); float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif #endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp;
float Ki = DEFAULT_Ki * PID_dT;
float Kd = DEFAULT_Kd / PID_dT;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc = DEFAULT_Kc;
#endif // PID_ADD_EXTRUSION_RATE
#endif // PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP #endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup // Init min and max temp with extreme values to prevent false errors during startup
@ -343,7 +352,7 @@ void updatePID()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP
for(int e = 0; e < EXTRUDERS; e++) { for(int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki[e]; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
} }
#endif #endif
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
@ -464,14 +473,14 @@ void manage_heater()
temp_iState[e] = 0.0; temp_iState[e] = 0.0;
pid_reset[e] = false; pid_reset[e] = false;
} }
pTerm[e] = Kp[e] * pid_error[e]; pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
temp_iState[e] += pid_error[e]; temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = Ki[e] * temp_iState[e]; iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm[e] = (Kd[e] * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) { if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
@ -811,7 +820,7 @@ void tp_init()
maxttemp[e] = maxttemp[0]; maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP #ifdef PIDTEMP
temp_iState_min[e] = 0.0; temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki[e]; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
temp_iState_min_bed = 0.0; temp_iState_min_bed = 0.0;

@ -58,7 +58,14 @@ extern float current_temperature_bed;
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS];
#ifdef PID_PARAMS_PER_EXTRUDER
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
#define PID_PARAM(param,e) param[e] // use macro to point to array value
#else
extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
#define PID_PARAM(param, e) param // use macro to point directly to value
#endif // PID_PARAMS_PER_EXTRUDER
float scalePID_i(float i); float scalePID_i(float i);
float scalePID_d(float d); float scalePID_d(float d);
float unscalePID_i(float i); float unscalePID_i(float i);

@ -790,41 +790,43 @@ static void lcd_control_temperature_menu()
#ifdef PIDTEMP #ifdef PIDTEMP
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
pid_current_extruder = 0; pid_current_extruder = 0;
raw_Ki = unscalePID_i(Ki[0]); raw_Ki = unscalePID_i(PID_PARAM(Ki,0));
raw_Kd = unscalePID_d(Kd[0]); raw_Kd = unscalePID_d(PID_PARAM(Kd,0));
MENU_ITEM_EDIT(float52, MSG_PID_P, &Kp[0], 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P, &PID_PARAM(Kp,0), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d);
# ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C, &Kc[0], 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C, &PID_PARAM(Kc,0), 1, 9990);
# endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#if EXTRUDERS > 1 #ifdef PID_PARAMS_PER_EXTRUDER
#if EXTRUDERS > 1
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
pid_current_extruder = 1; pid_current_extruder = 0;
raw_Ki = unscalePID_i(Ki[1]); raw_Ki = unscalePID_i(PID_PARAM(Ki,1));
raw_Kd = unscalePID_d(Kd[1]); raw_Kd = unscalePID_d(PID_PARAM(Kd,1));
MENU_ITEM_EDIT(float52, MSG_PID_P1, &Kp[1], 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P1, &PID_PARAM(Kp,1), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I1, &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I1, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D1, &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D1, &raw_Kd, 1, 9990, copy_and_scalePID_d);
# ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C1, &Kc[1], 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C1, &PID_PARAM(Kc,1), 1, 9990);
# endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#endif//EXTRUDERS > 1 #endif//EXTRUDERS > 1
#if EXTRUDERS > 2 #if EXTRUDERS > 2
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
pid_current_extruder = 2; pid_current_extruder = 0;
raw_Ki = unscalePID_i(Ki[2]); raw_Ki = unscalePID_i(PID_PARAM(Ki,2));
raw_Kd = unscalePID_d(Kd[2]); raw_Kd = unscalePID_d(PID_PARAM(Kd,2));
MENU_ITEM_EDIT(float52, MSG_PID_P2, &Kp[2], 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P2, &PID_PARAM(Kp,2), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D2, &raw_Kd, 1, 9990, copy_and_scalePID_d); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D2, &raw_Kd, 1, 9990, copy_and_scalePID_d);
# ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C2, &Kc[2], 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C2, &PID_PARAM(Kc,2), 1, 9990);
# endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#endif//EXTRUDERS > 2 #endif//EXTRUDERS > 2
#endif // PID_PARAMS_PER_EXTRUDER
#endif//PIDTEMP #endif//PIDTEMP
MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu);
MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu);
@ -1731,7 +1733,7 @@ char *ftostr52(const float &x)
void copy_and_scalePID_i() void copy_and_scalePID_i()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP
Ki[pid_current_extruder] = scalePID_i(raw_Ki); PID_PARAM(Ki, pid_current_extruder) = scalePID_i(raw_Ki);
updatePID(); updatePID();
#endif #endif
} }
@ -1741,7 +1743,7 @@ void copy_and_scalePID_i()
void copy_and_scalePID_d() void copy_and_scalePID_d()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP
Kd[pid_current_extruder] = scalePID_d(raw_Kd); PID_PARAM(Kd, pid_current_extruder) = scalePID_d(raw_Kd);
updatePID(); updatePID();
#endif #endif
} }

Loading…
Cancel
Save