- Rename WRITE_E_STEP for consistency

- Add BIT and TEST macros
- Add _APPLY_ macros to stepper.cpp to help with consolidation
- Consolidate code in stepper.cpp using macros
- Apply standards in stepper.cpp
- Use >= 0 instead of > -1 as a better semantic
- Replace DUAL_Y_CARRIAGE with Y_DUAL_STEPPER_DRIVERS
master
Scott Lahteine 10 years ago
parent 2f3c77b751
commit c37f7d15c9

@ -32,6 +32,9 @@
#include "WProgram.h" #include "WProgram.h"
#endif #endif
#define BIT(b) (1<<(b))
#define TEST(n,b) ((n)&BIT(b)!=0)
// Arduino < 1.0.0 does not define this, so we need to do it ourselves // Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin #ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p) + 0xA0) #define analogInputToDigitalPin(p) ((p) + 0xA0)

@ -47,8 +47,8 @@
#endif #endif
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
#if defined(DIGIPOT_I2C) #if defined(DIGIPOT_I2C)

@ -47,8 +47,8 @@
#endif #endif
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
#if defined(DIGIPOT_I2C) #if defined(DIGIPOT_I2C)

@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
#endif #endif
if (useU2X) { if (useU2X) {
M_UCSRxA = 1 << M_U2Xx; M_UCSRxA = BIT(M_U2Xx);
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else { } else {
M_UCSRxA = 0; M_UCSRxA = 0;

@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
} }
FORCE_INLINE void write(uint8_t c) { FORCE_INLINE void write(uint8_t c) {
while (!((M_UCSRxA) & (1 << M_UDREx))) while (!TEST(M_UCSRxA, M_UDREx))
; ;
M_UDRx = c; M_UDRx = c;
} }
FORCE_INLINE void checkRx(void) { FORCE_INLINE void checkRx(void) {
if ((M_UCSRxA & (1<<M_RXCx)) != 0) { if (TEST(M_UCSRxA, M_RXCx)) {
unsigned char c = M_UDRx; unsigned char c = M_UDRx;
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE; int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;

@ -62,7 +62,7 @@
#include "Servo.h" #include "Servo.h"
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
@ -4190,7 +4190,7 @@ inline void gcode_M503() {
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/ */
inline void gcode_M907() { inline void gcode_M907() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
for (int i=0;i<NUM_AXIS;i++) for (int i=0;i<NUM_AXIS;i++)
if (code_seen(axis_codes[i])) digipot_current(i, code_value()); if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if (code_seen('B')) digipot_current(4, code_value()); if (code_seen('B')) digipot_current(4, code_value());
@ -4213,7 +4213,7 @@ inline void gcode_M907() {
#endif #endif
} }
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
/** /**
* M908: Control digital trimpot directly (M908 P<pin> S<current>) * M908: Control digital trimpot directly (M908 P<pin> S<current>)
@ -4225,7 +4225,7 @@ inline void gcode_M907() {
); );
} }
#endif // DIGIPOTSS_PIN #endif // HAS_DIGIPOTSS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() { inline void gcode_M350() {
@ -4812,11 +4812,11 @@ void process_commands() {
gcode_M907(); gcode_M907();
break; break;
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
case 908: // M908 Control digital trimpot directly. case 908: // M908 Control digital trimpot directly.
gcode_M908(); gcode_M908();
break; break;
#endif // DIGIPOTSS_PIN #endif // HAS_DIGIPOTSS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350(); gcode_M350();

@ -35,14 +35,14 @@
*/ */
static void spiInit(uint8_t spiRate) { static void spiInit(uint8_t spiRate) {
// See avr processor documentation // See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1); SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X; SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI receive a byte */ /** SPI receive a byte */
static uint8_t spiRec() { static uint8_t spiRec() {
SPDR = 0XFF; SPDR = 0XFF;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
return SPDR; return SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return; if (nbyte-- == 0) return;
SPDR = 0XFF; SPDR = 0XFF;
for (uint16_t i = 0; i < nbyte; i++) { for (uint16_t i = 0; i < nbyte; i++) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[i] = SPDR; buf[i] = SPDR;
SPDR = 0XFF; SPDR = 0XFF;
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[nbyte] = SPDR; buf[nbyte] = SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send a byte */ /** SPI send a byte */
static void spiSend(uint8_t b) { static void spiSend(uint8_t b) {
SPDR = b; SPDR = b;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send block - only one call so force inline */ /** SPI send block - only one call so force inline */
@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token; SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) { for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i]; SPDR = buf[i];
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i + 1]; SPDR = buf[i + 1];
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
#else // SOFTWARE_SPI #else // SOFTWARE_SPI

@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) { void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) { if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();
@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) { void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) { if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();

@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F); return 2*(fatTime & 0X1F);
} }
/** Default date for file timestamps is 1 Jan 2000 */ /** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1; uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
/** Default time for file timestamp is 1 am */ /** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11); uint16_t const FAT_DEFAULT_TIME = BIT(11);
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** /**
* \class SdBaseFile * \class SdBaseFile

@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
blocksPerCluster_ = fbs->sectorsPerCluster; blocksPerCluster_ = fbs->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_ // determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0; clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) { while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
// error if not power of 2 // error if not power of 2
if (clusterSizeShift_++ > 7) goto fail; if (clusterSizeShift_++ > 7) goto fail;
} }

@ -24,9 +24,9 @@
#define BLEN_A 0 #define BLEN_A 0
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_C 2 #define BLEN_C 2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#endif #endif

@ -13,8 +13,7 @@
*/ */
#ifndef MASK #ifndef MASK
/// MASKING- returns \f$2^PIN\f$ #define MASK(PIN) (1 << PIN)
#define MASK(PIN) (1 << PIN)
#endif #endif
/* /*

@ -184,4 +184,6 @@
analogInputToDigitalPin(TEMP_BED_PIN) \ analogInputToDigitalPin(TEMP_BED_PIN) \
} }
#define HAS_DIGIPOTSS (DIGIPOTSS_PIN >= 0)
#endif //__PINS_H #endif //__PINS_H

@ -59,7 +59,7 @@
#include "language.h" #include "language.h"
//=========================================================================== //===========================================================================
//=============================public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================
unsigned long minsegmenttime; unsigned long minsegmenttime;
@ -623,37 +623,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
#ifndef COREXY #ifndef COREXY
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_AXIS); block->direction_bits |= BIT(X_AXIS);
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_AXIS); block->direction_bits |= BIT(Y_AXIS);
} }
#else #else
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
} }
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS) block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
} }
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS) block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
} }
#endif #endif
if (target[Z_AXIS] < position[Z_AXIS]) if (target[Z_AXIS] < position[Z_AXIS])
{ {
block->direction_bits |= (1<<Z_AXIS); block->direction_bits |= BIT(Z_AXIS);
} }
if (target[E_AXIS] < position[E_AXIS]) if (target[E_AXIS] < position[E_AXIS])
{ {
block->direction_bits |= (1<<E_AXIS); block->direction_bits |= BIT(E_AXIS);
} }
block->active_extruder = extruder; block->active_extruder = extruder;
@ -864,7 +864,7 @@ Having the real displacement of the head, we can calculate the total movement le
old_direction_bits = block->direction_bits; old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor); segment_time = lround((float)segment_time / speed_factor);
if((direction_change & (1<<X_AXIS)) == 0) if((direction_change & BIT(X_AXIS)) == 0)
{ {
x_segment_time[0] += segment_time; x_segment_time[0] += segment_time;
} }
@ -874,7 +874,7 @@ Having the real displacement of the head, we can calculate the total movement le
x_segment_time[1] = x_segment_time[0]; x_segment_time[1] = x_segment_time[0];
x_segment_time[0] = segment_time; x_segment_time[0] = segment_time;
} }
if((direction_change & (1<<Y_AXIS)) == 0) if((direction_change & BIT(Y_AXIS)) == 0)
{ {
y_segment_time[0] += segment_time; y_segment_time[0] += segment_time;
} }

@ -29,33 +29,34 @@
#include "language.h" #include "language.h"
#include "cardreader.h" #include "cardreader.h"
#include "speed_lookuptable.h" #include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
//=========================================================================== //===========================================================================
//=============================public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================
block_t *current_block; // A pointer to the block currently being traced block_t *current_block; // A pointer to the block currently being traced
//=========================================================================== //===========================================================================
//=============================private variables ============================ //============================= private variables ===========================
//=========================================================================== //===========================================================================
//static makes it impossible to be called from outside of this file by extern.! //static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y, // Counter variables for the bresenham line tracer
counter_z, static long counter_x, counter_y, counter_z, counter_e;
counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static long old_advance = 0; static long old_advance = 0;
static long e_steps[4]; static long e_steps[4];
#endif #endif
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point static unsigned short acc_step_rate; // needed for deccelaration start point
@ -63,162 +64,199 @@ static char step_loops;
static unsigned short OCR1A_nominal; static unsigned short OCR1A_nominal;
static unsigned short step_loops_nominal; static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal,endstops_stepsDone; volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit=false; static volatile bool endstop_x_hit = false;
static volatile bool endstop_y_hit=false; static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit=false; static volatile bool endstop_z_hit = false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false; bool abort_on_endstop_hit = false;
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif #endif
static bool old_x_min_endstop=false; static bool old_x_min_endstop = false,
static bool old_x_max_endstop=false; old_x_max_endstop = false,
static bool old_y_min_endstop=false; old_y_min_endstop = false,
static bool old_y_max_endstop=false; old_y_max_endstop = false,
static bool old_z_min_endstop=false; old_z_min_endstop = false,
static bool old_z_max_endstop=false; old_z_max_endstop = false;
static bool check_endstops = true; static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0 };
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile signed char count_direction[NUM_AXIS] = { 1 };
//=========================================================================== //===========================================================================
//=============================functions ============================ //================================ functions ================================
//=========================================================================== //===========================================================================
#define CHECK_ENDSTOPS if(check_endstops) #ifdef DUAL_X_CARRIAGE
#define X_APPLY_DIR(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
} \
else{ \
if (current_block->active_extruder) \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
}
#define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
} \
else { \
if (current_block->active_extruder != 0) \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
}
#else
#define X_APPLY_DIR(v) X_DIR_WRITE(v)
#define X_APPLY_STEP(v) X_STEP_WRITE(v)
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
#define Y_APPLY_STEP(v) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
#else
#define Y_APPLY_DIR(v) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v) Y_STEP_WRITE(v)
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
#define Z_APPLY_STEP(v) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
#else
#define Z_APPLY_DIR(v) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v) Z_STEP_WRITE(v)
#endif
#define E_APPLY_STEP(v) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16 // intRes = intIn1 * intIn2 >> 16
// uses: // uses:
// r26 to store 0 // r26 to store 0
// r27 to store the byte 1 of the 24 bit result // r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \ #define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ "clr r26 \n\t" \
"mul %A1, %B2 \n\t" \ "mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \ "movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \ "mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \ "add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"lsr r0 \n\t" \ "lsr r0 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"clr r1 \n\t" \ "clr r1 \n\t" \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \
"d" (charIn1), \ "d" (charIn1), \
"d" (intIn2) \ "d" (intIn2) \
: \ : \
"r26" \ "r26" \
) )
// intRes = longIn1 * longIn2 >> 24 // intRes = longIn1 * longIn2 >> 24
// uses: // uses:
// r26 to store 0 // r26 to store 0
// r27 to store the byte 1 of the 48bit result // r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \ #define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ "clr r26 \n\t" \
"mul %A1, %B2 \n\t" \ "mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \ "mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \ "mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \ "movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \ "mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \ "add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \ "mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \ "add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \ "adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \ "mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \ "mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \ "mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \ "add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \ "adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \ "mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \ "add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"lsr r27 \n\t" \ "lsr r27 \n\t" \
"adc %A0, r26 \n\t" \ "adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \ "adc %B0, r26 \n\t" \
"clr r1 \n\t" \ "clr r1 \n\t" \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \
"d" (longIn1), \ "d" (longIn1), \
"d" (longIn2) \ "d" (longIn2) \
: \ : \
"r26" , "r27" \ "r26" , "r27" \
) )
// Some useful constants // Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_EOL;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
}
void endstops_hit_on_purpose() void endstops_hit_on_purpose() {
{ endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
} }
void enable_endstops(bool check) void checkHitEndstops() {
{ if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
check_endstops = check; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if (endstop_x_hit) {
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if (endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if (endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_EOL;
endstops_hit_on_purpose();
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
} }
void enable_endstops(bool check) { check_endstops = check; }
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
// / | | \ /| |\ | // / | | \ /| |\ |
@ -242,23 +280,23 @@ void st_wake_up() {
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer; unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff; step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4; step_loops = 4;
} }
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff; step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2; step_loops = 2;
} }
else { else {
step_loops = 1; step_loops = 1;
} }
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed step_rate -= (F_CPU / 500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
@ -271,7 +309,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address); timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
} }
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer; return timer;
} }
@ -294,49 +332,45 @@ FORCE_INLINE void trapezoid_generator_reset() {
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
// SERIAL_ECHO_START; // SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :"); // SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0); // SERIAL_ECHOLN(current_block->final_advance/256.0);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect) {
{
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) { if (!current_block) {
// Anything in the buffer? // Anything in the buffer?
current_block = plan_get_current_block(); current_block = plan_get_current_block();
if (current_block != NULL) { if (current_block) {
current_block->busy = true; current_block->busy = true;
trapezoid_generator_reset(); trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1); counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x; counter_y = counter_z = counter_e = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0; step_events_completed = 0;
#ifdef Z_LATE_ENABLE #ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) { if (current_block->steps_z > 0) {
enable_z(); enable_z();
OCR1A = 2000; //1ms wait OCR1A = 2000; //1ms wait
return; return;
} }
#endif #endif
// #ifdef ADVANCE // #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0; // e_steps[current_block->active_extruder] = 0;
// #endif // #endif
} }
else { else {
OCR1A=2000; // 1kHz. OCR1A = 2000; // 1kHz.
} }
} }
@ -344,186 +378,114 @@ ISR(TIMER1_COMPA_vect)
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits; out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){ if (TEST(out_bits, X_AXIS)) {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(INVERT_X_DIR);
if (extruder_duplication_enabled){ count_direction[X_AXIS] = -1;
X_DIR_WRITE(INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(INVERT_X_DIR);
else
X_DIR_WRITE(INVERT_X_DIR);
}
#else
X_DIR_WRITE(INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
} }
else{ else {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(!INVERT_X_DIR);
if (extruder_duplication_enabled){ count_direction[X_AXIS] = 1;
X_DIR_WRITE(!INVERT_X_DIR);
X2_DIR_WRITE( !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(!INVERT_X_DIR);
else
X_DIR_WRITE(!INVERT_X_DIR);
}
#else
X_DIR_WRITE(!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
} }
if((out_bits & (1<<Y_AXIS))!=0){
Y_DIR_WRITE(INVERT_Y_DIR); if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS count_direction[Y_AXIS] = -1;
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1;
} }
else{ else {
Y_DIR_WRITE(!INVERT_Y_DIR); Y_APPLY_DIR(!INVERT_Y_DIR);
count_direction[Y_AXIS] = 1;
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1;
} }
if(check_endstops) // check X and Y Endstops #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
{ bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
#ifndef COREXY if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot) endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
#else endstop_## axis ##_hit = true; \
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis step_events_completed = current_block->step_event_count; \
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots. } \
#endif old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
// Check X and Y endstops
if (check_endstops) {
#ifndef COREXY
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#else
// Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis
if (TEST(out_bits, X_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))))
#endif
{ // -direction { // -direction
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(x, X, min, MIN);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) #endif
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
} }
} }
else else { // +direction
{ // +direction #ifdef DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif #endif
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); UPDATE_ENDSTOP(x, X, max, MAX);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)) #endif
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
} }
} }
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if (TEST(out_bits, Y_AXIS)) // -direction
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis // Head direction in -Y axis for CoreXY bots.
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis
if (TEST(out_bits, Y_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))))
#endif #endif
{ // -direction { // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(y, Y, min, MIN);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) #endif
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif
} }
else else { // +direction
{ // +direction #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 UPDATE_ENDSTOP(y, Y, max, MAX);
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); #endif
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
} }
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
Z_DIR_WRITE(INVERT_Z_DIR); Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(INVERT_Z_DIR); Z2_DIR_WRITE(INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS] = -1;
CHECK_ENDSTOPS if (check_endstops) {
{ #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 UPDATE_ENDSTOP(z, Z, min, MIN);
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif #endif
} }
} }
else { // +direction else { // +direction
Z_DIR_WRITE(!INVERT_Z_DIR); Z_DIR_WRITE(!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(!INVERT_Z_DIR); Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS]=1; count_direction[Z_AXIS] = 1;
CHECK_ENDSTOPS if (check_endstops) {
{ #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 UPDATE_ENDSTOP(z, Z, max, MAX);
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif #endif
} }
} }
#ifndef ADVANCE #ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR(); REV_E_DIR();
count_direction[E_AXIS]=-1; count_direction[E_AXIS]=-1;
} }
@ -533,151 +495,73 @@ ISR(TIMER1_COMPA_vect)
} }
#endif //!ADVANCE #endif //!ADVANCE
// Take multiple steps per interrupt (For high speed moves)
for (int8_t i=0; i < step_loops; i++) {
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB #ifndef AT90USB
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
#endif #endif
#ifdef ADVANCE #ifdef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
e_steps[current_block->active_extruder]--;
}
else {
e_steps[current_block->active_extruder]++;
}
}
#endif //ADVANCE
counter_x += current_block->steps_x;
#ifdef CONFIG_STEPPERS_TOSHIBA
/* The Toshiba stepper controller require much longer pulses.
* So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y;
if (counter_y > 0) Y_STEP_WRITE(HIGH);
counter_z += current_block->steps_z;
if (counter_z > 0) Z_STEP_WRITE(HIGH);
#ifndef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) WRITE_E_STEP(HIGH);
#endif //!ADVANCE
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
X_STEP_WRITE(LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS];
Y_STEP_WRITE( LOW);
}
if (counter_z > 0) {
counter_z -= current_block->step_event_count;
count_position[Z_AXIS] += count_direction[Z_AXIS];
Z_STEP_WRITE(LOW);
}
#ifndef ADVANCE
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS]; e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
WRITE_E_STEP(LOW);
}
#endif //!ADVANCE
#else
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(!INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE(INVERT_X_STEP_PIN);
else
X_STEP_WRITE(INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
} }
#endif //ADVANCE
#ifdef CONFIG_STEPPERS_TOSHIBA
/**
* The Toshiba stepper controller require much longer pulses.
* So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
counter_x += current_block->steps_x;
if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) { if (counter_y > 0) Y_STEP_WRITE(HIGH);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN); counter_z += current_block->steps_z;
if (counter_z > 0) Z_STEP_WRITE(HIGH);
#ifdef Y_DUAL_STEPPER_DRIVERS #ifndef ADVANCE
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN); counter_e += current_block->steps_e;
#endif if (counter_e > 0) E_STEP_WRITE(HIGH);
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS]; #define STEP_IF_COUNTER(axis, AXIS) \
Y_STEP_WRITE(INVERT_Y_STEP_PIN); if (counter_## axis > 0) {
counter_## axis -= current_block->step_event_count; \
#ifdef Y_DUAL_STEPPER_DRIVERS count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
Y2_STEP_WRITE( INVERT_Y_STEP_PIN); AXIS ##_STEP_WRITE(LOW);
#endif }
}
counter_z += current_block->steps_z; STEP_IF_COUNTER(x, X);
if (counter_z > 0) { STEP_IF_COUNTER(y, Y);
Z_STEP_WRITE( !INVERT_Z_STEP_PIN); STEP_IF_COUNTER(z, Z);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifndef ADVANCE
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN); STEP_IF_COUNTER(e, E);
#endif #endif
counter_z -= current_block->step_event_count; #else // !CONFIG_STEPPERS_TOSHIBA
count_position[Z_AXIS] += count_direction[Z_AXIS];
Z_STEP_WRITE( INVERT_Z_STEP_PIN); #define APPLY_MOVEMENT(axis, AXIS) \
counter_## axis += current_block->steps_## axis; \
if (counter_## axis > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN); \
counter_## axis -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN); \
}
#ifdef Z_DUAL_STEPPER_DRIVERS APPLY_MOVEMENT(x, X);
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); APPLY_MOVEMENT(y, Y);
APPLY_MOVEMENT(z, Z);
#ifndef ADVANCE
APPLY_MOVEMENT(e, E);
#endif #endif
}
#ifndef ADVANCE #endif // CONFIG_STEPPERS_TOSHIBA
counter_e += current_block->steps_e; step_events_completed++;
if (counter_e > 0) { if (step_events_completed >= current_block->step_event_count) break;
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
}
#endif //!ADVANCE
#endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
} }
// Calculare new timer value // Calculare new timer value
unsigned short timer; unsigned short timer;
@ -688,7 +572,7 @@ ISR(TIMER1_COMPA_vect)
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
// upper limit // upper limit
if(acc_step_rate > current_block->nominal_rate) if (acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate; acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval // step_rate to timer interval
@ -699,7 +583,7 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate; advance += advance_rate;
} }
//if(advance > current_block->advance) advance = current_block->advance; //if (advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
@ -709,7 +593,7 @@ ISR(TIMER1_COMPA_vect)
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive if (step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
} }
else { else {
@ -717,7 +601,7 @@ ISR(TIMER1_COMPA_vect)
} }
// lower limit // lower limit
if(step_rate < current_block->final_rate) if (step_rate < current_block->final_rate)
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
// step_rate to timer interval // step_rate to timer interval
@ -728,7 +612,7 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate; advance -= advance_rate;
} }
if(advance < final_advance) advance = final_advance; if (advance < final_advance) advance = final_advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
@ -759,7 +643,7 @@ ISR(TIMER1_COMPA_vect)
// Set E direction (Depends on E direction + advance) // Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++) { for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) { if (e_steps[0] != 0) {
E0_STEP_WRITE( INVERT_E_STEP_PIN); E0_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[0] < 0) { if (e_steps[0] < 0) {
E0_DIR_WRITE(INVERT_E0_DIR); E0_DIR_WRITE(INVERT_E0_DIR);
e_steps[0]++; e_steps[0]++;
@ -821,200 +705,186 @@ ISR(TIMER1_COMPA_vect)
} }
#endif // ADVANCE #endif // ADVANCE
void st_init() void st_init() {
{
digipot_init(); //Initialize Digipot Motor Current digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins microstep_init(); //Initialize Microstepping Pins
// initialise TMC Steppers // initialise TMC Steppers
#ifdef HAVE_TMCDRIVER #ifdef HAVE_TMCDRIVER
tmc_init(); tmc_init();
#endif #endif
// initialise L6470 Steppers // initialise L6470 Steppers
#ifdef HAVE_L6470DRIVER #ifdef HAVE_L6470DRIVER
L6470_init(); L6470_init();
#endif #endif
// Initialize Dir Pins
//Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
X_DIR_INIT; X_DIR_INIT;
#endif #endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
X2_DIR_INIT; X2_DIR_INIT;
#endif #endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
Y_DIR_INIT; Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) Y2_DIR_INIT;
Y2_DIR_INIT; #endif
#endif
#endif #endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
Z_DIR_INIT; Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
Z2_DIR_INIT; Z2_DIR_INIT;
#endif #endif
#endif #endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
E0_DIR_INIT; E0_DIR_INIT;
#endif #endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
E1_DIR_INIT; E1_DIR_INIT;
#endif #endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
E2_DIR_INIT; E2_DIR_INIT;
#endif #endif
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1) #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
E3_DIR_INIT; E3_DIR_INIT;
#endif #endif
//Initialize Enable Pins - steppers default to disabled. //Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
X_ENABLE_INIT; X_ENABLE_INIT;
if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
X2_ENABLE_INIT; X2_ENABLE_INIT;
if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
Y_ENABLE_INIT; Y_ENABLE_INIT;
if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
Y2_ENABLE_INIT; Y2_ENABLE_INIT;
if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
Z_ENABLE_INIT; Z_ENABLE_INIT;
if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
Z2_ENABLE_INIT; Z2_ENABLE_INIT;
if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
E0_ENABLE_INIT; E0_ENABLE_INIT;
if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
E1_ENABLE_INIT; E1_ENABLE_INIT;
if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
E2_ENABLE_INIT; E2_ENABLE_INIT;
if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1) #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
E3_ENABLE_INIT; E3_ENABLE_INIT;
if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif #endif
//endstops and pullups //endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN #ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH); WRITE(X_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN #ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH); WRITE(Y_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN #ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH); WRITE(Z_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX #ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH); WRITE(X_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX #ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH); WRITE(Y_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX #ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH); WRITE(Z_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#define AXIS_INIT(axis, AXIS, PIN) \
AXIS ##_STEP_INIT; \
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
disable_## axis()
//Initialize Step Pins #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
X_STEP_INIT; // Initialize Step Pins
X_STEP_WRITE(INVERT_X_STEP_PIN); #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
disable_x(); AXIS_INIT(x, X, X);
#endif #endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
X2_STEP_INIT; AXIS_INIT(x, X2, X);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif #endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
Y_STEP_INIT; #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
Y2_STEP_INIT; Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN); Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif #endif
disable_y(); AXIS_INIT(y, Y, Y);
#endif #endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
Z_STEP_INIT; #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
Z2_STEP_INIT; Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif #endif
disable_z(); AXIS_INIT(z, Z, Z);
#endif #endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
E0_STEP_INIT; E_AXIS_INIT(0);
E0_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e0();
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
E1_STEP_INIT; E_AXIS_INIT(1);
E1_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e1();
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
E2_STEP_INIT; E_AXIS_INIT(2);
E2_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e2();
#endif #endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1) #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
E3_STEP_INIT; E_AXIS_INIT(3);
E3_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e3();
#endif #endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~BIT(WGM13);
TCCR1B |= (1<<WGM12); TCCR1B |= BIT(WGM12);
TCCR1A &= ~(1<<WGM11); TCCR1A &= ~BIT(WGM11);
TCCR1A &= ~(1<<WGM10); TCCR1A &= ~BIT(WGM10);
// output mode = 00 (disconnected) // output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0); TCCR1A &= ~(3<<COM1A0);
@ -1032,15 +902,15 @@ void st_init()
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE #ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01); TCCR0A &= ~BIT(WGM01);
TCCR0A &= ~(1<<WGM00); TCCR0A &= ~BIT(WGM00);
#endif #endif
e_steps[0] = 0; e_steps[0] = 0;
e_steps[1] = 0; e_steps[1] = 0;
e_steps[2] = 0; e_steps[2] = 0;
e_steps[3] = 0; e_steps[3] = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= BIT(OCIE0A);
#endif //ADVANCE #endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled
@ -1049,17 +919,15 @@ void st_init()
// Block until all buffered steps are executed // Block until all buffered steps are executed
void st_synchronize() void st_synchronize() {
{ while (blocks_queued()) {
while( blocks_queued()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
} }
void st_set_position(const long &x, const long &y, const long &z, const long &e) void st_set_position(const long &x, const long &y, const long &z, const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[X_AXIS] = x; count_position[X_AXIS] = x;
count_position[Y_AXIS] = y; count_position[Y_AXIS] = y;
@ -1068,15 +936,13 @@ void st_set_position(const long &x, const long &y, const long &z, const long &e)
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
void st_set_e_position(const long &e) void st_set_e_position(const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[E_AXIS] = e; count_position[E_AXIS] = e;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
long st_get_position(uint8_t axis) long st_get_position(uint8_t axis) {
{
long count_pos; long count_pos;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_pos = count_position[axis]; count_pos = count_position[axis];
@ -1085,15 +951,15 @@ long st_get_position(uint8_t axis)
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis)
{ float st_get_position_mm(uint8_t axis) {
float steper_position_in_steps = st_get_position(axis); float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis]; return steper_position_in_steps / axis_steps_per_unit[axis];
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers() void finishAndDisableSteppers() {
{
st_synchronize(); st_synchronize();
disable_x(); disable_x();
disable_y(); disable_y();
@ -1104,162 +970,85 @@ void finishAndDisableSteppers()
disable_e3(); disable_e3();
} }
void quickStop() void quickStop() {
{
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
while(blocks_queued()) while (blocks_queued()) plan_discard_current_block();
plan_discard_current_block();
current_block = NULL; current_block = NULL;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void babystep(const uint8_t axis, const bool direction) {
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
enable_## axis(); \
uint8_t old_pin = AXIS ##_DIR_READ; \
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT); \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN); \
_delay_us(1U); \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN); \
AXIS ##_APPLY_DIR(old_pin); \
}
void babystep(const uint8_t axis,const bool direction) switch(axis) {
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE((INVERT_X_DIR)^direction);
#endif
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
//get old pin state back. case X_AXIS:
X_DIR_WRITE(old_x_dir_pin); BABYSTEP_AXIS(x, X, false);
#ifdef DUAL_X_CARRIAGE break;
X2_DIR_WRITE(old_x_dir_pin);
#endif
} case Y_AXIS:
break; BABYSTEP_AXIS(y, Y, false);
case Y_AXIS: break;
{
enable_y(); case Z_AXIS: {
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
#endif
//perform step
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond #ifndef DELTA
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
//get old pin state back. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
Y_DIR_WRITE(old_y_dir_pin);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE(old_y_dir_pin);
#endif
} #else // DELTA
break;
#ifndef DELTA
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond bool z_direction = direction ^ BABYSTEP_INVERT_Z;
Z_STEP_WRITE( INVERT_Z_STEP_PIN); enable_x();
#ifdef Z_DUAL_STEPPER_DRIVERS enable_y();
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); enable_z();
#endif uint8_t old_x_dir_pin = X_DIR_READ,
old_y_dir_pin = Y_DIR_READ,
old_z_dir_pin = Z_DIR_READ;
//setup new step
X_DIR_WRITE(INVERT_X_DIR^z_direction);
Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U);
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
//get old pin state back. #endif
Z_DIR_WRITE(old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(old_z_dir_pin);
#endif
} break;
default: break;
}
} }
break;
#else //DELTA
case Z_AXIS:
{
enable_x();
enable_y();
enable_z();
uint8_t old_x_dir_pin= X_DIR_READ;
uint8_t old_y_dir_pin= Y_DIR_READ;
uint8_t old_z_dir_pin= Z_DIR_READ;
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
//perform step
X_STEP_WRITE( !INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
}
break;
#endif
default: break;
}
}
#endif //BABYSTEPPING #endif //BABYSTEPPING
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example // From Arduino DigitalPotControl example
{ void digitalPotWrite(int address, int value) {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value); SPI.transfer(value);
@ -1268,16 +1057,17 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e
#endif #endif
} }
void digipot_init() //Initialize Digipot Motor Current // Initialize Digipot Motor Current
{ void digipot_init() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin(); SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT); pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++) for (int i = 0; i <= 4; i++) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]);
}
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
@ -1291,69 +1081,64 @@ void digipot_init() //Initialize Digipot Motor Current
#endif #endif
} }
void digipot_current(uint8_t driver, int current) void digipot_current(uint8_t driver, int current) {
{ #if HAS_DIGIPOTSS
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current); digitalPotWrite(digipot_ch[driver], current);
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); switch(driver) {
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
}
#endif #endif
} }
void microstep_init() void microstep_init() {
{
const uint8_t microstep_modes[] = MICROSTEP_MODES; const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
pinMode(E1_MS1_PIN,OUTPUT); pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT);
#endif #endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1 #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT); pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT); pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT); pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]); for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
#endif #endif
} }
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
{ if (ms1 >= 0) switch(driver) {
if(ms1 > -1) switch(driver) case 0: digitalWrite(X_MS1_PIN, ms1); break;
{ case 1: digitalWrite(Y_MS1_PIN, ms1); break;
case 0: digitalWrite( X_MS1_PIN,ms1); break; case 2: digitalWrite(Z_MS1_PIN, ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break; case 3: digitalWrite(E0_MS1_PIN, ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break; #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
case 3: digitalWrite(E0_MS1_PIN,ms1); break; case 4: digitalWrite(E1_MS1_PIN, ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif #endif
} }
if(ms2 > -1) switch(driver) if (ms2 >= 0) switch(driver) {
{ case 0: digitalWrite(X_MS2_PIN, ms2); break;
case 0: digitalWrite( X_MS2_PIN,ms2); break; case 1: digitalWrite(Y_MS2_PIN, ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break; case 2: digitalWrite(Z_MS2_PIN, ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break; case 3: digitalWrite(E0_MS2_PIN, ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break; #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1 case 4: digitalWrite(E1_MS2_PIN, ms2); break;
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif #endif
} }
} }
void microstep_mode(uint8_t driver, uint8_t stepping_mode) void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
{ switch(stepping_mode) {
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break; case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break; case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break; case 4: microstep_ms(driver,MICROSTEP4); break;
@ -1362,24 +1147,23 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode)
} }
} }
void microstep_readings() void microstep_readings() {
{ SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN)); SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN)); SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN)); SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN)); #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN)); #endif
#endif
} }

@ -25,26 +25,26 @@
#include "stepper_indirection.h" #include "stepper_indirection.h"
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}} #define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}} #define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
#elif EXTRUDERS > 2 #elif EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}} #define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}} #define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1 #elif EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#else #else
extern bool extruder_duplication_enabled; extern bool extruder_duplication_enabled;
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#endif #endif
#else #else
#define WRITE_E_STEP(v) E0_STEP_WRITE(v) #define E_STEP_WRITE(v) E0_STEP_WRITE(v)
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR) #define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR) #define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
#endif #endif

@ -878,8 +878,8 @@ void tp_init()
{ {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
#endif #endif
// Finish init of mult extruder arrays // Finish init of mult extruder arrays
@ -937,13 +937,13 @@ void tp_init()
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#ifdef DIDR2 #ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0) #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
#else #else
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0) #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
#endif #endif
// Set analog inputs // Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
DIDR0 = 0; DIDR0 = 0;
#ifdef DIDR2 #ifdef DIDR2
DIDR2 = 0; DIDR2 = 0;
@ -970,7 +970,7 @@ void tp_init()
// Use timer0 for temperature measurement // Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt // Interleave temperature interrupt with millies interrupt
OCR0B = 128; OCR0B = 128;
TIMSK0 |= (1<<OCIE0B); TIMSK0 |= BIT(OCIE0B);
// Wait for temperature measurement to settle // Wait for temperature measurement to settle
delay(250); delay(250);
@ -1174,12 +1174,12 @@ void disable_heater() {
max6675_temp = 0; max6675_temp = 0;
#ifdef PRR #ifdef PRR
PRR &= ~(1<<PRSPI); PRR &= ~BIT(PRSPI);
#elif defined(PRR0) #elif defined(PRR0)
PRR0 &= ~(1<<PRSPI); PRR0 &= ~BIT(PRSPI);
#endif #endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
// enable TT_MAX6675 // enable TT_MAX6675
WRITE(MAX6675_SS, 0); WRITE(MAX6675_SS, 0);
@ -1190,13 +1190,13 @@ void disable_heater() {
// read MSB // read MSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp = SPDR; max6675_temp = SPDR;
max6675_temp <<= 8; max6675_temp <<= 8;
// read LSB // read LSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp |= SPDR; max6675_temp |= SPDR;
// disable TT_MAX6675 // disable TT_MAX6675
@ -1246,7 +1246,7 @@ ISR(TIMER0_COMPB_vect) {
static unsigned long raw_temp_3_value = 0; static unsigned long raw_temp_3_value = 0;
static unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE); static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
// Static members for each heater // Static members for each heater
#ifdef SLOW_PWM_HEATERS #ifdef SLOW_PWM_HEATERS
@ -1331,7 +1331,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif #endif
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS #else // SLOW_PWM_HEATERS
@ -1412,7 +1412,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM #endif //FAN_SOFT_PWM
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
@ -1438,9 +1438,9 @@ ISR(TIMER0_COMPB_vect) {
#endif // SLOW_PWM_HEATERS #endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
#ifdef MUX5 #ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else #else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif #endif

@ -1426,7 +1426,7 @@ void lcd_buttons_update() {
WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_LD, HIGH);
for(int8_t i = 0; i < 8; i++) { for(int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad >>= 1; newbutton_reprapworld_keypad >>= 1;
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7); if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }
@ -1439,7 +1439,7 @@ void lcd_buttons_update() {
unsigned char tmp_buttons = 0; unsigned char tmp_buttons = 0;
for(int8_t i=0; i<8; i++) { for(int8_t i=0; i<8; i++) {
newbutton >>= 1; newbutton >>= 1;
if (READ(SHIFT_OUT)) newbutton |= (1 << 7); if (READ(SHIFT_OUT)) newbutton |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }

@ -57,20 +57,20 @@
void lcd_ignore_click(bool b=true); void lcd_ignore_click(bool b=true);
#ifdef NEWPANEL #ifdef NEWPANEL
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3) #define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2) #define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1) #define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP) #define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT) #define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE) #define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1)) #define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2) #define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
@ -83,14 +83,14 @@
#endif //REPRAPWORLD_KEYPAD #endif //REPRAPWORLD_KEYPAD
#else #else
//atomic, do not change //atomic, do not change
#define B_LE (1<<BL_LE) #define B_LE BIT(BL_LE)
#define B_UP (1<<BL_UP) #define B_UP BIT(BL_UP)
#define B_MI (1<<BL_MI) #define B_MI BIT(BL_MI)
#define B_DW (1<<BL_DW) #define B_DW BIT(BL_DW)
#define B_RI (1<<BL_RI) #define B_RI BIT(BL_RI)
#define B_ST (1<<BL_ST) #define B_ST BIT(BL_ST)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST)) #define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL #endif//NEWPANEL

@ -24,13 +24,13 @@
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_A 0 #define BLEN_A 0
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2 #define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#if defined(BTN_ENC) && BTN_ENC > -1 #if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected // encoder click is directly connected
#define BLEN_C 2 #define BLEN_C 2
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#endif #endif
// //
@ -85,14 +85,14 @@
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values #define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1)) #define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN) #define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
@ -113,12 +113,12 @@
#define BL_ST 2 #define BL_ST 2
//automatic, do not change //automatic, do not change
#define B_LE (1<<BL_LE) #define B_LE BIT(BL_LE)
#define B_UP (1<<BL_UP) #define B_UP BIT(BL_UP)
#define B_MI (1<<BL_MI) #define B_MI BIT(BL_MI)
#define B_DW (1<<BL_DW) #define B_DW BIT(BL_DW)
#define B_RI (1<<BL_RI) #define B_RI BIT(BL_RI)
#define B_ST (1<<BL_ST) #define B_ST BIT(BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST)) #define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif #endif

Loading…
Cancel
Save