Merge pull request #4738 from thinkyhead/rc_ensure_floats

Optimize stepper ISRs, plus cleanup, shorthand
master
Scott Lahteine 8 years ago committed by GitHub
commit c3caa42630

@ -35,11 +35,14 @@
#endif #endif
/** /**
* Axis lengths * Axis lengths and center
*/ */
#define X_MAX_LENGTH (X_MAX_POS - (X_MIN_POS)) #define X_MAX_LENGTH (X_MAX_POS - (X_MIN_POS))
#define Y_MAX_LENGTH (Y_MAX_POS - (Y_MIN_POS)) #define Y_MAX_LENGTH (Y_MAX_POS - (Y_MIN_POS))
#define Z_MAX_LENGTH (Z_MAX_POS - (Z_MIN_POS)) #define Z_MAX_LENGTH (Z_MAX_POS - (Z_MIN_POS))
#define X_CENTER float((X_MIN_POS + X_MAX_POS) * 0.5)
#define Y_CENTER float((Y_MIN_POS + Y_MAX_POS) * 0.5)
#define Z_CENTER float((Z_MIN_POS + Z_MAX_POS) * 0.5)
/** /**
* CoreXY and CoreXZ * CoreXY and CoreXZ
@ -127,6 +130,8 @@
*/ */
#define HAS_PROBING_PROCEDURE (ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)) #define HAS_PROBING_PROCEDURE (ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
#define HOMING_Z_WITH_PROBE (HAS_BED_PROBE && Z_HOME_DIR < 0 && ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN))
// Boundaries for probing based on set limits // Boundaries for probing based on set limits
#define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER)) #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER)) #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))

@ -1586,7 +1586,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (axis == Z_AXIS) { if (axis == Z_AXIS) {
#if HAS_BED_PROBE && Z_HOME_DIR < 0 #if HAS_BED_PROBE && Z_HOME_DIR < 0
#if DISABLED(Z_MIN_PROBE_ENDSTOP) #if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset; current_position[Z_AXIS] -= zprobe_zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -2049,8 +2049,8 @@ static void clean_up_after_endstop_or_probe_move() {
#endif #endif
#endif #endif
#define DEPLOY_PROBE() set_probe_deployed( true ) #define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed( false ) #define STOW_PROBE() set_probe_deployed(false)
// returns false for ok and true for failure // returns false for ok and true for failure
static bool set_probe_deployed(bool deploy) { static bool set_probe_deployed(bool deploy) {
@ -2073,8 +2073,8 @@ static void clean_up_after_endstop_or_probe_move() {
if (axis_unhomed_error(true, true, true )) { stop(); return true; } if (axis_unhomed_error(true, true, true )) { stop(); return true; }
#endif #endif
float oldXpos = current_position[X_AXIS]; // save x position float oldXpos = current_position[X_AXIS],
float oldYpos = current_position[Y_AXIS]; // save y position oldYpos = current_position[Y_AXIS];
#ifdef _TRIGGERED_WHEN_STOWED_TEST #ifdef _TRIGGERED_WHEN_STOWED_TEST
@ -2430,10 +2430,10 @@ static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(AxisEnum axis) { static void homeaxis(AxisEnum axis) {
#define HOMEAXIS_DO(LETTER) \ #define CAN_HOME(A) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : false)) return; if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -2449,7 +2449,7 @@ static void homeaxis(AxisEnum axis) {
home_dir(axis); home_dir(axis);
// Homing Z towards the bed? Deploy the Z probe or endstop. // Homing Z towards the bed? Deploy the Z probe or endstop.
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) #if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS) { if (axis == Z_AXIS) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
@ -2532,7 +2532,7 @@ static void homeaxis(AxisEnum axis) {
#endif #endif
// Put away the Z probe // Put away the Z probe
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) #if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS) { if (axis == Z_AXIS) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
@ -3104,9 +3104,7 @@ inline void gcode_G28() {
#if ENABLED(Z_SAFE_HOMING) #if ENABLED(Z_SAFE_HOMING)
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
}
#endif #endif
if (home_all_axis) { if (home_all_axis) {
@ -3127,10 +3125,7 @@ inline void gcode_G28() {
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
}
#endif #endif
// Move in the XY plane // Move in the XY plane

@ -203,9 +203,8 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
// The kernel called by recalculate() when scanning the plan from last to first entry. // The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) { void Planner::reverse_pass_kernel(block_t* current, block_t* next) {
if (!current) return; if (!current) return;
UNUSED(previous);
if (next) { if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
@ -250,15 +249,14 @@ void Planner::reverse_pass() {
block[2] = block[1]; block[2] = block[1];
block[1] = block[0]; block[1] = block[0];
block[0] = &block_buffer[b]; block[0] = &block_buffer[b];
reverse_pass_kernel(block[0], block[1], block[2]); reverse_pass_kernel(block[1], block[2]);
} }
} }
} }
// The kernel called by recalculate() when scanning the plan from first to last entry. // The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) { void Planner::forward_pass_kernel(block_t* previous, block_t* current) {
if (!previous) return; if (!previous) return;
UNUSED(next);
// If the previous block is an acceleration block, but it is not long enough to complete the // If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry // full speed change within the block, we need to adjust the entry speed accordingly. Entry
@ -288,9 +286,9 @@ void Planner::forward_pass() {
block[0] = block[1]; block[0] = block[1];
block[1] = block[2]; block[1] = block[2];
block[2] = &block_buffer[b]; block[2] = &block_buffer[b];
forward_pass_kernel(block[0], block[1], block[2]); forward_pass_kernel(block[0], block[1]);
} }
forward_pass_kernel(block[1], block[2], NULL); forward_pass_kernel(block[1], block[2]);
} }
/** /**

@ -320,8 +320,8 @@ class Planner {
static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor); static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
static void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next); static void reverse_pass_kernel(block_t* current, block_t* next);
static void forward_pass_kernel(block_t* previous, block_t* current, block_t* next); static void forward_pass_kernel(block_t* previous, block_t* current);
static void reverse_pass(); static void reverse_pass();
static void forward_pass(); static void forward_pass();

@ -87,7 +87,7 @@ long Stepper::counter_X = 0,
Stepper::counter_Z = 0, Stepper::counter_Z = 0,
Stepper::counter_E = 0; Stepper::counter_E = 0;
volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
@ -372,6 +372,7 @@ void Stepper::isr() {
) endstops.update(); ) endstops.update();
// Take multiple steps per interrupt (For high speed moves) // Take multiple steps per interrupt (For high speed moves)
bool all_steps_done = false;
for (int8_t i = 0; i < step_loops; i++) { for (int8_t i = 0; i < step_loops; i++) {
#ifndef USBCON #ifndef USBCON
customizedSerial.checkRx(); // Check for serial chars. customizedSerial.checkRx(); // Check for serial chars.
@ -385,7 +386,7 @@ void Stepper::isr() {
#if DISABLED(MIXING_EXTRUDER) #if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder // Don't step E here for mixing extruder
count_position[E_AXIS] += count_direction[E_AXIS]; count_position[E_AXIS] += count_direction[E_AXIS];
e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1; motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
#endif #endif
} }
@ -449,10 +450,12 @@ void Stepper::isr() {
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
// Advance the Bresenham counter; start a pulse if the axis needs a step
#define PULSE_START(AXIS) \ #define PULSE_START(AXIS) \
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
// Stop an active pulse, reset the Bresenham counter, update the position
#define PULSE_STOP(AXIS) \ #define PULSE_STOP(AXIS) \
if (_COUNTER(AXIS) > 0) { \ if (_COUNTER(AXIS) > 0) { \
_COUNTER(AXIS) -= current_block->step_event_count; \ _COUNTER(AXIS) -= current_block->step_event_count; \
@ -460,6 +463,7 @@ void Stepper::isr() {
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
} }
// If a minimum pulse time was specified get the CPU clock
#if MINIMUM_STEPPER_PULSE > 0 #if MINIMUM_STEPPER_PULSE > 0
static uint32_t pulse_start; static uint32_t pulse_start;
pulse_start = TCNT0; pulse_start = TCNT0;
@ -475,6 +479,7 @@ void Stepper::isr() {
PULSE_START(Z); PULSE_START(Z);
#endif #endif
// For non-advance use linear interpolation for E also
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
// Keep updating the single E axis // Keep updating the single E axis
@ -491,6 +496,7 @@ void Stepper::isr() {
#endif #endif
#endif // !ADVANCE && !LIN_ADVANCE #endif // !ADVANCE && !LIN_ADVANCE
// For a minimum pulse time wait before stopping pulses
#if MINIMUM_STEPPER_PULSE > 0 #if MINIMUM_STEPPER_PULSE > 0
#define CYCLES_EATEN_BY_CODE 10 #define CYCLES_EATEN_BY_CODE 10
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ } while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
@ -524,18 +530,20 @@ void Stepper::isr() {
#endif #endif
#endif // !ADVANCE && !LIN_ADVANCE #endif // !ADVANCE && !LIN_ADVANCE
step_events_completed++; if (++step_events_completed >= current_block->step_event_count) {
if (step_events_completed >= current_block->step_event_count) break; all_steps_done = true;
break;
}
} }
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next ISR "now" // If we have esteps to execute, fire the next advance_isr "now"
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2; if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
#endif #endif
// Calculate new timer value // Calculate new timer value
unsigned short timer, step_rate; uint16_t timer, step_rate;
if (step_events_completed <= (unsigned long)current_block->accelerate_until) { if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
@ -551,14 +559,14 @@ void Stepper::isr() {
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) if (current_block->use_advance_lead)
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8; current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
if (current_block->use_advance_lead) { if (current_block->use_advance_lead) {
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j) MIXING_STEPPERS_LOOP(j)
current_estep_rate[j] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8; current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
#else #else
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8; current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
#endif #endif
} }
@ -588,10 +596,10 @@ void Stepper::isr() {
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]); eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
#endif #endif
} }
else if (step_events_completed > (unsigned long)current_block->decelerate_after) { else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate <= acc_step_rate) { // Still decelerating? if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate; step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate); NOLESS(step_rate, current_block->final_rate);
} }
@ -608,9 +616,9 @@ void Stepper::isr() {
if (current_block->use_advance_lead) { if (current_block->use_advance_lead) {
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j) MIXING_STEPPERS_LOOP(j)
current_estep_rate[j] = ((unsigned long)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8; current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
#else #else
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8; current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
#endif #endif
} }
@ -654,10 +662,10 @@ void Stepper::isr() {
step_loops = step_loops_nominal; step_loops = step_loops_nominal;
} }
OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A; NOLESS(OCR1A, TCNT1 + 16);
// If current block is finished, reset pointer // If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) { if (all_steps_done) {
current_block = NULL; current_block = NULL;
planner.discard_current_block(); planner.discard_current_block();
} }
@ -675,29 +683,61 @@ void Stepper::isr() {
old_OCR0A += eISR_Rate; old_OCR0A += eISR_Rate;
OCR0A = old_OCR0A; OCR0A = old_OCR0A;
#define STEP_E_ONCE(INDEX) \ #define SET_E_STEP_DIR(INDEX) \
if (e_steps[INDEX] != 0) { \ E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
if (e_steps[INDEX] < 0) { \ #define START_E_PULSE(INDEX) \
E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \ if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)
e_steps[INDEX]++; \
} \ #define STOP_E_PULSE(INDEX) \
else { \ if (e_steps[INDEX]) { \
E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \ e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
e_steps[INDEX]--; \
} \
E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \ E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
} }
SET_E_STEP_DIR(0);
#if E_STEPPERS > 1
SET_E_STEP_DIR(1);
#if E_STEPPERS > 2
SET_E_STEP_DIR(2);
#if E_STEPPERS > 3
SET_E_STEP_DIR(3);
#endif
#endif
#endif
// Step all E steppers that have steps // Step all E steppers that have steps
for (uint8_t i = 0; i < step_loops; i++) { for (uint8_t i = 0; i < step_loops; i++) {
STEP_E_ONCE(0);
#if MINIMUM_STEPPER_PULSE > 0
static uint32_t pulse_start;
pulse_start = TCNT0;
#endif
START_E_PULSE(0);
#if E_STEPPERS > 1
START_E_PULSE(1);
#if E_STEPPERS > 2
START_E_PULSE(2);
#if E_STEPPERS > 3
START_E_PULSE(3);
#endif
#endif
#endif
// For a minimum pulse time wait before stopping pulses
#if MINIMUM_STEPPER_PULSE > 0
#define CYCLES_EATEN_BY_E 10
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_E) { /* nada */ }
#endif
STOP_E_PULSE(0);
#if E_STEPPERS > 1 #if E_STEPPERS > 1
STEP_E_ONCE(1); STOP_E_PULSE(1);
#if E_STEPPERS > 2 #if E_STEPPERS > 2
STEP_E_ONCE(2); STOP_E_PULSE(2);
#if E_STEPPERS > 3 #if E_STEPPERS > 3
STEP_E_ONCE(3); STOP_E_PULSE(3);
#endif #endif
#endif #endif
#endif #endif

@ -102,7 +102,7 @@ class Stepper {
// Counter variables for the Bresenham line tracer // Counter variables for the Bresenham line tracer
static long counter_X, counter_Y, counter_Z, counter_E; static long counter_X, counter_Y, counter_Z, counter_E;
static volatile unsigned long step_events_completed; // The number of step events executed in the current block static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
static unsigned char old_OCR0A; static unsigned char old_OCR0A;

Loading…
Cancel
Save