|
|
@ -594,13 +594,14 @@ void Planner::check_axes_activity() {
|
|
|
|
* Planner::_buffer_line
|
|
|
|
* Planner::_buffer_line
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Add a new linear movement to the buffer.
|
|
|
|
* Add a new linear movement to the buffer.
|
|
|
|
* Not apply the leveling.
|
|
|
|
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* x,y,z,e - target position in mm
|
|
|
|
* Leveling and kinematics should be applied ahead of calling this.
|
|
|
|
* fr_mm_s - (target) speed of the move
|
|
|
|
*
|
|
|
|
* extruder - target extruder
|
|
|
|
* a,b,c,e - target positions in mm or degrees
|
|
|
|
|
|
|
|
* fr_mm_s - (target) speed of the move
|
|
|
|
|
|
|
|
* extruder - target extruder
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, const float &e, float fr_mm_s, const uint8_t extruder) {
|
|
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
|
|
|
|
// Calculate the buffer head after we push this byte
|
|
|
|
// Calculate the buffer head after we push this byte
|
|
|
|
int next_buffer_head = next_block_index(block_buffer_head);
|
|
|
|
int next_buffer_head = next_block_index(block_buffer_head);
|
|
|
|
|
|
|
|
|
|
|
@ -611,36 +612,36 @@ void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, co
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
long target[NUM_AXIS] = {
|
|
|
|
long target[XYZE] = {
|
|
|
|
lround(lx * axis_steps_per_mm[X_AXIS]),
|
|
|
|
lround(a * axis_steps_per_mm[X_AXIS]),
|
|
|
|
lround(ly * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
lround(b * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
lround(lz * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
lround(c * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
lround(e * axis_steps_per_mm[E_AXIS])
|
|
|
|
lround(e * axis_steps_per_mm[E_AXIS])
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
long dx = target[X_AXIS] - position[X_AXIS],
|
|
|
|
long da = target[X_AXIS] - position[X_AXIS],
|
|
|
|
dy = target[Y_AXIS] - position[Y_AXIS],
|
|
|
|
db = target[Y_AXIS] - position[Y_AXIS],
|
|
|
|
dz = target[Z_AXIS] - position[Z_AXIS];
|
|
|
|
dc = target[Z_AXIS] - position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
|
|
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
|
|
|
|
SERIAL_CHAR(' ');
|
|
|
|
SERIAL_CHAR(' ');
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
SERIAL_ECHOPAIR("A:", lx);
|
|
|
|
SERIAL_ECHOPAIR("A:", a);
|
|
|
|
SERIAL_ECHOPAIR(" (", dx);
|
|
|
|
SERIAL_ECHOPAIR(" (", da);
|
|
|
|
SERIAL_ECHOPAIR(") B:", ly);
|
|
|
|
SERIAL_ECHOPAIR(") B:", b);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOPAIR("X:", lx);
|
|
|
|
SERIAL_ECHOPAIR("X:", a);
|
|
|
|
SERIAL_ECHOPAIR(" (", dx);
|
|
|
|
SERIAL_ECHOPAIR(" (", da);
|
|
|
|
SERIAL_ECHOPAIR(") Y:", ly);
|
|
|
|
SERIAL_ECHOPAIR(") Y:", b);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
SERIAL_ECHOPAIR(" (", dy);
|
|
|
|
SERIAL_ECHOPAIR(" (", db);
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
SERIAL_ECHOPAIR(") C:", lz);
|
|
|
|
SERIAL_ECHOPAIR(") C:", c);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
SERIAL_ECHOPAIR(") Z:", lz);
|
|
|
|
SERIAL_ECHOPAIR(") Z:", c);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
SERIAL_ECHOPAIR(" (", dz);
|
|
|
|
SERIAL_ECHOPAIR(" (", dc);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_EOL;
|
|
|
|
//*/
|
|
|
|
//*/
|
|
|
@ -679,24 +680,24 @@ void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, co
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
// corexy planning
|
|
|
|
// corexy planning
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
block->steps[A_AXIS] = labs(dx + dy);
|
|
|
|
block->steps[A_AXIS] = labs(da + db);
|
|
|
|
block->steps[B_AXIS] = labs(dx - dy);
|
|
|
|
block->steps[B_AXIS] = labs(da - db);
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
block->steps[Z_AXIS] = labs(dc);
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
// corexz planning
|
|
|
|
// corexz planning
|
|
|
|
block->steps[A_AXIS] = labs(dx + dz);
|
|
|
|
block->steps[A_AXIS] = labs(da + dc);
|
|
|
|
block->steps[Y_AXIS] = labs(dy);
|
|
|
|
block->steps[Y_AXIS] = labs(db);
|
|
|
|
block->steps[C_AXIS] = labs(dx - dz);
|
|
|
|
block->steps[C_AXIS] = labs(da - dc);
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
// coreyz planning
|
|
|
|
// coreyz planning
|
|
|
|
block->steps[X_AXIS] = labs(dx);
|
|
|
|
block->steps[X_AXIS] = labs(da);
|
|
|
|
block->steps[B_AXIS] = labs(dy + dz);
|
|
|
|
block->steps[B_AXIS] = labs(db + dc);
|
|
|
|
block->steps[C_AXIS] = labs(dy - dz);
|
|
|
|
block->steps[C_AXIS] = labs(db - dc);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
// default non-h-bot planning
|
|
|
|
// default non-h-bot planning
|
|
|
|
block->steps[X_AXIS] = labs(dx);
|
|
|
|
block->steps[X_AXIS] = labs(da);
|
|
|
|
block->steps[Y_AXIS] = labs(dy);
|
|
|
|
block->steps[Y_AXIS] = labs(db);
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
block->steps[Z_AXIS] = labs(dc);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
|
|
|
|
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
|
|
|
@ -720,33 +721,33 @@ void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, co
|
|
|
|
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
|
|
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Compute direction bits for this block
|
|
|
|
// Compute direction bit-mask for this block
|
|
|
|
uint8_t db = 0;
|
|
|
|
uint8_t dm = 0;
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (dy < 0) SBI(db, Y_HEAD); // ...and Y
|
|
|
|
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
|
|
|
|
if (dz < 0) SBI(db, Z_AXIS);
|
|
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
|
|
if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
|
|
|
|
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
|
|
if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
|
|
|
|
if (da - db < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
if (dy < 0) SBI(db, Y_AXIS);
|
|
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
|
|
if (dz < 0) SBI(db, Z_HEAD); // ...and Z
|
|
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
|
|
if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
|
|
|
|
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
|
|
if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
|
|
|
|
if (da - dc < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
if (dx < 0) SBI(db, X_AXIS);
|
|
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
|
|
if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
|
|
|
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
|
|
|
if (dz < 0) SBI(db, Z_HEAD); // ...and Z
|
|
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
|
|
if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
|
|
|
|
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
|
|
if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
|
|
|
|
if (db - dc < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
if (dx < 0) SBI(db, X_AXIS);
|
|
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
|
|
if (dy < 0) SBI(db, Y_AXIS);
|
|
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
|
|
if (dz < 0) SBI(db, Z_AXIS);
|
|
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
if (de < 0) SBI(db, E_AXIS);
|
|
|
|
if (de < 0) SBI(dm, E_AXIS);
|
|
|
|
block->direction_bits = db;
|
|
|
|
block->direction_bits = dm;
|
|
|
|
|
|
|
|
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
|
|
|
|
|
|
|
@ -859,29 +860,29 @@ void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, co
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
float delta_mm[7];
|
|
|
|
float delta_mm[7];
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (da - db) * steps_to_mm[B_AXIS];
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
|
|
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
|
|
|
|
delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[C_AXIS] = (da - dc) * steps_to_mm[C_AXIS];
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
|
|
|
|
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
|
|
|
|
delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
|
|
|
|
delta_mm[C_AXIS] = (db - dc) * steps_to_mm[C_AXIS];
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
float delta_mm[4];
|
|
|
|
float delta_mm[4];
|
|
|
|
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
|
|
|
|
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder];
|
|
|
|
delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder];
|
|
|
|
|
|
|
|
|
|
|
@ -1184,12 +1185,12 @@ void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, co
|
|
|
|
* On CORE machines stepper ABC will be translated from the given XYZ.
|
|
|
|
* On CORE machines stepper ABC will be translated from the given XYZ.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
void Planner::_set_position_mm(const float &lx, const float &ly, const float &lz, const float &e) {
|
|
|
|
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
|
|
|
|
long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
|
|
|
|
long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
|
|
|
|
ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
|
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
|
|
|
stepper.set_position(nx, ny, nz, ne);
|
|
|
|
stepper.set_position(na, nb, nc, ne);
|
|
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
|
|
|
|
|
|
|
|
|
memset(previous_speed, 0, sizeof(previous_speed));
|
|
|
|
memset(previous_speed, 0, sizeof(previous_speed));
|
|
|
|