|
|
@ -357,316 +357,314 @@ void Stepper::isr() {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
OCR1A = 2000; // 1kHz.
|
|
|
|
OCR1A = 2000; // 1kHz.
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block) {
|
|
|
|
// Update endstops state, if enabled
|
|
|
|
|
|
|
|
if (endstops.enabled
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
|
|
|
|| endstops.z_probe_enabled
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
) endstops.update();
|
|
|
|
|
|
|
|
|
|
|
|
// Update endstops state, if enabled
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
if (endstops.enabled
|
|
|
|
bool all_steps_done = false;
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
for (int8_t i = 0; i < step_loops; i++) {
|
|
|
|
|| endstops.z_probe_enabled
|
|
|
|
#ifndef USBCON
|
|
|
|
#endif
|
|
|
|
customizedSerial.checkRx(); // Check for serial chars.
|
|
|
|
) endstops.update();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
bool all_steps_done = false;
|
|
|
|
|
|
|
|
for (int8_t i = 0; i < step_loops; i++) {
|
|
|
|
|
|
|
|
#ifndef USBCON
|
|
|
|
|
|
|
|
customizedSerial.checkRx(); // Check for serial chars.
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
|
|
|
|
if (counter_E > 0) {
|
|
|
|
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
|
|
|
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
|
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
|
|
|
|
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
if (counter_E > 0) {
|
|
|
|
// Step mixing steppers proportionally
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
bool dir = motor_direction(E_AXIS);
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
#endif
|
|
|
|
dir ? --e_steps[j] : ++e_steps[j];
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
|
|
|
|
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
// Step mixing steppers proportionally
|
|
|
|
// Mixing extruders apply advance lead proportionally
|
|
|
|
bool dir = motor_direction(E_AXIS);
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
e_steps[j] += steps;
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
current_adv_steps[j] += steps;
|
|
|
|
dir ? --e_steps[j] : ++e_steps[j];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// For most extruders, advance the single E stepper
|
|
|
|
|
|
|
|
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
|
|
|
|
|
|
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
|
|
|
|
// Mixing extruders apply advance lead proportionally
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
|
|
|
|
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
|
|
|
|
e_steps[j] += steps;
|
|
|
|
|
|
|
|
current_adv_steps[j] += steps;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// For most extruders, advance the single E stepper
|
|
|
|
|
|
|
|
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
|
|
|
|
|
|
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Always count the unified E axis
|
|
|
|
// Always count the unified E axis
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
if (counter_E > 0) {
|
|
|
|
if (counter_E > 0) {
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
|
|
#if DISABLED(MIXING_EXTRUDER)
|
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
// Don't step E here for mixing extruder
|
|
|
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
|
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
|
|
|
|
|
|
|
|
// Step mixing steppers proportionally
|
|
|
|
// Step mixing steppers proportionally
|
|
|
|
bool dir = motor_direction(E_AXIS);
|
|
|
|
bool dir = motor_direction(E_AXIS);
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
dir ? --e_steps[j] : ++e_steps[j];
|
|
|
|
dir ? --e_steps[j] : ++e_steps[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif // MIXING_EXTRUDER
|
|
|
|
#endif // MIXING_EXTRUDER
|
|
|
|
|
|
|
|
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define _COUNTER(AXIS) counter_## AXIS
|
|
|
|
|
|
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
|
|
|
|
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
#define PULSE_START(AXIS) \
|
|
|
|
|
|
|
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
|
|
|
|
|
|
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Stop an active pulse, reset the Bresenham counter, update the position
|
|
|
|
#define _COUNTER(AXIS) counter_## AXIS
|
|
|
|
#define PULSE_STOP(AXIS) \
|
|
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
|
|
if (_COUNTER(AXIS) > 0) { \
|
|
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
|
_COUNTER(AXIS) -= current_block->step_event_count; \
|
|
|
|
|
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
|
|
|
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// If a minimum pulse time was specified get the CPU clock
|
|
|
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
|
|
#if MINIMUM_STEPPER_PULSE > 0
|
|
|
|
#define PULSE_START(AXIS) \
|
|
|
|
static uint32_t pulse_start;
|
|
|
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
|
|
|
pulse_start = TCNT0;
|
|
|
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_X_STEP
|
|
|
|
// Stop an active pulse, reset the Bresenham counter, update the position
|
|
|
|
PULSE_START(X);
|
|
|
|
#define PULSE_STOP(AXIS) \
|
|
|
|
#endif
|
|
|
|
if (_COUNTER(AXIS) > 0) { \
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
_COUNTER(AXIS) -= current_block->step_event_count; \
|
|
|
|
PULSE_START(Y);
|
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
|
|
#endif
|
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
}
|
|
|
|
PULSE_START(Z);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// For non-advance use linear interpolation for E also
|
|
|
|
// If a minimum pulse time was specified get the CPU clock
|
|
|
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
|
|
#if MINIMUM_STEPPER_PULSE > 0
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
static uint32_t pulse_start;
|
|
|
|
// Keep updating the single E axis
|
|
|
|
pulse_start = TCNT0;
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
#endif
|
|
|
|
// Tick the counters used for this mix
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
|
|
|
|
// Step mixing steppers (proportionally)
|
|
|
|
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
|
|
|
|
// Step when the counter goes over zero
|
|
|
|
|
|
|
|
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
|
|
|
|
PULSE_START(E);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // !ADVANCE && !LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// For a minimum pulse time wait before stopping pulses
|
|
|
|
#if HAS_X_STEP
|
|
|
|
#if MINIMUM_STEPPER_PULSE > 0
|
|
|
|
PULSE_START(X);
|
|
|
|
#define CYCLES_EATEN_BY_CODE 10
|
|
|
|
#endif
|
|
|
|
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
#endif
|
|
|
|
PULSE_START(Y);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
|
|
|
|
PULSE_START(Z);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_X_STEP
|
|
|
|
// For non-advance use linear interpolation for E also
|
|
|
|
PULSE_STOP(X);
|
|
|
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
// Keep updating the single E axis
|
|
|
|
PULSE_STOP(Y);
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
#endif
|
|
|
|
// Tick the counters used for this mix
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
PULSE_STOP(Z);
|
|
|
|
// Step mixing steppers (proportionally)
|
|
|
|
|
|
|
|
counter_m[j] += current_block->steps[E_AXIS];
|
|
|
|
|
|
|
|
// Step when the counter goes over zero
|
|
|
|
|
|
|
|
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
|
|
|
|
PULSE_START(E);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // !ADVANCE && !LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
|
|
// For a minimum pulse time wait before stopping pulses
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if MINIMUM_STEPPER_PULSE > 0
|
|
|
|
// Always step the single E axis
|
|
|
|
#define CYCLES_EATEN_BY_CODE 10
|
|
|
|
if (counter_E > 0) {
|
|
|
|
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
|
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
|
|
|
|
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
|
|
|
|
PULSE_STOP(E);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // !ADVANCE && !LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (++step_events_completed >= current_block->step_event_count) {
|
|
|
|
|
|
|
|
all_steps_done = true;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
|
|
|
|
// If we have esteps to execute, fire the next advance_isr "now"
|
|
|
|
|
|
|
|
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate new timer value
|
|
|
|
#if HAS_X_STEP
|
|
|
|
uint16_t timer, step_rate;
|
|
|
|
PULSE_STOP(X);
|
|
|
|
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
|
|
|
|
PULSE_STOP(Y);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
|
|
|
|
PULSE_STOP(Z);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
|
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
|
|
acc_step_rate += current_block->initial_rate;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
|
|
|
|
// Always step the single E axis
|
|
|
|
|
|
|
|
if (counter_E > 0) {
|
|
|
|
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
|
|
|
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j) {
|
|
|
|
|
|
|
|
if (counter_m[j] > 0) {
|
|
|
|
|
|
|
|
counter_m[j] -= current_block->mix_event_count[j];
|
|
|
|
|
|
|
|
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
|
|
|
|
PULSE_STOP(E);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // !ADVANCE && !LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
// upper limit
|
|
|
|
if (++step_events_completed >= current_block->step_event_count) {
|
|
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
|
|
all_steps_done = true;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// step_rate to timer interval
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
timer = calc_timer(acc_step_rate);
|
|
|
|
// If we have esteps to execute, fire the next advance_isr "now"
|
|
|
|
OCR1A = timer;
|
|
|
|
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
|
|
|
|
acceleration_time += timer;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
// Calculate new timer value
|
|
|
|
|
|
|
|
uint16_t timer, step_rate;
|
|
|
|
|
|
|
|
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead)
|
|
|
|
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
acc_step_rate += current_block->initial_rate;
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
// upper limit
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
|
|
|
|
current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
// step_rate to timer interval
|
|
|
|
|
|
|
|
timer = calc_timer(acc_step_rate);
|
|
|
|
|
|
|
|
OCR1A = timer;
|
|
|
|
|
|
|
|
acceleration_time += timer;
|
|
|
|
|
|
|
|
|
|
|
|
advance += advance_rate * step_loops;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
//NOLESS(advance, current_block->advance);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
long advance_whole = advance >> 8,
|
|
|
|
if (current_block->use_advance_lead)
|
|
|
|
advance_factor = advance_whole - old_advance;
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
// ...for mixing steppers proportionally
|
|
|
|
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
// ...for the active extruder
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
old_advance = advance_whole;
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
|
|
|
|
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
advance += advance_rate * step_loops;
|
|
|
|
|
|
|
|
//NOLESS(advance, current_block->advance);
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
long advance_whole = advance >> 8,
|
|
|
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
advance_factor = advance_whole - old_advance;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
|
|
|
|
|
|
|
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (step_rate < acc_step_rate) { // Still decelerating?
|
|
|
|
// Do E steps + advance steps
|
|
|
|
step_rate = acc_step_rate - step_rate;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
|
|
// ...for mixing steppers proportionally
|
|
|
|
}
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
else
|
|
|
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
step_rate = current_block->final_rate;
|
|
|
|
#else
|
|
|
|
|
|
|
|
// ...for the active extruder
|
|
|
|
|
|
|
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// step_rate to timer interval
|
|
|
|
old_advance = advance_whole;
|
|
|
|
timer = calc_timer(step_rate);
|
|
|
|
|
|
|
|
OCR1A = timer;
|
|
|
|
|
|
|
|
deceleration_time += timer;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
#endif
|
|
|
|
current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
if (step_rate < acc_step_rate) { // Still decelerating?
|
|
|
|
|
|
|
|
step_rate = acc_step_rate - step_rate;
|
|
|
|
|
|
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
|
|
|
|
step_rate = current_block->final_rate;
|
|
|
|
|
|
|
|
|
|
|
|
advance -= advance_rate * step_loops;
|
|
|
|
// step_rate to timer interval
|
|
|
|
NOLESS(advance, final_advance);
|
|
|
|
timer = calc_timer(step_rate);
|
|
|
|
|
|
|
|
OCR1A = timer;
|
|
|
|
|
|
|
|
deceleration_time += timer;
|
|
|
|
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
long advance_whole = advance >> 8,
|
|
|
|
|
|
|
|
advance_factor = advance_whole - old_advance;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead) {
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
|
|
|
|
|
|
|
|
old_advance = advance_whole;
|
|
|
|
advance -= advance_rate * step_loops;
|
|
|
|
|
|
|
|
NOLESS(advance, final_advance);
|
|
|
|
|
|
|
|
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
// Do E steps + advance steps
|
|
|
|
|
|
|
|
long advance_whole = advance >> 8,
|
|
|
|
|
|
|
|
advance_factor = advance_whole - old_advance;
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
MIXING_STEPPERS_LOOP(j)
|
|
|
|
|
|
|
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
old_advance = advance_whole;
|
|
|
|
|
|
|
|
|
|
|
|
if (current_block->use_advance_lead)
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
|
|
|
|
|
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
|
|
|
|
|
|
|
|
OCR1A = OCR1A_nominal;
|
|
|
|
if (current_block->use_advance_lead)
|
|
|
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
|
|
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
|
|
|
|
step_loops = step_loops_nominal;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NOLESS(OCR1A, TCNT1 + 16);
|
|
|
|
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
|
|
|
|
|
|
|
|
|
|
|
// If current block is finished, reset pointer
|
|
|
|
#endif
|
|
|
|
if (all_steps_done) {
|
|
|
|
|
|
|
|
current_block = NULL;
|
|
|
|
OCR1A = OCR1A_nominal;
|
|
|
|
planner.discard_current_block();
|
|
|
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
|
|
}
|
|
|
|
step_loops = step_loops_nominal;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NOLESS(OCR1A, TCNT1 + 16);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// If current block is finished, reset pointer
|
|
|
|
|
|
|
|
if (all_steps_done) {
|
|
|
|
|
|
|
|
current_block = NULL;
|
|
|
|
|
|
|
|
planner.discard_current_block();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|