|
|
|
@ -151,7 +151,7 @@ volatile bool Temperature::temp_meas_ready = false;
|
|
|
|
|
millis_t Temperature::next_bed_check_ms;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
unsigned long Temperature::raw_temp_value[4] = { 0 };
|
|
|
|
|
unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
|
|
|
|
|
unsigned long Temperature::raw_temp_bed_value = 0;
|
|
|
|
|
|
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
|
@ -1758,6 +1758,9 @@ void Temperature::isr() {
|
|
|
|
|
} // switch(temp_state)
|
|
|
|
|
|
|
|
|
|
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
|
|
|
|
|
|
|
|
temp_count = 0;
|
|
|
|
|
|
|
|
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
|
|
|
if (!temp_meas_ready) set_current_temp_raw();
|
|
|
|
|
|
|
|
|
@ -1766,85 +1769,54 @@ void Temperature::isr() {
|
|
|
|
|
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
temp_count = 0;
|
|
|
|
|
for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
|
|
|
|
|
ZERO(raw_temp_value);
|
|
|
|
|
raw_temp_bed_value = 0;
|
|
|
|
|
|
|
|
|
|
#if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
|
|
|
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
|
|
|
#define GE0 <=
|
|
|
|
|
int constexpr temp_dir[] = {
|
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
|
|
0
|
|
|
|
|
#elif HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
|
|
|
-1
|
|
|
|
|
#else
|
|
|
|
|
#define GE0 >=
|
|
|
|
|
1
|
|
|
|
|
#endif
|
|
|
|
|
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
|
|
|
|
|
if (minttemp_raw[0] GE0 current_temperature_raw[0] && !is_preheating(0) && target_temperature[0] > 0.0f) {
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
if (++consecutive_low_temperature_error[0] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
|
|
#if HAS_TEMP_1 && HOTENDS > 1
|
|
|
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
|
|
|
, -1
|
|
|
|
|
#else
|
|
|
|
|
, 1
|
|
|
|
|
#endif
|
|
|
|
|
min_temp_error(0);
|
|
|
|
|
}
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
else
|
|
|
|
|
consecutive_low_temperature_error[0] = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if HAS_TEMP_1 && HOTENDS > 1
|
|
|
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
|
|
|
#define GE1 <=
|
|
|
|
|
#else
|
|
|
|
|
#define GE1 >=
|
|
|
|
|
#endif
|
|
|
|
|
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
|
|
|
|
|
if (minttemp_raw[1] GE1 current_temperature_raw[1] && !is_preheating(1) && target_temperature[1] > 0.0f) {
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
if (++consecutive_low_temperature_error[1] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
|
|
#if HAS_TEMP_2 && HOTENDS > 2
|
|
|
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
|
|
|
, -1
|
|
|
|
|
#else
|
|
|
|
|
, 1
|
|
|
|
|
#endif
|
|
|
|
|
min_temp_error(1);
|
|
|
|
|
}
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
else
|
|
|
|
|
consecutive_low_temperature_error[1] = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#endif // TEMP_SENSOR_1
|
|
|
|
|
|
|
|
|
|
#if HAS_TEMP_2 && HOTENDS > 2
|
|
|
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
|
|
|
#define GE2 <=
|
|
|
|
|
#else
|
|
|
|
|
#define GE2 >=
|
|
|
|
|
#endif
|
|
|
|
|
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
|
|
|
|
|
if (minttemp_raw[2] GE2 current_temperature_raw[2] && !is_preheating(2) && target_temperature[2] > 0.0f) {
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
if (++consecutive_low_temperature_error[2] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
|
|
#if HAS_TEMP_3 && HOTENDS > 3
|
|
|
|
|
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
|
|
|
|
|
, -1
|
|
|
|
|
#else
|
|
|
|
|
, 1
|
|
|
|
|
#endif
|
|
|
|
|
min_temp_error(2);
|
|
|
|
|
}
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
else
|
|
|
|
|
consecutive_low_temperature_error[2] = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#endif // TEMP_SENSOR_2
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#if HAS_TEMP_3 && HOTENDS > 3
|
|
|
|
|
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
|
|
|
|
|
#define GE3 <=
|
|
|
|
|
#else
|
|
|
|
|
#define GE3 >=
|
|
|
|
|
#endif
|
|
|
|
|
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
|
|
|
|
|
if (minttemp_raw[3] GE3 current_temperature_raw[3] && !is_preheating(3) && target_temperature[3] > 0.0f) {
|
|
|
|
|
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
|
|
|
|
|
const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
|
|
|
|
|
if (rawtemp > maxttemp_raw[e] * tdir) max_temp_error(e);
|
|
|
|
|
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
if (++consecutive_low_temperature_error[3] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
|
|
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
|
|
|
#endif
|
|
|
|
|
min_temp_error(3);
|
|
|
|
|
min_temp_error(e);
|
|
|
|
|
}
|
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
|
|
|
else
|
|
|
|
|
consecutive_low_temperature_error[3] = 0;
|
|
|
|
|
consecutive_low_temperature_error[e] = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#endif // TEMP_SENSOR_3
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
|
|
|