More sanity-checking for ABL

- Moved sanity-checks to Marlin_main.cpp
- Applied to other configuration files
- Fixed formatting of ABL output
- Passing verbose level to probe_pt
- Miscellaneous cleanup
- Put CONFIG_STEPPERS_TOSHIBA into Configuration.h
master
Scott Lahteine 10 years ago
parent ca4b36deda
commit d085725c86

@ -295,9 +295,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -382,40 +385,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -426,7 +427,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
@ -467,29 +468,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#endif
#endif // ENABLE_AUTO_BED_LEVELING

@ -23,41 +23,41 @@
#include "pins.h"
#ifndef AT90USB
#define HardwareSerial_h // trick to disable the standard HWserial
#define HardwareSerial_h // trick to disable the standard HWserial
#endif
#if (ARDUINO >= 100)
# include "Arduino.h"
#include "Arduino.h"
#else
# include "WProgram.h"
#include "WProgram.h"
#endif
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin
# define analogInputToDigitalPin(p) ((p) + 0xA0)
#define analogInputToDigitalPin(p) ((p) + 0xA0)
#endif
#ifdef AT90USB
#include "HardwareSerial.h"
#include "HardwareSerial.h"
#endif
#include "MarlinSerial.h"
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "WString.h"
#ifdef AT90USB
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
#else
#define MYSERIAL MSerial
#endif
@ -86,7 +86,7 @@ extern const char echomagic[] PROGMEM;
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
#define SERIAL_EOL SERIAL_ECHOLN("")
#define SERIAL_EOL MYSERIAL.write('\n')
void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v);

@ -39,6 +39,8 @@
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
@ -589,9 +591,9 @@ void servo_init()
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
@ -1182,41 +1184,41 @@ static void clean_up_after_endstop_move() {
}
static void engage_z_probe() {
// Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
#endif
}
#endif
#endif
}
static void retract_z_probe() {
// Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
#endif
}
#endif
#endif
}
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
@ -1232,18 +1234,20 @@ static float probe_pt(float x, float y, float z_before, ProbeAction retract_acti
if (retract_action & ProbeRetract) retract_z_probe();
#endif
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x);
SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(measured_z);
SERIAL_PROTOCOLPGM("\n");
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(x + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(y + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(measured_z + 0.0001);
SERIAL_EOL;
}
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_LEVELING
static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
@ -1266,7 +1270,7 @@ static void homeaxis(int axis) {
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if SERVO_LEVELING
if (axis==Z_AXIS) {
engage_z_probe();
}
@ -1317,7 +1321,7 @@ static void homeaxis(int axis) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if SERVO_LEVELING
#ifndef Z_PROBE_SLED
if (axis==Z_AXIS) retract_z_probe();
#endif
@ -1744,6 +1748,53 @@ inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING
// Define the possible boundaries for probing based on set limits
#define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
#define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#ifdef AUTO_BED_LEVELING_GRID
#define MIN_PROBE_EDGE 20 // The probe square sides can be no smaller than this
// Make sure probing points are reachable
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
#error The given LEFT_PROBE_BED_POSITION can't be reached by the probe.
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
#error The given RIGHT_PROBE_BED_POSITION can't be reached by the probe.
#elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
#error The given FRONT_PROBE_BED_POSITION can't be reached by the probe.
#elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
#error The given BACK_PROBE_BED_POSITION can't be reached by the probe.
// Check if Probe_Offset * Grid Points is greater than Probing Range
#elif abs(X_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#elif abs(Y_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else // !AUTO_BED_LEVELING_GRID
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
#error The given ABL_PROBE_PT_1_X can't be reached by the probe.
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
#error The given ABL_PROBE_PT_2_X can't be reached by the probe.
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
#error The given ABL_PROBE_PT_3_X can't be reached by the probe.
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
#error The given ABL_PROBE_PT_1_Y can't be reached by the probe.
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
#error The given ABL_PROBE_PT_2_Y can't be reached by the probe.
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
#error The given ABL_PROBE_PT_3_Y can't be reached by the probe.
#endif
#endif // !AUTO_BED_LEVELING_GRID
/**
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
@ -1816,48 +1867,36 @@ inline void gcode_G28() {
return;
}
// Define the possible boundaries for probing based on the set limits.
// Code above (in G28) might have these limits wrong, or I am wrong here.
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < min_probe_x,
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
left_out = left_out_l || left_out_r,
right_out_r = right_probe_bed_position > max_probe_x,
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
right_out = right_out_l || right_out_r,
front_out_f = front_probe_bed_position < min_probe_y,
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
front_out = front_out_f || front_out_b,
back_out_b = back_probe_bed_position > max_probe_y,
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
back_out = back_out_f || back_out_b;
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
right_out_r = right_probe_bed_position > MAX_PROBE_X,
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
@ -1935,7 +1974,7 @@ inline void gcode_G28() {
else
act = ProbeEngageRetract;
measured_z = probe_pt(xProbe, yProbe, z_before, act);
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
mean += measured_z;
@ -1960,15 +1999,15 @@ inline void gcode_G28() {
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" \n");
SERIAL_EOL;
}
}
@ -2000,14 +2039,14 @@ inline void gcode_G28() {
;
float diff = eqnBVector[ind] - mean;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLPGM(" -");
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_PROTOCOLPGM("\n");
SERIAL_EOL;
} // yy
SERIAL_PROTOCOLPGM("\n");
SERIAL_EOL;
} //topo_flag
@ -2022,14 +2061,14 @@ inline void gcode_G28() {
if (enhanced_g29) {
// Basic Enhanced G29
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
}
else {
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
}
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
@ -2041,7 +2080,7 @@ inline void gcode_G28() {
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// The following code correct the Z height difference from z-probe position and hotend tip position.
// Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
@ -2071,12 +2110,12 @@ inline void gcode_G28() {
run_z_probe();
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("\n");
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
SERIAL_EOL;
clean_up_after_endstop_move();
retract_z_probe(); // Retract Z Servo endstop if available
@ -2603,8 +2642,7 @@ inline void gcode_M42() {
SERIAL_PROTOCOL_F(sigma,6);
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n");
if (verbose_level > 0) SERIAL_EOL;
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
@ -2626,12 +2664,12 @@ inline void gcode_M42() {
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM("\n");
SERIAL_EOL;
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
SERIAL_EOL; SERIAL_EOL;
}
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
@ -3438,11 +3476,11 @@ inline void gcode_M226() {
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
#if SERVO_LEVELING
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif

@ -82,7 +82,7 @@ Here are some standard links for getting your machine calibrated:
// #define PS_DEFAULT_OFF
//===========================================================================
//============================= Thermal Settings ============================
//============================= Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
@ -118,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
@ -297,9 +301,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -332,11 +339,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -389,40 +391,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -433,11 +433,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -474,29 +474,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#endif
#endif // ENABLE_AUTO_BED_LEVELING
@ -536,9 +513,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================= Additional Features =========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -569,7 +546,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -583,7 +565,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
@ -750,7 +732,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -759,7 +741,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16

@ -3,7 +3,6 @@
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
@ -39,7 +38,7 @@ Here are some standard links for getting your machine calibrated:
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION "v1.0.2"
#define STRING_VERSION "1.0.2"
#define STRING_URL "reprap.org"
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(K8200, CONSULitAS)" // Who made the changes.
@ -82,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
@ -120,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
@ -260,7 +262,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -305,9 +306,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -340,11 +344,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -397,40 +396,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -441,11 +438,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -482,29 +479,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#endif
#endif // ENABLE_AUTO_BED_LEVELING
@ -544,9 +518,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================= Additional Features =========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -577,9 +551,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 60
#define ABS_PREHEAT_FAN_SPEED 0 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// VM8201 (LCD Option for K8200) uses "DISPLAY_CHARSET_HD44870_JAPAN" and "ULTIMAKERCONTROLLER"
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -760,7 +737,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -769,7 +746,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16

@ -3,7 +3,6 @@
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
@ -18,7 +17,6 @@ Here are some standard links for getting your machine calibrated:
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
@ -52,7 +50,7 @@ Here are some standard links for getting your machine calibrated:
#define L2_2 sq(Linkage_2) // do not change
//===========================================================================
//========================= SCARA Settings end ==================================
//========================= SCARA Settings end ==============================
//===========================================================================
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
@ -70,7 +68,6 @@ Here are some standard links for getting your machine calibrated:
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0
// This determines the communication speed of the printer
// This determines the communication speed of the printer
#define BAUDRATE 250000
@ -125,6 +122,7 @@ Here are some standard links for getting your machine calibrated:
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
@ -138,6 +136,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
@ -189,31 +191,24 @@ Here are some standard links for getting your machine calibrated:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 20 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
// #define DEFAULT_Kp 22.2
// #define DEFAULT_Ki 1.08
// #define DEFAULT_Kd 114
// Jhead MK5: From Autotune
// #define DEFAULT_Kp 20.92
// #define DEFAULT_Ki 1.51
// #define DEFAULT_Kd 72.34
//Merlin Hotend: From Autotune
#define DEFAULT_Kp 24.5
#define DEFAULT_Ki 1.72
#define DEFAULT_Kd 87.73
// #define DEFAULT_Kp 22.2
// #define DEFAULT_Ki 1.08
// #define DEFAULT_Kd 114
// MakerGear
// #define DEFAULT_Kp 7.0
@ -221,9 +216,20 @@ Here are some standard links for getting your machine calibrated:
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
// Jhead MK5: From Autotune
// #define DEFAULT_Kp 20.92
// #define DEFAULT_Ki 1.51
// #define DEFAULT_Kd 72.34
// Merlin Hotend: From Autotune
#define DEFAULT_Kp 24.5
#define DEFAULT_Ki 1.72
#define DEFAULT_Kd 87.73
#endif // PIDTEMP
//===========================================================================
@ -251,9 +257,9 @@ Here are some standard links for getting your machine calibrated:
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
// #define DEFAULT_bedKp 10.00
// #define DEFAULT_bedKi .023
// #define DEFAULT_bedKd 305.4
// #define DEFAULT_bedKp 10.00
// #define DEFAULT_bedKi .023
// #define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
@ -271,7 +277,6 @@ Here are some standard links for getting your machine calibrated:
#endif // PIDTEMPBED
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
//#define PREVENT_DANGEROUS_EXTRUDE
@ -281,7 +286,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 150
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -323,12 +327,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
//===========================================================================
//============================ Mechanical Settings ==========================
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
//#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -361,11 +368,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -388,7 +390,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstop s when homing; 1=MAX, -1=MIN
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR -1
@ -414,43 +416,42 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
#define Z_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -461,10 +462,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
//#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -474,6 +476,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
//#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
@ -528,7 +532,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_RETRACT_ACCELERATION 2000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for extruder 0 hotend (default extruder).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
@ -539,9 +543,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 3 // (mm/sec)
//===========================================================================
//============================= Additional Features =========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
//#define CUSTOM_M_CODES
@ -572,7 +576,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -739,10 +748,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
//#define SAV_3DLCD
#ifdef SAV_3DLCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#define NEWPANEL
#define ULTIPANEL
#endif
@ -751,7 +762,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -760,7 +771,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
@ -844,13 +855,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Uncomment below to enable
//#define FILAMENT_SENSOR
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially

@ -3,7 +3,6 @@
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
@ -18,7 +17,6 @@ Here are some standard links for getting your machine calibrated:
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
@ -83,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
@ -121,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
@ -164,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
@ -184,7 +184,7 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
@ -256,7 +256,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -301,9 +300,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -336,11 +338,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -393,40 +390,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -437,11 +432,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -478,29 +473,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#else
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
#endif
#endif
#endif
#endif // ENABLE_AUTO_BED_LEVELING
@ -540,9 +512,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================ Additional Features ==========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -573,7 +545,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -587,7 +564,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
@ -754,7 +731,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -763,7 +740,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16

@ -3,7 +3,6 @@
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
@ -22,7 +21,6 @@ Here are some standard links for getting your machine calibrated:
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
@ -30,6 +28,13 @@ Here are some standard links for getting your machine calibrated:
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
@ -143,6 +148,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1
@ -186,7 +195,6 @@ Here are some standard links for getting your machine calibrated:
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
@ -195,13 +203,16 @@ Here are some standard links for getting your machine calibrated:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
@ -222,7 +233,6 @@ Here are some standard links for getting your machine calibrated:
// #define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
@ -271,7 +281,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -316,6 +325,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -348,10 +363,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
// Deltas never have min endstops
#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@ -397,6 +408,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//===========================================================================
//============================= Bed Auto Leveling ===========================
//===========================================================================
@ -407,12 +419,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// The position of the homing switches
//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
#define MANUAL_HOME_POSITIONS // MANUAL_*_HOME_POS below will be used
// For deltabots this means top and center of the Cartesian print volume.
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
@ -444,9 +454,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_ZJERK 20.0 // (mm/sec) Must be same as XY for delta
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================= Additional Features =========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -477,7 +488,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -651,10 +667,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
//#define SAV_3DLCD
#ifdef SAV_3DLCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#define NEWPANEL
#define ULTIPANEL
#endif
@ -663,7 +681,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -672,7 +690,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
@ -756,13 +774,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Uncomment below to enable
//#define FILAMENT_SENSOR
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
@ -775,7 +793,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#include "Configuration_adv.h"
#include "thermistortables.h"

@ -3,7 +3,6 @@
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
@ -18,12 +17,10 @@ Here are some standard links for getting your machine calibrated:
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
@ -31,7 +28,6 @@ Here are some standard links for getting your machine calibrated:
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
@ -85,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
@ -123,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
@ -166,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
@ -175,13 +173,16 @@ Here are some standard links for getting your machine calibrated:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
@ -202,7 +203,6 @@ Here are some standard links for getting your machine calibrated:
// #define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
@ -254,7 +254,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -296,12 +295,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
//===========================================================================
//============================ Mechanical Settings ==========================
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -334,11 +336,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -391,40 +388,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -435,10 +430,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -514,9 +510,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================ Additional Features ==========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -547,7 +543,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -714,10 +715,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
//#define SAV_3DLCD
#ifdef SAV_3DLCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#define NEWPANEL
#define ULTIPANEL
#endif
@ -726,7 +729,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -735,7 +738,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16

@ -17,12 +17,10 @@ Here are some standard links for getting your machine calibrated:
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
@ -30,7 +28,6 @@ Here are some standard links for getting your machine calibrated:
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
@ -84,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
@ -122,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
@ -156,8 +156,6 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
#define CONFIG_STEPPERS_TOSHIBA 1
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
@ -167,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
@ -176,13 +173,16 @@ Here are some standard links for getting your machine calibrated:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
@ -208,7 +208,6 @@ Here are some standard links for getting your machine calibrated:
// #define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
@ -257,7 +256,6 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//============================= Thermal Runaway Protection ==================
//===========================================================================
@ -299,12 +297,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
//===========================================================================
//============================ Mechanical Settings ==========================
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
#define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -337,11 +338,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 1
#define Y_ENABLE_ON 1
@ -394,40 +390,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
@ -438,10 +432,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -498,21 +493,15 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// default settings
//#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for Ultimaker
//#define //DEFAULT_AXIS_STEPS_PER_UNIT {79.87, 79.87, 2566, 563,78} // Al's TVRR
//#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87, 79.87, 2566, 563,78} // Al's TVRR
//#define DEFAULT_AXIS_STEPS_PER_UNIT {81.26, 80.01, 2561, 599.14} // Michel TVRR old
//#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 739.65} // Michel TVRR
#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 600} // David TVRR
//#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec) default
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec) David TVRR
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
/* MICHEL: This has an impact on the "ripples" in print walls */
#define DEFAULT_ACCELERATION 500 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
//#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
@ -527,9 +516,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//============================ Additional Features ==========================
//===========================================================================
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
@ -560,7 +549,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
// See also language.h
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Character based displays can have different extended charsets.
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
@ -727,10 +721,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
//#define SAV_3DLCD
#ifdef SAV_3DLCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
#define NEWPANEL
#define ULTIPANEL
#endif
@ -739,7 +735,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
@ -748,7 +744,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_WIDTH 22
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
@ -832,13 +828,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Uncomment below to enable
//#define FILAMENT_SENSOR
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially

@ -554,54 +554,48 @@ ISR(TIMER1_COMPA_vect)
#endif //ADVANCE
counter_x += current_block->steps_x;
#ifdef CONFIG_STEPPERS_TOSHIBA
/* The toshiba stepper controller require much longer pulses
* tjerfore we 'stage' decompose the pulses between high, and
* low instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs */
if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH);
}
/* The Toshiba stepper controller require much longer pulses.
* So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
if (counter_x > 0) WRITE(X_STEP_PIN, HIGH);
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH);
}
if (counter_y > 0) WRITE(Y_STEP_PIN, HIGH);
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH);
}
if (counter_z > 0) WRITE(Z_STEP_PIN, HIGH);
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(HIGH);
}
if (counter_e > 0) WRITE_E_STEP(HIGH);
#endif //!ADVANCE
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[X_AXIS] += count_direction[X_AXIS];
WRITE(X_STEP_PIN, LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
count_position[Y_AXIS] += count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, LOW);
}
if (counter_z > 0) {
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
count_position[Z_AXIS] += count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, LOW);
}
#ifndef ADVANCE
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(LOW);
}
#endif //!ADVANCE
@ -622,7 +616,7 @@ ISR(TIMER1_COMPA_vect)
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[X_AXIS] += count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
@ -648,7 +642,7 @@ ISR(TIMER1_COMPA_vect)
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
count_position[Y_AXIS] += count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
@ -659,13 +653,12 @@ ISR(TIMER1_COMPA_vect)
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
count_position[Z_AXIS] += count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
@ -678,7 +671,7 @@ ISR(TIMER1_COMPA_vect)
if (counter_e > 0) {
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
}
#endif //!ADVANCE

@ -84,7 +84,7 @@ void vector_3::debug(char* title)
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(z);
SERIAL_PROTOCOLPGM("\n");
SERIAL_EOL;
}
void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z)
@ -145,22 +145,17 @@ matrix_3x3 matrix_3x3::transpose(matrix_3x3 original)
return new_matrix;
}
void matrix_3x3::debug(char* title)
{
SERIAL_PROTOCOL(title);
SERIAL_PROTOCOL("\n");
int count = 0;
for(int i=0; i<3; i++)
{
for(int j=0; j<3; j++)
{
SERIAL_PROTOCOL(matrix[count]);
SERIAL_PROTOCOLPGM(" ");
count++;
}
SERIAL_PROTOCOLPGM("\n");
}
void matrix_3x3::debug(char* title) {
SERIAL_PROTOCOLLN(title);
int count = 0;
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
SERIAL_PROTOCOL(matrix[count] + 0.0001);
SERIAL_PROTOCOLPGM(" ");
count++;
}
SERIAL_EOL;
}
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING

Loading…
Cancel
Save