@ -79,7 +79,7 @@
// G4 - Dwell S<seconds> or P<milliseconds>
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G11 - retract recover filament according to settings of M208
// G28 - Home one or more axe s
// G28 - Home all Axi s
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G31 - Dock sled (Z_PROBE_SLED only)
@ -210,6 +210,7 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
bool axis_relative_modes [ ] = AXIS_RELATIVE_MODES ;
bool axis_relative_modes [ ] = AXIS_RELATIVE_MODES ;
int feedmultiply = 100 ; //100->1 200->2
int feedmultiply = 100 ; //100->1 200->2
int saved_feedmultiply ;
int saved_feedmultiply ;
int extrudemultiply = 100 ; //100->1 200->2
int extruder_multiply [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS ( 100 , 100 , 100 , 100 ) ;
int extruder_multiply [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS ( 100 , 100 , 100 , 100 ) ;
bool volumetric_enabled = false ;
bool volumetric_enabled = false ;
float filament_size [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS ( DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA ) ;
float filament_size [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS ( DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA , DEFAULT_NOMINAL_FILAMENT_DIA ) ;
@ -476,6 +477,8 @@ bool enquecommand(const char *cmd)
return true ;
return true ;
}
}
void setup_killpin ( )
void setup_killpin ( )
{
{
# if defined(KILL_PIN) && KILL_PIN > -1
# if defined(KILL_PIN) && KILL_PIN > -1
@ -929,7 +932,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float x_home_pos ( int extruder ) {
static float x_home_pos ( int extruder ) {
if ( extruder = = 0 )
if ( extruder = = 0 )
return base_home_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
return base_home_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
else
else
// In dual carriage mode the extruder offset provides an override of the
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@ -958,15 +961,15 @@ static void axis_is_at_home(int axis) {
if ( axis = = X_AXIS ) {
if ( axis = = X_AXIS ) {
if ( active_extruder ! = 0 ) {
if ( active_extruder ! = 0 ) {
current_position [ X_AXIS ] = x_home_pos ( active_extruder ) ;
current_position [ X_AXIS ] = x_home_pos ( active_extruder ) ;
min_pos [ X_AXIS ] = X2_MIN_POS ;
min_pos [ X_AXIS ] = X2_MIN_POS ;
max_pos [ X_AXIS ] = max ( extruder_offset [ 1 ] [ X_AXIS ] , X2_MAX_POS ) ;
max_pos [ X_AXIS ] = max ( extruder_offset [ 1 ] [ X_AXIS ] , X2_MAX_POS ) ;
return ;
return ;
}
}
else if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE ) {
else if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE ) {
float xoff = home_offset [ X_AXIS ] ;
current_position [ X_AXIS ] = base_home_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
current_position[ X_AXIS ] = base_home_pos ( X_AXIS ) + xoff ;
min_pos[ X_AXIS ] = base_min_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
min_pos [ X_AXIS ] = base_min_pos ( X_AXIS ) + xoff ;
max_pos [ X_AXIS ] = min ( base_max_pos ( X_AXIS ) + home_offset [ X_AXIS ] ,
max_pos [ X_AXIS ] = min ( base_max_pos ( X_AXIS ) + xoff , max ( extruder_offset [ 1 ] [ X_AXIS ] , X2_MAX_POS ) - duplicate_extruder_x_offset ) ;
max ( extruder_offset [ 1 ] [ X_AXIS ] , X2_MAX_POS ) - duplicate_extruder_x_offset ) ;
return ;
return ;
}
}
}
}
@ -1020,189 +1023,178 @@ static void axis_is_at_home(int axis) {
}
}
/**
/**
* S ome planner shorthand inline functions
* S horthand to tell the planner our current position ( in mm ) .
*/
*/
inline void line_to_current_position ( ) {
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
inline void line_to_z ( float zPosition ) {
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
inline void line_to_destination ( ) {
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
inline void sync_plan_position ( ) {
inline void sync_plan_position ( ) {
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
}
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef AUTO_BED_LEVELING_GRID
# ifdef AUTO_BED_LEVELING_GRID
# ifndef DELTA
static void set_bed_level_equation_lsq ( double * plane_equation_coefficients ) {
# ifndef DELTA
vector_3 planeNormal = vector_3 ( - plane_equation_coefficients [ 0 ] , - plane_equation_coefficients [ 1 ] , 1 ) ;
planeNormal . debug ( " planeNormal " ) ;
static void set_bed_level_equation_lsq ( double * plane_equation_coefficients ) {
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
vector_3 planeNormal = vector_3 ( - plane_equation_coefficients [ 0 ] , - plane_equation_coefficients [ 1 ] , 1 ) ;
//bedLevel.debug("bedLevel");
planeNormal . debug ( " planeNormal " ) ;
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
//plan_bed_level_matrix.debug("bed level before");
//bedLevel.debug("bedLevel");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
vector_3 corrected_position = plan_get_position ( ) ;
//uncorrected_position.debug("position before");
//corrected_position.debug("position after");
current_position [ X_AXIS ] = corrected_position . x ;
vector_3 corrected_position = plan_get_position ( ) ;
current_position [ Y_AXIS ] = corrected_position . y ;
//corrected_position.debug("position after");
current_position [ Z_AXIS ] = zprobe_zoffset ; // was: corrected_position.z
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = zprobe_zoffset ; // was: corrected_position.z
sync_plan_position ( ) ;
}
# endif // !DELTA
# else // !AUTO_BED_LEVELING_GRID
sync_plan_position ( ) ;
}
# endif
static void set_bed_level_equation_3pts ( float z_at_pt_1 , float z_at_pt_2 , float z_at_pt_3 ) {
# else // not AUTO_BED_LEVELING_GRID
plan_bed_level_matrix . set_to_identity ( ) ;
static void set_bed_level_equation_3pts ( float z_at_pt_1 , float z_at_pt_2 , float z_at_pt_3 ) {
vector_3 pt1 = vector_3 ( ABL_PROBE_PT_1_X , ABL_PROBE_PT_1_Y , z_at_pt_1 ) ;
plan_bed_level_matrix . set_to_identity ( ) ;
vector_3 pt2 = vector_3 ( ABL_PROBE_PT_2_X , ABL_PROBE_PT_2_Y , z_at_pt_2 ) ;
vector_3 pt3 = vector_3 ( ABL_PROBE_PT_3_X , ABL_PROBE_PT_3_Y , z_at_pt_3 ) ;
vector_3 planeNormal = vector_3 : : cross ( pt1 - pt2 , pt3 - pt2 ) . get_normal ( ) ;
if ( planeNormal . z < 0 ) {
vector_3 pt1 = vector_3 ( ABL_PROBE_PT_1_X , ABL_PROBE_PT_1_Y , z_at_pt_1 ) ;
planeNormal . x = - planeNormal . x ;
vector_3 pt2 = vector_3 ( ABL_PROBE_PT_2_X , ABL_PROBE_PT_2_Y , z_at_pt_2 ) ;
planeNormal . y = - planeNormal . y ;
vector_3 pt3 = vector_3 ( ABL_PROBE_PT_3_X , ABL_PROBE_PT_3_Y , z_at_pt_3 ) ;
planeNormal . z = - planeNormal . z ;
vector_3 planeNormal = vector_3 : : cross ( pt1 - pt2 , pt3 - pt2 ) . get_normal ( ) ;
}
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
if ( planeNormal . z < 0 ) {
planeNormal . x = - planeNormal . x ;
planeNormal . y = - planeNormal . y ;
planeNormal . z = - planeNormal . z ;
}
vector_3 corrected_position = plan_get_position ( ) ;
plan_bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = zprobe_zoffset ; // was: corrected_position.z
sync_plan_position ( ) ;
vector_3 corrected_position = plan_get_position ( ) ;
}
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = zprobe_zoffset ; // was: corrected_position.z
# endif // !AUTO_BED_LEVELING_GRID
sync_plan_position ( ) ;
}
static void run_z_probe ( ) {
# endif // AUTO_BED_LEVELING_GRID
# ifdef DELTA
static void run_z_probe ( ) {
# ifdef DELTA
float start_z = current_position [ Z_AXIS ] ;
float start_z = current_position [ Z_AXIS ] ;
long start_steps = st_get_position ( Z_AXIS ) ;
long start_steps = st_get_position ( Z_AXIS ) ;
// move down slowly until you find the bed
// move down slowly until you find the bed
feedrate = homing_feedrate [ Z_AXIS ] / 4 ;
feedrate = homing_feedrate [ Z_AXIS ] / 4 ;
destination [ Z_AXIS ] = - 10 ;
destination [ Z_AXIS ] = - 10 ;
prepare_move_raw ( ) ;
prepare_move_raw ( ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
// we have to let the planner know where we are right now as it is not where we said to go.
// we have to let the planner know where we are right now as it is not where we said to go.
long stop_steps = st_get_position ( Z_AXIS ) ;
long stop_steps = st_get_position ( Z_AXIS ) ;
float mm = start_z - float ( start_steps - stop_steps ) / axis_steps_per_unit [ Z_AXIS ] ;
float mm = start_z - float ( start_steps - stop_steps ) / axis_steps_per_unit [ Z_AXIS ] ;
current_position [ Z_AXIS ] = mm ;
current_position [ Z_AXIS ] = mm ;
calculate_delta ( current_position ) ;
calculate_delta ( current_position ) ;
plan_set_position ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
plan_set_position ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
# else // !DELTA
# else
plan_bed_level_matrix . set_to_identity ( ) ;
plan_bed_level_matrix . set_to_identity ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
feedrate = homing_feedrate [ Z_AXIS ] ;
// move down until you find the bed
// move down until you find the bed
float zPosition = - 10 ;
float zPosition = - 10 ;
line_to_z ( zPosition ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
// we have to let the planner know where we are right now as it is not where we said to go.
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm ( Z_AXIS ) ;
zPosition = st_get_position_mm ( Z_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] ) ;
// move up the retract distance
// move up the retract distance
zPosition + = home_retract_mm ( Z_AXIS ) ;
zPosition + = home_retract_mm ( Z_AXIS ) ;
line_to_z ( zPosition ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
// move back down slowly to find bed
// move back down slowly to find bed
if ( homing_bump_divisor [ Z_AXIS ] > = 1 )
if ( homing_bump_divisor [ Z_AXIS ] > = 1 ) {
feedrate = homing_feedrate [ Z_AXIS ] / homing_bump_divisor [ Z_AXIS ] ;
feedrate = homing_feedrate [ Z_AXIS ] / homing_bump_divisor [ Z_AXIS ] ;
else {
}
feedrate = homing_feedrate [ Z_AXIS ] / 10 ;
else {
SERIAL_ECHOLN ( " Warning: The Homing Bump Feedrate Divisor cannot be less than 1 " ) ;
feedrate = homing_feedrate [ Z_AXIS ] / 10 ;
}
SERIAL_ECHOLN ( " Warning: The Homing Bump Feedrate Divisor cannot be less then 1 " ) ;
}
zPosition - = home_retract_mm ( Z_AXIS ) * 2 ;
zPosition - = home_retract_mm ( Z_AXIS ) * 2 ;
line_to_z ( zPosition ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
// make sure the planner knows where we are as it may be a bit different than we last said to move to
// make sure the planner knows where we are as it may be a bit different than we last said to move to
sync_plan_position ( ) ;
sync_plan_position ( ) ;
# endif // !DELTA
# endif
}
}
static void do_blocking_move_to ( float x , float y , float z ) {
static void do_blocking_move_to ( float x , float y , float z ) {
float oldFeedRate = feedrate ;
float oldFeedRate = feedrate ;
# ifdef DELTA
# ifdef DELTA
feedrate = XY_TRAVEL_SPEED ;
feedrate = XY_TRAVEL_SPEED ;
destination [ X_AXIS ] = x ;
destination [ X_AXIS ] = x ;
destination [ Y_AXIS ] = y ;
destination [ Y_AXIS ] = y ;
destination [ Z_AXIS ] = z ;
destination [ Z_AXIS ] = z ;
prepare_move_raw ( ) ;
prepare_move_raw ( ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
# else
# else
feedrate = homing_feedrate [ Z_AXIS ] ;
feedrate = homing_feedrate [ Z_AXIS ] ;
current_position [ Z_AXIS ] = z ;
current_position [ Z_AXIS ] = z ;
line_to_current_position ( ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
feedrate = xy_travel_speed ;
feedrate = xy_travel_speed ;
current_position [ X_AXIS ] = x ;
current_position [ X_AXIS ] = x ;
current_position [ Y_AXIS ] = y ;
current_position [ Y_AXIS ] = y ;
line_to_current_position ( ) ;
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
# endif
# endif
feedrate = oldFeedRate ;
feedrate = oldFeedRate ;
}
}
static void setup_for_endstop_move ( ) {
static void setup_for_endstop_move ( ) {
saved_feedrate = feedrate ;
saved_feedrate = feedrate ;
saved_feedmultiply = feedmultiply ;
saved_feedmultiply = feedmultiply ;
feedmultiply = 100 ;
feedmultiply = 100 ;
previous_millis_cmd = millis ( ) ;
previous_millis_cmd = millis ( ) ;
enable_endstops ( true ) ;
enable_endstops ( true ) ;
}
}
static void clean_up_after_endstop_move ( ) {
# ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops ( false ) ;
# endif
static void clean_up_after_endstop_move ( ) {
# ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops ( false ) ;
# endif
feedrate = saved_feedrate ;
feedrate = saved_feedrate ;
feedmultiply = saved_feedmultiply ;
feedmultiply = saved_feedmultiply ;
previous_millis_cmd = millis ( ) ;
previous_millis_cmd = millis ( ) ;
}
}
< < < < < < < HEAD
static void engage_z_probe ( ) {
static void engage_z_probe ( ) {
// Engage Z Servo endstop if enabled
// Engage Z Servo endstop if enabled
# ifdef SERVO_ENDSTOPS
# ifdef SERVO_ENDSTOPS
@ -1250,59 +1242,13 @@ static void engage_z_probe() {
SERIAL_ERROR_START ;
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to engage! " ) ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to engage! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
= = = = = = =
static void engage_z_probe ( ) {
# ifdef SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
if ( servo_endstops [ Z_AXIS ] > = 0 ) {
# if SERVO_LEVELING
servos [ servo_endstops [ Z_AXIS ] ] . attach ( 0 ) ;
# endif
servos [ servo_endstops [ Z_AXIS ] ] . write ( servo_endstop_angles [ Z_AXIS * 2 ] ) ;
# if SERVO_LEVELING
delay ( PROBE_SERVO_DEACTIVATION_DELAY ) ;
servos [ servo_endstops [ Z_AXIS ] ] . detach ( ) ;
# endif
}
# elif defined(Z_PROBE_ALLEN_KEY)
feedrate = homing_feedrate [ X_AXIS ] ;
// Move to the start position to initiate deployment
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_X ;
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_Z ;
prepare_move_raw ( ) ;
// Home X to touch the belt
feedrate = homing_feedrate [ X_AXIS ] / 10 ;
destination [ X_AXIS ] = 0 ;
prepare_move_raw ( ) ;
// Home Y for safety
feedrate = homing_feedrate [ X_AXIS ] / 2 ;
destination [ Y_AXIS ] = 0 ;
prepare_move_raw ( ) ;
st_synchronize ( ) ;
bool z_min_endstop = ( READ ( Z_MIN_PIN ) ! = Z_MIN_ENDSTOP_INVERTING ) ;
if ( z_min_endstop ) {
if ( ! Stopped ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to engage! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
> > > > > > > MarlinFirmware / Development
}
}
Stop ( ) ;
Stop ( ) ;
}
}
# endif
# endif // Z_PROBE_ALLEN_KEY
}
< < < < < < < HEAD
static void retract_z_probe ( ) {
static void retract_z_probe ( ) {
// Retract Z Servo endstop if enabled
// Retract Z Servo endstop if enabled
# ifdef SERVO_ENDSTOPS
# ifdef SERVO_ENDSTOPS
@ -1365,216 +1311,126 @@ static void retract_z_probe() {
SERIAL_ERROR_START ;
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to retract! " ) ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to retract! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
= = = = = = =
}
static void retract_z_probe ( const float z_after = Z_RAISE_AFTER_PROBING ) {
# ifdef SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
if ( servo_endstops [ Z_AXIS ] > = 0 ) {
if ( z_after > 0 ) {
do_blocking_move_to ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , z_after ) ;
st_synchronize ( ) ;
> > > > > > > MarlinFirmware / Development
}
# if SERVO_LEVELING
servos [ servo_endstops [ Z_AXIS ] ] . attach ( 0 ) ;
# endif
servos [ servo_endstops [ Z_AXIS ] ] . write ( servo_endstop_angles [ Z_AXIS * 2 + 1 ] ) ;
# if SERVO_LEVELING
delay ( PROBE_SERVO_DEACTIVATION_DELAY ) ;
servos [ servo_endstops [ Z_AXIS ] ] . detach ( ) ;
# endif
}
# elif defined(Z_PROBE_ALLEN_KEY)
// Move up for safety
feedrate = homing_feedrate [ X_AXIS ] ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] + Z_RAISE_AFTER_PROBING ;
prepare_move_raw ( ) ;
// Move to the start position to initiate retraction
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_RETRACT_X ;
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_RETRACT_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_RETRACT_Z ;
prepare_move_raw ( ) ;
// Move the nozzle down to push the probe into retracted position
feedrate = homing_feedrate [ Z_AXIS ] / 10 ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH ;
prepare_move_raw ( ) ;
// Move up for safety
feedrate = homing_feedrate [ Z_AXIS ] / 2 ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2 ;
prepare_move_raw ( ) ;
// Home XY for safety
feedrate = homing_feedrate [ X_AXIS ] / 2 ;
destination [ X_AXIS ] = 0 ;
destination [ Y_AXIS ] = 0 ;
prepare_move_raw ( ) ;
st_synchronize ( ) ;
bool z_min_endstop = ( READ ( Z_MIN_PIN ) ! = Z_MIN_ENDSTOP_INVERTING ) ;
if ( ! z_min_endstop ) {
if ( ! Stopped ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to retract! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
}
}
Stop ( ) ;
Stop ( ) ;
}
}
# endif
# endif
}
}
enum ProbeAction {
enum ProbeAction {
ProbeStay = 0 ,
ProbeStay = 0 ,
ProbeEngage = BIT ( 0 ) ,
ProbeEngage = BIT ( 0 ) ,
ProbeRetract = BIT ( 1 ) ,
ProbeRetract = BIT ( 1 ) ,
ProbeEngageAndRetract = ( ProbeEngage | ProbeRetract )
ProbeEngageAndRetract = ( ProbeEngage | ProbeRetract )
} ;
} ;
// Probe bed height at position (x,y), returns the measured z value
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt ( float x , float y , float z_before , ProbeAction retract_action = ProbeEngageAndRetract , int verbose_level = 1 ) {
static float probe_pt ( float x , float y , float z_before , ProbeAction retract_action = ProbeEngageAndRetract , int verbose_level = 1 ) {
// move to right place
// move to right place
do_blocking_move_to ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , z_before ) ;
do_blocking_move_to ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , z_before ) ;
do_blocking_move_to ( x - X_PROBE_OFFSET_FROM_EXTRUDER , y - Y_PROBE_OFFSET_FROM_EXTRUDER , current_position [ Z_AXIS ] ) ;
do_blocking_move_to ( x - X_PROBE_OFFSET_FROM_EXTRUDER , y - Y_PROBE_OFFSET_FROM_EXTRUDER , current_position [ Z_AXIS ] ) ;
# if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
# if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if ( retract_action & ProbeEngage ) engage_z_probe ( ) ;
if ( retract_action & ProbeEngage ) engage_z_probe ( ) ;
# endif
# endif
run_z_probe ( ) ;
run_z_probe ( ) ;
float measured_z = current_position [ Z_AXIS ] ;
float measured_z = current_position [ Z_AXIS ] ;
# if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
# if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if ( retract_action & ProbeRetract ) retract_z_probe ( z_before ) ;
if ( retract_action & ProbeRetract ) retract_z_probe ( ) ;
# endif
# endif
if ( verbose_level > 2 ) {
if ( verbose_level > 2 ) {
SERIAL_PROTOCOLPGM ( MSG_BED ) ;
SERIAL_PROTOCOLPGM ( MSG_BED ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL_F ( x , 3 ) ;
SERIAL_PROTOCOL_F ( x , 3 ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL_F ( y , 3 ) ;
SERIAL_PROTOCOL_F ( y , 3 ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL_F ( measured_z , 3 ) ;
SERIAL_PROTOCOL_F ( measured_z , 3 ) ;
SERIAL_EOL ;
SERIAL_EOL ;
}
return measured_z ;
}
}
return measured_z ;
}
# ifdef DELTA
# ifdef DELTA
static void extrapolate_one_point ( int x , int y , int xdir , int ydir ) {
/**
if ( bed_level [ x ] [ y ] ! = 0.0 ) {
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
return ; // Don't overwrite good values.
*/
}
float a = 2 * bed_level [ x + xdir ] [ y ] - bed_level [ x + xdir * 2 ] [ y ] ; // Left to right.
static void extrapolate_one_point ( int x , int y , int xdir , int ydir ) {
float b = 2 * bed_level [ x ] [ y + ydir ] - bed_level [ x ] [ y + ydir * 2 ] ; // Front to back.
if ( bed_level [ x ] [ y ] ! = 0.0 ) {
float c = 2 * bed_level [ x + xdir ] [ y + ydir ] - bed_level [ x + xdir * 2 ] [ y + ydir * 2 ] ; // Diagonal.
return ; // Don't overwrite good values.
float median = c ; // Median is robust (ignores outliers).
}
if ( a < b ) {
float a = 2 * bed_level [ x + xdir ] [ y ] - bed_level [ x + xdir * 2 ] [ y ] ; // Left to right.
if ( b < c ) median = b ;
float b = 2 * bed_level [ x ] [ y + ydir ] - bed_level [ x ] [ y + ydir * 2 ] ; // Front to back.
if ( c < a ) median = a ;
float c = 2 * bed_level [ x + xdir ] [ y + ydir ] - bed_level [ x + xdir * 2 ] [ y + ydir * 2 ] ; // Diagonal.
} else { // b <= a
float median = c ; // Median is robust (ignores outliers).
if ( c < b ) median = b ;
if ( a < b ) {
if ( a < c ) median = a ;
if ( b < c ) median = b ;
}
if ( c < a ) median = a ;
bed_level [ x ] [ y ] = median ;
} else { // b <= a
}
if ( c < b ) median = b ;
if ( a < c ) median = a ;
}
bed_level [ x ] [ y ] = median ;
}
// Fill in the unprobed points (corners of circular print surface)
// Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
// using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level ( ) {
static void extrapolate_unprobed_bed_level ( ) {
int half = ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) / 2 ;
int half = ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) / 2 ;
for ( int y = 0 ; y < = half ; y + + ) {
for ( int y = 0 ; y < = half ; y + + ) {
for ( int x = 0 ; x < = half ; x + + ) {
for ( int x = 0 ; x < = half ; x + + ) {
if ( x + y < 3 ) continue ;
if ( x + y < 3 ) continue ;
extrapolate_one_point ( half - x , half - y , x > 1 ? + 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half - x , half - y , x > 1 ? + 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half + x , half - y , x > 1 ? - 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half + x , half - y , x > 1 ? - 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half - x , half + y , x > 1 ? + 1 : 0 , y > 1 ? - 1 : 0 ) ;
extrapolate_one_point ( half - x , half + y , x > 1 ? + 1 : 0 , y > 1 ? - 1 : 0 ) ;
extrapolate_one_point ( half + x , half + y , x > 1 ? - 1 : 0 , y > 1 ? - 1 : 0 ) ;
extrapolate_one_point ( half + x , half + y , x > 1 ? - 1 : 0 , y > 1 ? - 1 : 0 ) ;
}
}
}
}
}
}
// Print calibration results for plotting or manual frame adjustment.
// Print calibration results for plotting or manual frame adjustment.
static void print_bed_level ( ) {
static void print_bed_level ( ) {
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
SERIAL_PROTOCOL_F ( bed_level [ x ] [ y ] , 2 ) ;
SERIAL_PROTOCOL_F ( bed_level [ x ] [ y ] , 2 ) ;
SERIAL_PROTOCOLPGM ( " " ) ;
SERIAL_PROTOCOLPGM ( " " ) ;
}
SERIAL_ECHOLN ( " " ) ;
}
}
}
SERIAL_ECHOLN ( " " ) ;
}
}
// Reset calibration results to zero.
// Reset calibration results to zero.
void reset_bed_level ( ) {
void reset_bed_level ( ) {
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
bed_level [ x ] [ y ] = 0.0 ;
bed_level [ x ] [ y ] = 0.0 ;
}
}
}
}
}
}
# endif // DELTA
# endif // DELTA
# endif // ENABLE_AUTO_BED_LEVELING
# endif // ENABLE_AUTO_BED_LEVELING
static void homeaxis ( int axis ) {
static void homeaxis ( int axis ) {
# define HOMEAXIS_DO(LETTER) \
# define HOMEAXIS_DO(LETTER) \
( ( LETTER # # _MIN_PIN > - 1 & & LETTER # # _HOME_DIR = = - 1 ) | | ( LETTER # # _MAX_PIN > - 1 & & LETTER # # _HOME_DIR = = 1 ) )
( ( LETTER # # _MIN_PIN > - 1 & & LETTER # # _HOME_DIR = = - 1 ) | | ( LETTER # # _MAX_PIN > - 1 & & LETTER # # _HOME_DIR = = 1 ) )
if ( axis = = X_AXIS ? HOMEAXIS_DO ( X ) :
if ( axis = = X_AXIS ? HOMEAXIS_DO ( X ) :
axis = = Y_AXIS ? HOMEAXIS_DO ( Y ) :
axis = = Y_AXIS ? HOMEAXIS_DO ( Y ) :
axis = = Z_AXIS ? HOMEAXIS_DO ( Z ) : 0 ) {
axis = = Z_AXIS ? HOMEAXIS_DO ( Z ) :
0 ) {
int axis_home_dir ;
int axis_home_dir = home_dir ( axis ) ;
# ifdef DUAL_X_CARRIAGE
# ifdef DUAL_X_CARRIAGE
if ( axis = = X_AXIS )
if ( axis = = X_AXIS ) axis_home_dir = x_home_dir ( active_extruder ) ;
axis_home_dir = x_home_dir ( active_extruder ) ;
# else
# endif
axis_home_dir = home_dir ( axis ) ;
# endif
current_position [ axis ] = 0 ;
current_position [ axis ] = 0 ;
sync_plan_position ( ) ;
sync_plan_position ( ) ;
# ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
# ifdef SERVO_ENDSTOPS
# if SERVO_LEVELING
if ( axis = = Z_AXIS ) {
engage_z_probe ( ) ;
}
else
# endif // SERVO_LEVELING
if ( servo_endstops [ axis ] > - 1 )
servos [ servo_endstops [ axis ] ] . write ( servo_endstop_angles [ axis * 2 ] ) ;
# endif // SERVO_ENDSTOPS
# endif // Z_PROBE_SLED
< < < < < < < HEAD
# ifndef Z_PROBE_SLED
# ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
// Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
# ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
# ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
@ -1589,33 +1445,33 @@ static void homeaxis(int axis) {
}
}
# endif
# endif
# endif // Z_PROBE_SLED
# endif // Z_PROBE_SLED
= = = = = = =
> > > > > > > MarlinFirmware / Development
# ifdef Z_DUAL_ENDSTOPS
# ifdef Z_DUAL_ENDSTOPS
if ( axis = = Z_AXIS ) In_Homing_Process ( true ) ;
if ( axis = = Z_AXIS ) In_Homing_Process ( true ) ;
# endif
# endif
destination [ axis ] = 1.5 * max_length ( axis ) * axis_home_dir ;
destination [ axis ] = 1.5 * max_length ( axis ) * axis_home_dir ;
feedrate = homing_feedrate [ axis ] ;
feedrate = homing_feedrate [ axis ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
current_position [ axis ] = 0 ;
current_position [ axis ] = 0 ;
sync_plan_position ( ) ;
sync_plan_position ( ) ;
destination [ axis ] = - home_retract_mm ( axis ) * axis_home_dir ;
destination [ axis ] = - home_retract_mm ( axis ) * axis_home_dir ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
destination [ axis ] = 2 * home_retract_mm ( axis ) * axis_home_dir ;
destination [ axis ] = 2 * home_retract_mm ( axis ) * axis_home_dir ;
if ( homing_bump_divisor [ axis ] > = 1 )
if ( homing_bump_divisor [ axis ] > = 1 )
feedrate = homing_feedrate [ axis ] / homing_bump_divisor [ axis ] ;
{
else {
feedrate = homing_feedrate [ axis ] / homing_bump_divisor [ axis ] ;
feedrate = homing_feedrate [ axis ] / 10 ;
}
SERIAL_ECHOLN ( " Warning: The Homing Bump Feedrate Divisor cannot be less than 1 " ) ;
else
{
feedrate = homing_feedrate [ axis ] / 10 ;
SERIAL_ECHOLN ( " Warning: The Homing Bump Feedrate Divisor cannot be less then 1 " ) ;
}
}
line_to_destination ( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
# ifdef Z_DUAL_ENDSTOPS
# ifdef Z_DUAL_ENDSTOPS
if ( axis = = Z_AXIS )
if ( axis = = Z_AXIS )
@ -1630,7 +1486,7 @@ static void homeaxis(int axis) {
destination [ axis ] = fabs ( z_endstop_adj ) ;
destination [ axis ] = fabs ( z_endstop_adj ) ;
if ( z_endstop_adj < 0 ) Lock_z_motor ( true ) ; else Lock_z2_motor ( true ) ;
if ( z_endstop_adj < 0 ) Lock_z_motor ( true ) ; else Lock_z2_motor ( true ) ;
}
}
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
Lock_z_motor ( false ) ;
Lock_z_motor ( false ) ;
Lock_z2_motor ( false ) ;
Lock_z2_motor ( false ) ;
@ -1643,7 +1499,7 @@ static void homeaxis(int axis) {
if ( endstop_adj [ axis ] * axis_home_dir < 0 ) {
if ( endstop_adj [ axis ] * axis_home_dir < 0 ) {
sync_plan_position ( ) ;
sync_plan_position ( ) ;
destination [ axis ] = endstop_adj [ axis ] ;
destination [ axis ] = endstop_adj [ axis ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
}
}
# endif
# endif
@ -1688,7 +1544,7 @@ void refresh_cmd_timeout(void)
}
}
plan_set_e_position ( current_position [ E_AXIS ] ) ;
plan_set_e_position ( current_position [ E_AXIS ] ) ;
float oldFeedrate = feedrate ;
float oldFeedrate = feedrate ;
feedrate = retract_feedrate * 60 ;
feedrate = retract_feedrate * 60 ;
retracted [ active_extruder ] = true ;
retracted [ active_extruder ] = true ;
prepare_move ( ) ;
prepare_move ( ) ;
if ( retract_zlift > 0.01 ) {
if ( retract_zlift > 0.01 ) {
@ -1724,8 +1580,8 @@ void refresh_cmd_timeout(void)
}
}
plan_set_e_position ( current_position [ E_AXIS ] ) ;
plan_set_e_position ( current_position [ E_AXIS ] ) ;
float oldFeedrate = feedrate ;
float oldFeedrate = feedrate ;
feedrate = retract_recover_feedrate * 60 ;
feedrate = retract_recover_feedrate * 60 ;
retracted [ active_extruder ] = false ;
retracted [ active_extruder ] = false ;
prepare_move ( ) ;
prepare_move ( ) ;
feedrate = oldFeedrate ;
feedrate = oldFeedrate ;
}
}
@ -1879,16 +1735,17 @@ inline void gcode_G4() {
*/
*/
inline void gcode_G28 ( ) {
inline void gcode_G28 ( ) {
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix . set_to_identity ( ) ; //Reset the plane ("erase" all leveling data)
# ifdef DELTA
# ifdef DELTA
reset_bed_level ( ) ;
reset_bed_level ( ) ;
# else
plan_bed_level_matrix . set_to_identity ( ) ; //Reset the plane ("erase" all leveling data)
# endif
# endif
# endif
# endif
# if defined(MESH_BED_LEVELING)
# if defined(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl . active ;
uint8_t mbl_was_active = mbl . active ;
mbl . active = 0 ;
mbl . active = 0 ;
# endif
# endif // MESH_BED_LEVELING
saved_feedrate = feedrate ;
saved_feedrate = feedrate ;
saved_feedmultiply = feedmultiply ;
saved_feedmultiply = feedmultiply ;
@ -1911,7 +1768,7 @@ inline void gcode_G28() {
for ( int i = X_AXIS ; i < = Z_AXIS ; i + + ) destination [ i ] = 3 * Z_MAX_LENGTH ;
for ( int i = X_AXIS ; i < = Z_AXIS ; i + + ) destination [ i ] = 3 * Z_MAX_LENGTH ;
feedrate = 1.732 * homing_feedrate [ X_AXIS ] ;
feedrate = 1.732 * homing_feedrate [ X_AXIS ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
@ -1959,7 +1816,7 @@ inline void gcode_G28() {
} else {
} else {
feedrate * = sqrt ( pow ( max_length ( X_AXIS ) / max_length ( Y_AXIS ) , 2 ) + 1 ) ;
feedrate * = sqrt ( pow ( max_length ( X_AXIS ) / max_length ( Y_AXIS ) , 2 ) + 1 ) ;
}
}
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
axis_is_at_home ( X_AXIS ) ;
axis_is_at_home ( X_AXIS ) ;
@ -1967,7 +1824,7 @@ inline void gcode_G28() {
sync_plan_position ( ) ;
sync_plan_position ( ) ;
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
feedrate = 0.0 ;
feedrate = 0.0 ;
st_synchronize ( ) ;
st_synchronize ( ) ;
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
@ -2035,7 +1892,7 @@ inline void gcode_G28() {
# ifndef Z_PROBE_AND_ENDSTOP
# ifndef Z_PROBE_AND_ENDSTOP
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
feedrate = max_feedrate [ Z_AXIS ] ;
feedrate = max_feedrate [ Z_AXIS ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
# endif
# endif
# endif
# endif
@ -2048,11 +1905,11 @@ inline void gcode_G28() {
destination [ X_AXIS ] = round ( Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ X_AXIS ] = round ( Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ Y_AXIS ] = round ( Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ Y_AXIS ] = round ( Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER ) ;
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
feedrate = XY_TRAVEL_SPEED ;
feedrate = XY_TRAVEL_SPEED / 60 ;
current_position [ Z_AXIS ] = 0 ;
current_position [ Z_AXIS ] = 0 ;
sync_plan_position ( ) ;
sync_plan_position ( ) ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
@ -2074,7 +1931,7 @@ inline void gcode_G28() {
plan_set_position ( cpx , cpy , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
plan_set_position ( cpx , cpy , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
destination [ Z_AXIS ] = - Z_RAISE_BEFORE_HOMING * home_dir ( Z_AXIS ) ; // Set destination away from bed
feedrate = max_feedrate [ Z_AXIS ] ;
feedrate = max_feedrate [ Z_AXIS ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
HOMEAXIS ( Z ) ;
HOMEAXIS ( Z ) ;
}
}
@ -2127,7 +1984,7 @@ inline void gcode_G28() {
destination [ Z_AXIS ] = current_position [ Z_AXIS ] ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] ;
destination [ E_AXIS ] = current_position [ E_AXIS ] ;
destination [ E_AXIS ] = current_position [ E_AXIS ] ;
feedrate = homing_feedrate [ X_AXIS ] ;
feedrate = homing_feedrate [ X_AXIS ] ;
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate , active_extruder ) ;
st_synchronize ( ) ;
st_synchronize ( ) ;
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z ;
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z ;
sync_plan_position ( ) ;
sync_plan_position ( ) ;
@ -2141,19 +1998,6 @@ inline void gcode_G28() {
endstops_hit_on_purpose ( ) ;
endstops_hit_on_purpose ( ) ;
}
}
# if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
// Check for known positions in X and Y
inline bool can_run_bed_leveling ( ) {
if ( axis_known_position [ X_AXIS ] & & axis_known_position [ Y_AXIS ] ) return true ;
LCD_MESSAGEPGM ( MSG_POSITION_UNKNOWN ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_POSITION_UNKNOWN ) ;
return false ;
}
# endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
# ifdef MESH_BED_LEVELING
# ifdef MESH_BED_LEVELING
/**
/**
@ -2168,10 +2012,6 @@ inline void gcode_G28() {
*
*
*/
*/
inline void gcode_G29 ( ) {
inline void gcode_G29 ( ) {
// Prevent leveling without first homing in X and Y
if ( ! can_run_bed_leveling ( ) ) return ;
static int probe_point = - 1 ;
static int probe_point = - 1 ;
int state = 0 ;
int state = 0 ;
if ( code_seen ( ' S ' ) | | code_seen ( ' s ' ) ) {
if ( code_seen ( ' S ' ) | | code_seen ( ' s ' ) ) {
@ -2288,8 +2128,13 @@ inline void gcode_G28() {
*/
*/
inline void gcode_G29 ( ) {
inline void gcode_G29 ( ) {
// Prevent leveling without first homing in X and Y
// Prevent user from running a G29 without first homing in X and Y
if ( ! can_run_bed_leveling ( ) ) return ;
if ( ! axis_known_position [ X_AXIS ] | | ! axis_known_position [ Y_AXIS ] ) {
LCD_MESSAGEPGM ( MSG_POSITION_UNKNOWN ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_POSITION_UNKNOWN ) ;
return ;
}
int verbose_level = 1 ;
int verbose_level = 1 ;
@ -2371,15 +2216,16 @@ inline void gcode_G28() {
st_synchronize ( ) ;
st_synchronize ( ) ;
if ( ! dryrun ) {
if ( ! dryrun )
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
{
plan_bed_level_matrix . set_to_identity ( ) ;
# ifdef DELTA
# ifdef DELTA
reset_bed_level ( ) ;
reset_bed_level ( ) ;
# else //!DELTA
# else //!DELTA
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
//corrected_position.debug("position before G29");
plan_bed_level_matrix . set_to_identity ( ) ;
vector_3 uncorrected_position = plan_get_position ( ) ;
vector_3 uncorrected_position = plan_get_position ( ) ;
//uncorrected_position.debug("position during G29");
//uncorrected_position.debug("position during G29");
current_position [ X_AXIS ] = uncorrected_position . x ;
current_position [ X_AXIS ] = uncorrected_position . x ;
@ -2387,7 +2233,7 @@ inline void gcode_G28() {
current_position [ Z_AXIS ] = uncorrected_position . z ;
current_position [ Z_AXIS ] = uncorrected_position . z ;
sync_plan_position ( ) ;
sync_plan_position ( ) ;
# endif // !DELTA
# endif
}
}
setup_for_endstop_move ( ) ;
setup_for_endstop_move ( ) ;
@ -2448,12 +2294,13 @@ inline void gcode_G28() {
// raise extruder
// raise extruder
float measured_z ,
float measured_z ,
z_before = Z_RAISE_BETWEEN_PROBINGS + ( probePointCounter ? current_position [ Z_AXIS ] : 0 ) ;
z_before = probePointCounter = = 0 ? Z_RAISE_BEFORE_PROBING : current_position [ Z_AXIS ] + Z_RAISE_BETWEEN_PROBINGS ;
# ifdef DELTA
# ifdef DELTA
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt ( xProbe * xProbe + yProbe * yProbe ) ;
float distance_from_center = sqrt ( xProbe * xProbe + yProbe * yProbe ) ;
if ( distance_from_center > DELTA_PROBABLE_RADIUS ) continue ;
if ( distance_from_center > DELTA_PROBABLE_RADIUS )
continue ;
# endif //DELTA
# endif //DELTA
// Enhanced G29 - Do not retract servo between probes
// Enhanced G29 - Do not retract servo between probes
@ -2481,11 +2328,6 @@ inline void gcode_G28() {
# endif
# endif
probePointCounter + + ;
probePointCounter + + ;
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
} //xProbe
} //xProbe
} //yProbe
} //yProbe
@ -2572,14 +2414,16 @@ inline void gcode_G28() {
if ( verbose_level > 0 )
if ( verbose_level > 0 )
plan_bed_level_matrix . debug ( " \n \n Bed Level Correction Matrix: " ) ;
plan_bed_level_matrix . debug ( " \n \n Bed Level Correction Matrix: " ) ;
if ( ! dryrun ) {
// Correct the Z height difference from z-probe position and hotend tip position.
// Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
// When the bed is uneven, this height must be corrected.
if ( ! dryrun )
float x_tmp = current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER ,
{
y_tmp = current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER ,
float x_tmp , y_tmp , z_tmp , real_z ;
z_tmp = current_position [ Z_AXIS ] ,
real_z = float ( st_get_position ( Z_AXIS ) ) / axis_steps_per_unit [ Z_AXIS ] ; //get the real Z (since the auto bed leveling is already correcting the plane)
real_z = ( float ) st_get_position ( Z_AXIS ) / axis_steps_per_unit [ Z_AXIS ] ; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER ;
y_tmp = current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER ;
z_tmp = current_position [ Z_AXIS ] ;
apply_rotation_xyz ( plan_bed_level_matrix , x_tmp , y_tmp , z_tmp ) ; //Apply the correction sending the probe offset
apply_rotation_xyz ( plan_bed_level_matrix , x_tmp , y_tmp , z_tmp ) ; //Apply the correction sending the probe offset
current_position [ Z_AXIS ] = z_tmp - real_z + current_position [ Z_AXIS ] ; //The difference is added to current position and sent to planner.
current_position [ Z_AXIS ] = z_tmp - real_z + current_position [ Z_AXIS ] ; //The difference is added to current position and sent to planner.
@ -3947,7 +3791,7 @@ inline void gcode_M221() {
extruder_multiply [ tmp_extruder ] = sval ;
extruder_multiply [ tmp_extruder ] = sval ;
}
}
else {
else {
extrude r_ multiply[ active_extruder ] = sval ;
extrude multiply = sval ;
}
}
}
}
}
}
@ -4384,7 +4228,7 @@ inline void gcode_M400() { st_synchronize(); }
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrude r_ multiply[active_extruder] );
//SERIAL_PROTOCOL(extrude multiply);
}
}
/**
/**
@ -4857,14 +4701,18 @@ void process_commands() {
gcode_G28 ( ) ;
gcode_G28 ( ) ;
break ;
break ;
# if defined( ENABLE_AUTO_BED_LEVELING) || defined( MESH_BED_LEVELING)
# if defined( MESH_BED_LEVELING)
case 29 : // G29 Detailed Z-Probe, probes the bed at 3 or more points.
case 29 : // G29 Handle mesh based leveling
gcode_G29 ( ) ;
gcode_G29 ( ) ;
break ;
break ;
# endif
# endif
# ifdef ENABLE_AUTO_BED_LEVELING
# ifdef ENABLE_AUTO_BED_LEVELING
case 29 : // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29 ( ) ;
break ;
# ifndef Z_PROBE_SLED
# ifndef Z_PROBE_SLED
case 30 : // G30 Single Z Probe
case 30 : // G30 Single Z Probe
@ -5559,72 +5407,69 @@ void prepare_move()
# ifdef SCARA //for now same as delta-code
# ifdef SCARA //for now same as delta-code
float difference [ NUM_AXIS ] ;
float difference [ NUM_AXIS ] ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) difference [ i ] = destination [ i ] - current_position [ i ] ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
difference [ i ] = destination [ i ] - current_position [ i ] ;
float cartesian_mm = sqrt ( sq ( difference [ X_AXIS ] ) +
}
sq ( difference [ Y_AXIS ] ) +
sq ( difference [ Z_AXIS ] ) ) ;
if ( cartesian_mm < 0.000001 ) { cartesian_mm = abs ( difference [ E_AXIS ] ) ; }
if ( cartesian_mm < 0.000001 ) { return ; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply ;
int steps = max ( 1 , int ( scara_segments_per_second * seconds ) ) ;
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for ( int s = 1 ; s < = steps ; s + + ) {
float fraction = float ( s ) / float ( steps ) ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
destination [ i ] = current_position [ i ] + difference [ i ] * fraction ;
}
calculate_delta ( destination ) ;
float cartesian_mm = sqrt ( sq ( difference [ X_AXIS ] ) +
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
sq ( difference [ Y_AXIS ] ) +
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
sq ( difference [ Z_AXIS ] ) ) ;
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
if ( cartesian_mm < 0.000001 ) { cartesian_mm = abs ( difference [ E_AXIS ] ) ; }
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
if ( cartesian_mm < 0.000001 ) { return ; }
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply ;
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
int steps = max ( 1 , int ( scara_segments_per_second * seconds ) ) ;
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for ( int s = 1 ; s < = steps ; s + + ) {
float fraction = float ( s ) / float ( steps ) ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
destination [ i ] = current_position [ i ] + difference [ i ] * fraction ;
}
plan_buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] ,
destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 ,
active_extruder ) ;
}
# endif // SCARA
calculate_delta ( destination ) ;
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
# ifdef DELTA
plan_buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] ,
destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 ,
active_extruder ) ;
}
# endif // SCARA
float difference [ NUM_AXIS ] ;
# ifdef DELTA
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) difference [ i ] = destination [ i ] - current_position [ i ] ;
float difference [ NUM_AXIS ] ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
float cartesian_mm = sqrt ( sq ( difference [ X_AXIS ] ) +
difference [ i ] = destination [ i ] - current_position [ i ] ;
sq ( difference [ Y_AXIS ] ) +
}
sq ( difference [ Z_AXIS ] ) ) ;
float cartesian_mm = sqrt ( sq ( difference [ X_AXIS ] ) +
if ( cartesian_mm < 0.000001 ) cartesian_mm = abs ( difference [ E_AXIS ] ) ;
sq ( difference [ Y_AXIS ] ) +
if ( cartesian_mm < 0.000001 ) return ;
sq ( difference [ Z_AXIS ] ) ) ;
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply ;
if ( cartesian_mm < 0.000001 ) { cartesian_mm = abs ( difference [ E_AXIS ] ) ; }
int steps = max ( 1 , int ( delta_segments_per_second * seconds ) ) ;
if ( cartesian_mm < 0.000001 ) { return ; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply ;
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
int steps = max ( 1 , int ( delta_segments_per_second * seconds ) ) ;
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for ( int s = 1 ; s < = steps ; s + + ) {
for ( int s = 1 ; s < = steps ; s + + ) {
float fraction = float ( s ) / float ( steps ) ;
float fraction = float ( s ) / float ( steps ) ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) destination [ i ] = current_position [ i ] + difference [ i ] * fraction ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
calculate_delta ( destination ) ;
destination [ i ] = current_position [ i ] + difference [ i ] * fraction ;
# ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta ( destination ) ;
# endif
plan_buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] ,
destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 ,
active_extruder ) ;
}
}
calculate_delta ( destination ) ;
plan_buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] ,
destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 ,
active_extruder ) ;
}
# endif // DELTA
# endif // DELTA
# ifdef DUAL_X_CARRIAGE
# ifdef DUAL_X_CARRIAGE
if ( active_extruder_parked )
if ( active_extruder_parked )
@ -5670,13 +5515,13 @@ void prepare_move()
# if ! (defined DELTA || defined SCARA)
# if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves
// Do not use feedmultiply for E or Z only moves
if ( ( current_position [ X_AXIS ] = = destination [ X_AXIS ] ) & & ( current_position [ Y_AXIS ] = = destination [ Y_AXIS ] ) ) {
if ( ( current_position [ X_AXIS ] = = destination [ X_AXIS ] ) & & ( current_position [ Y_AXIS ] = = destination [ Y_AXIS ] ) ) {
line_to_destination( ) ;
plan_buffer_line( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
} else {
} else {
# if defined(MESH_BED_LEVELING)
# if defined(MESH_BED_LEVELING)
mesh_plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , ( feedrate / 60 ) * ( feedmultiply / 100.0 ) , active_extruder ) ;
mesh_plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 , active_extruder ) ;
return ;
return ;
# else
# else
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , ( feedrate / 60 ) * ( feedmultiply / 100.0 ) , active_extruder ) ;
plan_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , feedrate * feedmultiply / 60 / 100.0 , active_extruder ) ;
# endif // MESH_BED_LEVELING
# endif // MESH_BED_LEVELING
}
}
# endif // !(DELTA || SCARA)
# endif // !(DELTA || SCARA)