Merge pull request #3991 from thinkyhead/rc_axis_units

Rename some vars to clarify their relationship to acceleration
master
Scott Lahteine 9 years ago committed by GitHub
commit e2d4919c01

@ -420,7 +420,7 @@
*/ */
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE)
#define EXTRUSION_AREA (0.25 * (D_FILAMENT) * (D_FILAMENT) * M_PI) #define EXTRUSION_AREA (0.25 * (D_FILAMENT) * (D_FILAMENT) * M_PI)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS] / (EXTRUSION_AREA)) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_mm[E_AXIS] / (EXTRUSION_AREA))
#endif #endif
#if ENABLED(ULTIPANEL) && DISABLED(ELB_FULL_GRAPHIC_CONTROLLER) #if ENABLED(ULTIPANEL) && DISABLED(ELB_FULL_GRAPHIC_CONTROLLER)

@ -155,7 +155,7 @@
* M84 - Disable steppers until next move, * M84 - Disable steppers until next move,
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default) * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set planner.axis_steps_per_unit - same syntax as G92 * M92 - Set planner.axis_steps_per_mm - same syntax as G92
* M104 - Set extruder target temp * M104 - Set extruder target temp
* M105 - Read current temp * M105 - Read current temp
* M106 - Fan on * M106 - Fan on
@ -1683,7 +1683,7 @@ static void setup_for_endstop_move() {
* is not where we said to go. * is not where we said to go.
*/ */
long stop_steps = stepper.position(Z_AXIS); long stop_steps = stepper.position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS]; float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
current_position[Z_AXIS] = mm; current_position[Z_AXIS] = mm;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -5155,15 +5155,15 @@ inline void gcode_M92() {
if (i == E_AXIS) { if (i == E_AXIS) {
float value = code_value_per_axis_unit(i); float value = code_value_per_axis_unit(i);
if (value < 20.0) { if (value < 20.0) {
float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
planner.max_e_jerk *= factor; planner.max_e_jerk *= factor;
planner.max_feedrate[i] *= factor; planner.max_feedrate[i] *= factor;
planner.axis_steps_per_sqr_second[i] *= factor; planner.max_acceleration_steps_per_s2[i] *= factor;
} }
planner.axis_steps_per_unit[i] = value; planner.axis_steps_per_mm[i] = value;
} }
else { else {
planner.axis_steps_per_unit[i] = code_value_per_axis_unit(i); planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
} }
} }
} }
@ -5198,9 +5198,9 @@ static void report_current_position() {
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]); SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]); SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_EOL; SERIAL_EOL; SERIAL_EOL; SERIAL_EOL;
#endif #endif
} }
@ -5345,7 +5345,7 @@ inline void gcode_M200() {
inline void gcode_M201() { inline void gcode_M201() {
for (int8_t i = 0; i < NUM_AXIS; i++) { for (int8_t i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
planner.max_acceleration_units_per_sq_second[i] = code_value_axis_units(i); planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
} }
} }
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
@ -5355,7 +5355,7 @@ inline void gcode_M201() {
#if 0 // Not used for Sprinter/grbl gen6 #if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() { inline void gcode_M202() {
for (int8_t i = 0; i < NUM_AXIS; i++) { for (int8_t i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_unit[i]; if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
} }
} }
#endif #endif
@ -8226,8 +8226,8 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
} }
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS]; float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder); (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos; current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes; destination[E_AXIS] = oldedes;
planner.set_e_position_mm(oldepos); planner.set_e_position_mm(oldepos);

@ -43,9 +43,9 @@
* *
* 100 Version (char x4) * 100 Version (char x4)
* *
* 104 M92 XYZE planner.axis_steps_per_unit (float x4) * 104 M92 XYZE planner.axis_steps_per_mm (float x4)
* 120 M203 XYZE planner.max_feedrate (float x4) * 120 M203 XYZE planner.max_feedrate (float x4)
* 136 M201 XYZE planner.max_acceleration_units_per_sq_second (uint32_t x4) * 136 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
* 152 M204 P planner.acceleration (float) * 152 M204 P planner.acceleration (float)
* 156 M204 R planner.retract_acceleration (float) * 156 M204 R planner.retract_acceleration (float)
* 160 M204 T planner.travel_acceleration (float) * 160 M204 T planner.travel_acceleration (float)
@ -173,9 +173,9 @@ void Config_StoreSettings() {
char ver[4] = "000"; char ver[4] = "000";
int i = EEPROM_OFFSET; int i = EEPROM_OFFSET;
EEPROM_WRITE_VAR(i, ver); // invalidate data first EEPROM_WRITE_VAR(i, ver); // invalidate data first
EEPROM_WRITE_VAR(i, planner.axis_steps_per_unit); EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
EEPROM_WRITE_VAR(i, planner.max_feedrate); EEPROM_WRITE_VAR(i, planner.max_feedrate);
EEPROM_WRITE_VAR(i, planner.max_acceleration_units_per_sq_second); EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
EEPROM_WRITE_VAR(i, planner.acceleration); EEPROM_WRITE_VAR(i, planner.acceleration);
EEPROM_WRITE_VAR(i, planner.retract_acceleration); EEPROM_WRITE_VAR(i, planner.retract_acceleration);
EEPROM_WRITE_VAR(i, planner.travel_acceleration); EEPROM_WRITE_VAR(i, planner.travel_acceleration);
@ -353,9 +353,9 @@ void Config_RetrieveSettings() {
float dummy = 0; float dummy = 0;
// version number match // version number match
EEPROM_READ_VAR(i, planner.axis_steps_per_unit); EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
EEPROM_READ_VAR(i, planner.max_feedrate); EEPROM_READ_VAR(i, planner.max_feedrate);
EEPROM_READ_VAR(i, planner.max_acceleration_units_per_sq_second); EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
planner.reset_acceleration_rates(); planner.reset_acceleration_rates();
@ -527,9 +527,9 @@ void Config_ResetDefault() {
float tmp2[] = DEFAULT_MAX_FEEDRATE; float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (uint8_t i = 0; i < NUM_AXIS; i++) { for (uint8_t i = 0; i < NUM_AXIS; i++) {
planner.axis_steps_per_unit[i] = tmp1[i]; planner.axis_steps_per_mm[i] = tmp1[i];
planner.max_feedrate[i] = tmp2[i]; planner.max_feedrate[i] = tmp2[i];
planner.max_acceleration_units_per_sq_second[i] = tmp3[i]; planner.max_acceleration_mm_per_s2[i] = tmp3[i];
#if ENABLED(SCARA) #if ENABLED(SCARA)
if (i < COUNT(axis_scaling)) if (i < COUNT(axis_scaling))
axis_scaling[i] = 1; axis_scaling[i] = 1;
@ -652,10 +652,10 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:"); SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_unit[X_AXIS]); SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_unit[Y_AXIS]); SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_unit[E_AXIS]); SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; CONFIG_ECHO_START;
@ -687,10 +687,10 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_units_per_sq_second[X_AXIS]); SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_units_per_sq_second[Y_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_units_per_sq_second[Z_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_acceleration_units_per_sq_second[E_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; CONFIG_ECHO_START;
if (!forReplay) { if (!forReplay) {

@ -81,9 +81,9 @@ volatile uint8_t Planner::block_buffer_head = 0; // Index of the next
volatile uint8_t Planner::block_buffer_tail = 0; volatile uint8_t Planner::block_buffer_tail = 0;
float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float Planner::axis_steps_per_unit[NUM_AXIS]; float Planner::axis_steps_per_mm[NUM_AXIS];
unsigned long Planner::axis_steps_per_sqr_second[NUM_AXIS]; unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
unsigned long Planner::max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
millis_t Planner::min_segment_time; millis_t Planner::min_segment_time;
float Planner::min_feedrate; float Planner::min_feedrate;
@ -155,7 +155,7 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
NOLESS(initial_rate, 120); NOLESS(initial_rate, 120);
NOLESS(final_rate, 120); NOLESS(final_rate, 120);
long accel = block->acceleration_st; long accel = block->acceleration_steps_per_s2;
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)); int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
@ -549,10 +549,10 @@ void Planner::check_axes_activity() {
// Calculate target position in absolute steps // Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[NUM_AXIS] = { long target[NUM_AXIS] = {
lround(x * axis_steps_per_unit[X_AXIS]), lround(x * axis_steps_per_mm[X_AXIS]),
lround(y * axis_steps_per_unit[Y_AXIS]), lround(y * axis_steps_per_mm[Y_AXIS]),
lround(z * axis_steps_per_unit[Z_AXIS]), lround(z * axis_steps_per_mm[Z_AXIS]),
lround(e * axis_steps_per_unit[E_AXIS]) lround(e * axis_steps_per_mm[E_AXIS])
}; };
long dx = target[X_AXIS] - position[X_AXIS], long dx = target[X_AXIS] - position[X_AXIS],
@ -574,7 +574,7 @@ void Planner::check_axes_activity() {
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
#if ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) { if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -771,31 +771,31 @@ void Planner::check_axes_activity() {
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ) #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
float delta_mm[6]; float delta_mm[6];
#if ENABLED(COREXY) #if ENABLED(COREXY)
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS]; delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS]; delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS]; delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
#elif ENABLED(COREXZ) #elif ENABLED(COREXZ)
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS]; delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS]; delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS]; delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
#elif ENABLED(COREYZ) #elif ENABLED(COREYZ)
delta_mm[X_AXIS] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS]; delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_unit[B_AXIS]; delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_unit[C_AXIS]; delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
#endif #endif
#else #else
float delta_mm[4]; float delta_mm[4];
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS]; delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
#endif #endif
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0; delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
@ -936,27 +936,27 @@ void Planner::check_axes_activity() {
float steps_per_mm = block->step_event_count / block->millimeters; float steps_per_mm = block->step_event_count / block->millimeters;
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
if (bsx == 0 && bsy == 0 && bsz == 0) { if (bsx == 0 && bsy == 0 && bsz == 0) {
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else if (bse == 0) { else if (bse == 0) {
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else { else {
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
// Limit acceleration per axis // Limit acceleration per axis
unsigned long acc_st = block->acceleration_st, unsigned long acc_st = block->acceleration_steps_per_s2,
xsteps = axis_steps_per_sqr_second[X_AXIS], x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
ysteps = axis_steps_per_sqr_second[Y_AXIS], y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
zsteps = axis_steps_per_sqr_second[Z_AXIS], z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
esteps = axis_steps_per_sqr_second[E_AXIS], e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
allsteps = block->step_event_count; allsteps = block->step_event_count;
if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx; if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy; if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz; if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse; if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
block->acceleration_st = acc_st; block->acceleration_steps_per_s2 = acc_st;
block->acceleration = acc_st / steps_per_mm; block->acceleration = acc_st / steps_per_mm;
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
@ -1057,7 +1057,7 @@ void Planner::check_axes_activity() {
block->advance = 0; block->advance = 0;
} }
else { else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256; float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
block->advance = advance; block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
@ -1127,10 +1127,10 @@ void Planner::check_axes_activity() {
apply_rotation_xyz(bed_level_matrix, x, y, z); apply_rotation_xyz(bed_level_matrix, x, y, z);
#endif #endif
long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]), long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]), ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]), nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
stepper.set_position(nx, ny, nz, ne); stepper.set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
@ -1141,14 +1141,14 @@ void Planner::check_axes_activity() {
* Directly set the planner E position (hence the stepper E position). * Directly set the planner E position (hence the stepper E position).
*/ */
void Planner::set_e_position_mm(const float& e) { void Planner::set_e_position_mm(const float& e) {
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
stepper.set_e_position(position[E_AXIS]); stepper.set_e_position(position[E_AXIS]);
} }
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::reset_acceleration_rates() { void Planner::reset_acceleration_rates() {
for (int i = 0; i < NUM_AXIS; i++) for (int i = 0; i < NUM_AXIS; i++)
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
} }
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)

@ -58,9 +58,9 @@ typedef struct {
long steps[NUM_AXIS]; // Step count along each axis long steps[NUM_AXIS]; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block unsigned long step_event_count; // The number of step events required to complete this block
long accelerate_until; // The index of the step event on which to stop acceleration long accelerate_until, // The index of the step event on which to stop acceleration
long decelerate_after; // The index of the step event on which to start decelerating decelerate_after, // The index of the step event on which to start decelerating
long acceleration_rate; // The acceleration rate used for acceleration calculation acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
@ -72,27 +72,26 @@ typedef struct {
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
float nominal_speed; // The nominal speed for this block in mm/sec float nominal_speed, // The nominal speed for this block in mm/sec
float entry_speed; // Entry speed at previous-current junction in mm/sec entry_speed, // Entry speed at previous-current junction in mm/sec
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec max_entry_speed, // Maximum allowable junction entry speed in mm/sec
float millimeters; // The total travel of this block in mm millimeters, // The total travel of this block in mm
float acceleration; // acceleration mm/sec^2 acceleration; // acceleration mm/sec^2
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction unsigned char recalculate_flag, // Planner flag to recalculate trapezoids on entry junction
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached nominal_length_flag; // Planner flag for nominal speed always reached
// Settings for the trapezoid generator // Settings for the trapezoid generator
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec unsigned long nominal_rate, // The nominal step rate for this block in step_events/sec
unsigned long initial_rate; // The jerk-adjusted step rate at start of block initial_rate, // The jerk-adjusted step rate at start of block
unsigned long final_rate; // The minimal rate at exit final_rate, // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2 acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0 #if FAN_COUNT > 0
unsigned long fan_speed[FAN_COUNT]; unsigned long fan_speed[FAN_COUNT];
#endif #endif
#if ENABLED(BARICUDA) #if ENABLED(BARICUDA)
unsigned long valve_pressure; unsigned long valve_pressure, e_to_p_pressure;
unsigned long e_to_p_pressure;
#endif #endif
volatile char busy; volatile char busy;
@ -113,9 +112,9 @@ class Planner {
static volatile uint8_t block_buffer_tail; static volatile uint8_t block_buffer_tail;
static float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute static float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
static float axis_steps_per_unit[NUM_AXIS]; static float axis_steps_per_mm[NUM_AXIS];
static unsigned long axis_steps_per_sqr_second[NUM_AXIS]; static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
static unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
static millis_t min_segment_time; static millis_t min_segment_time;
static float min_feedrate; static float min_feedrate;
@ -135,7 +134,7 @@ class Planner {
/** /**
* The current position of the tool in absolute steps * The current position of the tool in absolute steps
* Reclculated if any axis_steps_per_unit are changed by gcode * Reclculated if any axis_steps_per_mm are changed by gcode
*/ */
static long position[NUM_AXIS]; static long position[NUM_AXIS];
@ -213,7 +212,7 @@ class Planner {
* Set the planner.position and individual stepper positions. * Set the planner.position and individual stepper positions.
* Used by G92, G28, G29, and other procedures. * Used by G92, G28, G29, and other procedures.
* *
* Multiplies by axis_steps_per_unit[] and does necessary conversion * Multiplies by axis_steps_per_mm[] and does necessary conversion
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
* *
* Clears previous speed values. * Clears previous speed values.

@ -754,7 +754,7 @@ float Stepper::get_axis_position_mm(AxisEnum axis) {
#else #else
axis_steps = position(axis); axis_steps = position(axis);
#endif #endif
return axis_steps / planner.axis_steps_per_unit[axis]; return axis_steps / planner.axis_steps_per_mm[axis];
} }
void Stepper::finish_and_disable() { void Stepper::finish_and_disable() {

@ -243,7 +243,7 @@ class Stepper {
// Triggered position of an axis in mm (not core-savvy) // Triggered position of an axis in mm (not core-savvy)
// //
static FORCE_INLINE float triggered_position_mm(AxisEnum axis) { static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis]; return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
} }
private: private:

@ -559,7 +559,7 @@ float Temperature::get_pid_output(int e) {
lpq[lpq_ptr++] = 0; lpq[lpq_ptr++] = 0;
} }
if (lpq_ptr >= lpq_len) lpq_ptr = 0; if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e); cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, e);
pid_output += cTerm[e]; pid_output += cTerm[e];
} }
#endif //PID_ADD_EXTRUSION_RATE #endif //PID_ADD_EXTRUSION_RATE

@ -1686,20 +1686,20 @@ static void lcd_control_motion_menu() {
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_unit[X_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_unit[Y_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999);
#if ENABLED(DELTA) #if ENABLED(DELTA)
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
#else #else
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
#endif #endif
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_unit[E_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999);
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit); MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif #endif

Loading…
Cancel
Save