Remove kinematic optimizations

master
Scott Lahteine 8 years ago
parent 4e53124681
commit e46898f8e5

@ -9201,7 +9201,7 @@ void ok_to_send() {
) \ ) \
) )
#define DELTA_RAW_IK() do { \ #define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \ delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \ delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \ delta[C_AXIS] = DELTA_Z(C_AXIS); \
@ -9568,54 +9568,19 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// If there's only 1 segment, loops will be skipped entirely. // If there's only 1 segment, loops will be skipped entirely.
--segments; --segments;
// Using "raw" coordinates saves 6 float subtractions // Get the logical current position as starting point
// per segment, saving valuable CPU cycles float logical[XYZE];
COPY(logical, current_position);
#if ENABLED(USE_RAW_KINEMATICS)
// Get the raw current position as starting point
float raw[XYZE] = {
RAW_CURRENT_POSITION(X_AXIS),
RAW_CURRENT_POSITION(Y_AXIS),
RAW_CURRENT_POSITION(Z_AXIS),
current_position[E_AXIS]
};
#define DELTA_VAR raw
// Delta can inline its kinematics
#if ENABLED(DELTA)
#define DELTA_IK() DELTA_RAW_IK()
#else
#define DELTA_IK() inverse_kinematics(raw)
#endif
#else
// Get the logical current position as starting point
float logical[XYZE];
COPY(logical, current_position);
#define DELTA_VAR logical
// Delta can inline its kinematics
#if ENABLED(DELTA)
#define DELTA_IK() DELTA_LOGICAL_IK()
#else
#define DELTA_IK() inverse_kinematics(logical)
#endif
#endif
#if ENABLED(USE_DELTA_IK_INTERPOLATION) #if ENABLED(USE_DELTA_IK_INTERPOLATION)
// Only interpolate XYZ. Advance E normally. // Only interpolate XYZ. Advance E normally.
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND; #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) logical[i] += ADDEND;
// Get the starting delta if interpolation is possible // Get the starting delta if interpolation is possible
if (segments >= 2) { if (segments >= 2) {
DELTA_IK(); DELTA_IK();
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
} }
// Loop using decrement // Loop using decrement
@ -9629,22 +9594,22 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
DELTA_NEXT(segment_distance[i] + segment_distance[i]); DELTA_NEXT(segment_distance[i] + segment_distance[i]);
// Advance E normally // Advance E normally
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS]; logical[E_AXIS] += segment_distance[E_AXIS];
// Get the exact delta for the move after this // Get the exact delta for the move after this
DELTA_IK(); DELTA_IK();
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
// Move to the interpolated delta position first // Move to the interpolated delta position first
planner.buffer_line( planner.buffer_line(
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5, (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5, (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5, (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder logical[E_AXIS], _feedrate_mm_s, active_extruder
); );
// Advance E once more for the next move // Advance E once more for the next move
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS]; logical[E_AXIS] += segment_distance[E_AXIS];
// Do an extra decrement of the loop // Do an extra decrement of the loop
--s; --s;
@ -9652,25 +9617,29 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
else { else {
// Get the last segment delta. (Used when segments is odd) // Get the last segment delta. (Used when segments is odd)
DELTA_NEXT(segment_distance[i]); DELTA_NEXT(segment_distance[i]);
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS]; logical[E_AXIS] += segment_distance[E_AXIS];
DELTA_IK(); DELTA_IK();
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
} }
// Move to the non-interpolated position // Move to the non-interpolated position
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
} }
#else #else
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND; #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
// For non-interpolated delta calculate every segment // For non-interpolated delta calculate every segment
for (uint16_t s = segments + 1; --s;) { for (uint16_t s = segments + 1; --s;) {
DELTA_NEXT(segment_distance[i]); DELTA_NEXT(segment_distance[i]);
DELTA_IK(); #if ENABLED(DELTA)
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled DELTA_LOGICAL_IK(); // Delta can inline its kinematics
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder); #else
inverse_kinematics(logical);
#endif
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
} }
#endif #endif

Loading…
Cancel
Save