|
|
|
@ -610,11 +610,11 @@ static uint8_t target_extruder;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
|
|
float delta[ABC],
|
|
|
|
|
endstop_adj[ABC] = { 0 };
|
|
|
|
|
float delta[ABC];
|
|
|
|
|
|
|
|
|
|
// Initialized by settings.load()
|
|
|
|
|
float delta_radius,
|
|
|
|
|
float delta_endstop_adj[ABC] = { 0 },
|
|
|
|
|
delta_radius,
|
|
|
|
|
delta_tower_angle_trim[ABC],
|
|
|
|
|
delta_tower[ABC][2],
|
|
|
|
|
delta_diagonal_rod,
|
|
|
|
@ -3093,12 +3093,12 @@ static void homeaxis(const AxisEnum axis) {
|
|
|
|
|
// so here it re-homes each tower in turn.
|
|
|
|
|
// Delta homing treats the axes as normal linear axes.
|
|
|
|
|
|
|
|
|
|
// retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
|
|
|
|
|
if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
|
|
|
|
// retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
|
|
|
|
|
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
|
|
|
|
|
#endif
|
|
|
|
|
do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
|
|
|
|
|
do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
@ -5339,36 +5339,8 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
#if PROBE_SELECTED
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
|
/**
|
|
|
|
|
* G33 - Delta '1-4-7-point' Auto-Calibration
|
|
|
|
|
* Calibrate height, endstops, delta radius, and tower angles.
|
|
|
|
|
*
|
|
|
|
|
* Parameters:
|
|
|
|
|
*
|
|
|
|
|
* Pn Number of probe points:
|
|
|
|
|
*
|
|
|
|
|
* P0 No probe. Normalize only.
|
|
|
|
|
* P1 Probe center and set height only.
|
|
|
|
|
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
|
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
|
|
|
* P4-P7 Probe all positions at different locations and average them.
|
|
|
|
|
*
|
|
|
|
|
* T0 Don't calibrate tower angle corrections
|
|
|
|
|
*
|
|
|
|
|
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
|
|
|
|
*
|
|
|
|
|
* Fn Force to run at least n iterations and takes the best result
|
|
|
|
|
*
|
|
|
|
|
* Vn Verbose level:
|
|
|
|
|
*
|
|
|
|
|
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
|
|
|
|
* V1 Report settings
|
|
|
|
|
* V2 Report settings and probe results
|
|
|
|
|
*
|
|
|
|
|
* E Engage the probe for each point
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
void print_signed_float(const char * const prefix, const float &f) {
|
|
|
|
|
static void print_signed_float(const char * const prefix, const float &f) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
serialprintPGM(prefix);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
|
|
@ -5376,25 +5348,59 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void print_G33_settings(const bool end_stops, const bool tower_angles) {
|
|
|
|
|
static void print_G33_settings(const bool end_stops, const bool tower_angles) {
|
|
|
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
|
|
|
if (end_stops) {
|
|
|
|
|
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
|
|
|
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
|
|
|
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
if (end_stops && tower_angles) {
|
|
|
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
SERIAL_CHAR('.');
|
|
|
|
|
SERIAL_PROTOCOL_SP(13);
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
if (tower_angles) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(".Tower angle : ");
|
|
|
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
|
|
|
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
|
|
|
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(". ");
|
|
|
|
|
print_signed_float(PSTR("c"), z_at_pt[0]);
|
|
|
|
|
if (tower_points) {
|
|
|
|
|
print_signed_float(PSTR(" x"), z_at_pt[1]);
|
|
|
|
|
print_signed_float(PSTR(" y"), z_at_pt[5]);
|
|
|
|
|
print_signed_float(PSTR(" z"), z_at_pt[9]);
|
|
|
|
|
}
|
|
|
|
|
if (tower_points && opposite_points) {
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
SERIAL_CHAR('.');
|
|
|
|
|
SERIAL_PROTOCOL_SP(13);
|
|
|
|
|
}
|
|
|
|
|
if (opposite_points) {
|
|
|
|
|
print_signed_float(PSTR("yz"), z_at_pt[7]);
|
|
|
|
|
print_signed_float(PSTR("zx"), z_at_pt[11]);
|
|
|
|
|
print_signed_float(PSTR("xy"), z_at_pt[3]);
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void G33_cleanup(
|
|
|
|
|
/**
|
|
|
|
|
* After G33:
|
|
|
|
|
* - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
|
|
|
|
|
* - Stow the probe
|
|
|
|
|
* - Restore endstops state
|
|
|
|
|
* - Select the old tool, if needed
|
|
|
|
|
*/
|
|
|
|
|
static void G33_cleanup(
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
const uint8_t old_tool_index
|
|
|
|
|
#endif
|
|
|
|
@ -5409,6 +5415,244 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
|
|
|
|
|
const bool _0p_calibration = probe_points == 0,
|
|
|
|
|
_1p_calibration = probe_points == 1,
|
|
|
|
|
_4p_calibration = probe_points == 2,
|
|
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
|
|
_7p_calibration = probe_points >= 3 || probe_points == 0,
|
|
|
|
|
_7p_half_circle = probe_points == 3,
|
|
|
|
|
_7p_double_circle = probe_points == 5,
|
|
|
|
|
_7p_triple_circle = probe_points == 6,
|
|
|
|
|
_7p_quadruple_circle = probe_points == 7,
|
|
|
|
|
_7p_intermed_points = probe_points >= 4,
|
|
|
|
|
_7p_multi_circle = probe_points >= 5;
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
|
|
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
for (uint8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] = 0.0;
|
|
|
|
|
|
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
|
|
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
|
for (int8_t axis = _7p_multi_circle ? COUNT(z_at_pt) - 2 : COUNT(z_at_pt) - 4; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
|
bool zig_zag = true;
|
|
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
|
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
|
|
|
|
for (uint8_t axis = start; axis < COUNT(z_at_pt); axis += step) {
|
|
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
|
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
|
|
|
|
_7p_triple_circle ? zigadd + 0.5 :
|
|
|
|
|
_7p_double_circle ? zigadd : 0;
|
|
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis),
|
|
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
|
for (uint8_t axis = 1; axis < COUNT(z_at_pt); axis += 2)
|
|
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
|
|
|
|
|
|
|
|
|
float S1 = z_at_pt[0],
|
|
|
|
|
S2 = sq(z_at_pt[0]);
|
|
|
|
|
int16_t N = 1;
|
|
|
|
|
if (!_1p_calibration) // std dev from zero plane
|
|
|
|
|
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < COUNT(z_at_pt); axis += (_4p_calibration ? 4 : 2)) {
|
|
|
|
|
S1 += z_at_pt[axis];
|
|
|
|
|
S2 += sq(z_at_pt[axis]);
|
|
|
|
|
N++;
|
|
|
|
|
}
|
|
|
|
|
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0.00001;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
|
|
|
|
|
static void G33_auto_tune() {
|
|
|
|
|
float z_at_pt[13] = { 0.0 },
|
|
|
|
|
z_at_pt_base[13] = { 0.0 },
|
|
|
|
|
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
|
|
|
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
|
|
|
#define Z06(I) ZP(6, I)
|
|
|
|
|
#define Z03(I) ZP(3, I)
|
|
|
|
|
#define Z02(I) ZP(2, I)
|
|
|
|
|
#define Z01(I) ZP(1, I)
|
|
|
|
|
#define Z32(I) ZP(3/2, I)
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
probe_G33_points(z_at_pt_base, 3, true, false);
|
|
|
|
|
print_G33_results(z_at_pt_base, true, true);
|
|
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) {
|
|
|
|
|
delta_endstop_adj[axis] -= 1.0;
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
|
if (!home_delta()) return;
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning E");
|
|
|
|
|
SERIAL_CHAR(tolower(axis_codes[axis]));
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
|
|
|
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
|
delta_endstop_adj[axis] += 1.0;
|
|
|
|
|
switch (axis) {
|
|
|
|
|
case A_AXIS :
|
|
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop
|
|
|
|
|
break;
|
|
|
|
|
case B_AXIS :
|
|
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop
|
|
|
|
|
break;
|
|
|
|
|
case C_AXIS :
|
|
|
|
|
h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
h_fac /= 3.0;
|
|
|
|
|
h_fac *= norm; // Normalize to 1.02 for Kossel mini
|
|
|
|
|
|
|
|
|
|
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
|
|
|
|
|
delta_radius += 1.0 * zig_zag;
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
|
if (!home_delta()) return;
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning R");
|
|
|
|
|
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
|
|
|
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
|
delta_radius -= 1.0 * zig_zag;
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
|
r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
|
|
|
|
|
}
|
|
|
|
|
r_fac /= 2.0;
|
|
|
|
|
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
|
|
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) {
|
|
|
|
|
delta_tower_angle_trim[axis] += 1.0;
|
|
|
|
|
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
|
|
|
|
|
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
|
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
|
if (!home_delta()) return;
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning T");
|
|
|
|
|
SERIAL_CHAR(tolower(axis_codes[axis]));
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
|
|
|
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
|
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
|
|
|
|
|
|
delta_tower_angle_trim[axis] -= 1.0;
|
|
|
|
|
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
|
|
|
|
|
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
|
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
|
switch (axis) {
|
|
|
|
|
case A_AXIS :
|
|
|
|
|
a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle
|
|
|
|
|
break;
|
|
|
|
|
case B_AXIS :
|
|
|
|
|
a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle
|
|
|
|
|
break;
|
|
|
|
|
case C_AXIS :
|
|
|
|
|
a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
a_fac /= 3.0;
|
|
|
|
|
a_fac *= norm; // Normalize to 0.83 for Kossel mini
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
|
if (!home_delta()) return;
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
|
|
|
|
|
print_signed_float(PSTR(" R_FACTOR: "), r_fac);
|
|
|
|
|
print_signed_float(PSTR(" A_FACTOR: "), a_fac);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // !PROBE_MANUALLY
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* G33 - Delta '1-4-7-point' Auto-Calibration
|
|
|
|
|
* Calibrate height, endstops, delta radius, and tower angles.
|
|
|
|
|
*
|
|
|
|
|
* Parameters:
|
|
|
|
|
*
|
|
|
|
|
* Pn Number of probe points:
|
|
|
|
|
* P0 No probe. Normalize only.
|
|
|
|
|
* P1 Probe center and set height only.
|
|
|
|
|
* P2 Probe center and towers. Set height, endstops and delta radius.
|
|
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
|
|
|
* P4-P7 Probe all positions at different locations and average them.
|
|
|
|
|
*
|
|
|
|
|
* T Don't calibrate tower angle corrections
|
|
|
|
|
*
|
|
|
|
|
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
|
|
|
|
*
|
|
|
|
|
* Fn Force to run at least n iterations and takes the best result
|
|
|
|
|
*
|
|
|
|
|
* A Auto tune calibartion factors (set in Configuration.h)
|
|
|
|
|
*
|
|
|
|
|
* Vn Verbose level:
|
|
|
|
|
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
|
|
|
|
* V1 Report settings
|
|
|
|
|
* V2 Report settings and probe results
|
|
|
|
|
*
|
|
|
|
|
* E Engage the probe for each point
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G33() {
|
|
|
|
|
|
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
|
|
@ -5425,7 +5669,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
const float calibration_precision = parser.floatval('C');
|
|
|
|
|
if (calibration_precision < 0) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -5436,31 +5680,29 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const bool towers_set = !parser.boolval('T'),
|
|
|
|
|
auto_tune = parser.boolval('A'),
|
|
|
|
|
stow_after_each = parser.boolval('E'),
|
|
|
|
|
_0p_calibration = probe_points == 0,
|
|
|
|
|
_1p_calibration = probe_points == 1,
|
|
|
|
|
_4p_calibration = probe_points == 2,
|
|
|
|
|
_4p_towers_points = _4p_calibration && towers_set,
|
|
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
|
|
_7p_calibration = probe_points >= 3 || _0p_calibration,
|
|
|
|
|
_7p_half_circle = probe_points == 3,
|
|
|
|
|
_tower_results = (_4p_calibration && towers_set)
|
|
|
|
|
|| probe_points >= 3 || probe_points == 0,
|
|
|
|
|
_opposite_results = (_4p_calibration && !towers_set)
|
|
|
|
|
|| probe_points >= 3 || probe_points == 0,
|
|
|
|
|
_endstop_results = probe_points != 1,
|
|
|
|
|
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set,
|
|
|
|
|
_7p_double_circle = probe_points == 5,
|
|
|
|
|
_7p_triple_circle = probe_points == 6,
|
|
|
|
|
_7p_quadruple_circle = probe_points == 7,
|
|
|
|
|
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
|
|
|
|
|
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
|
|
|
|
|
_7p_quadruple_circle = probe_points == 7;
|
|
|
|
|
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
|
|
|
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
|
|
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
int8_t iterations = 0;
|
|
|
|
|
float test_precision,
|
|
|
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
|
|
|
zero_std_dev_old = zero_std_dev,
|
|
|
|
|
zero_std_dev_min = zero_std_dev,
|
|
|
|
|
e_old[ABC] = {
|
|
|
|
|
endstop_adj[A_AXIS],
|
|
|
|
|
endstop_adj[B_AXIS],
|
|
|
|
|
endstop_adj[C_AXIS]
|
|
|
|
|
delta_endstop_adj[A_AXIS],
|
|
|
|
|
delta_endstop_adj[B_AXIS],
|
|
|
|
|
delta_endstop_adj[C_AXIS]
|
|
|
|
|
},
|
|
|
|
|
dr_old = delta_radius,
|
|
|
|
|
zh_old = home_offset[Z_AXIS],
|
|
|
|
@ -5470,12 +5712,14 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
delta_tower_angle_trim[C_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
|
|
|
|
|
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
|
|
|
const float circles = (_7p_quadruple_circle ? 1.5 :
|
|
|
|
|
_7p_triple_circle ? 1.0 :
|
|
|
|
|
_7p_double_circle ? 0.5 : 0),
|
|
|
|
|
r = (1 + circles * 0.1) * delta_calibration_radius;
|
|
|
|
|
for (uint8_t axis = 1; axis < 13; ++axis) {
|
|
|
|
|
for (uint8_t axis = 1; axis <= 12; ++axis) {
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis);
|
|
|
|
|
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
|
|
|
@ -5483,7 +5727,6 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
|
|
|
|
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
@ -5506,7 +5749,17 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// print settings
|
|
|
|
|
if (auto_tune) {
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
|
|
|
|
|
#else
|
|
|
|
|
G33_auto_tune();
|
|
|
|
|
#endif
|
|
|
|
|
G33_CLEANUP();
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Report settings
|
|
|
|
|
|
|
|
|
|
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
|
|
|
|
|
serialprintPGM(checkingac);
|
|
|
|
@ -5514,94 +5767,50 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
lcd_setstatusPGM(checkingac);
|
|
|
|
|
|
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
float z_at_pt[13] = { 0.0 };
|
|
|
|
|
|
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
|
|
|
test_precision = zero_std_dev;
|
|
|
|
|
|
|
|
|
|
iterations++;
|
|
|
|
|
|
|
|
|
|
// Probe the points
|
|
|
|
|
|
|
|
|
|
if (!_0p_calibration){
|
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
|
|
|
}
|
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
|
bool zig_zag = true;
|
|
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
|
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
|
|
|
|
for (uint8_t axis = start; axis < 13; axis += step) {
|
|
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
|
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
|
|
|
|
_7p_triple_circle ? zigadd + 0.5 :
|
|
|
|
|
_7p_double_circle ? zigadd : 0;
|
|
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis),
|
|
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
|
for (uint8_t axis = 1; axis < 13; axis += 2)
|
|
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
float S1 = z_at_pt[0],
|
|
|
|
|
S2 = sq(z_at_pt[0]);
|
|
|
|
|
int16_t N = 1;
|
|
|
|
|
if (!_1p_calibration) // std dev from zero plane
|
|
|
|
|
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
|
|
|
|
|
S1 += z_at_pt[axis];
|
|
|
|
|
S2 += sq(z_at_pt[axis]);
|
|
|
|
|
N++;
|
|
|
|
|
}
|
|
|
|
|
zero_std_dev_old = zero_std_dev;
|
|
|
|
|
zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
|
|
|
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
|
|
|
|
|
|
|
|
|
|
// Solve matrices
|
|
|
|
|
|
|
|
|
|
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
|
|
|
|
|
if (zero_std_dev < zero_std_dev_min) {
|
|
|
|
|
COPY(e_old, endstop_adj);
|
|
|
|
|
COPY(e_old, delta_endstop_adj);
|
|
|
|
|
dr_old = delta_radius;
|
|
|
|
|
zh_old = home_offset[Z_AXIS];
|
|
|
|
|
COPY(ta_old, delta_tower_angle_trim);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
|
|
|
|
|
|
|
|
|
|
const float r_diff = delta_radius - delta_calibration_radius,
|
|
|
|
|
h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
|
|
|
|
|
r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
|
|
|
|
|
a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration)
|
|
|
|
|
h_factor = 1 / 6.0 *
|
|
|
|
|
#ifdef H_FACTOR
|
|
|
|
|
(H_FACTOR), // Set in Configuration.h
|
|
|
|
|
#else
|
|
|
|
|
(1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
|
|
|
|
|
#endif
|
|
|
|
|
r_factor = 1 / 6.0 *
|
|
|
|
|
#ifdef R_FACTOR
|
|
|
|
|
-(R_FACTOR), // Set in Configuration.h
|
|
|
|
|
#else
|
|
|
|
|
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
|
|
|
|
|
#endif
|
|
|
|
|
a_factor = 1 / 6.0 *
|
|
|
|
|
#ifdef A_FACTOR
|
|
|
|
|
(A_FACTOR); // Set in Configuration.h
|
|
|
|
|
#else
|
|
|
|
|
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
|
|
|
#define Z6(I) ZP(6, I)
|
|
|
|
@ -5615,15 +5824,11 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
switch (probe_points) {
|
|
|
|
|
case 0:
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
#endif
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 1:
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
#endif
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
@ -5649,9 +5854,9 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
|
|
|
|
|
|
|
|
|
|
if (towers_set) {
|
|
|
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
|
|
|
|
|
t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
|
|
|
|
|
t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
|
|
|
|
|
t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor;
|
|
|
|
|
t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor;
|
|
|
|
|
t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor;
|
|
|
|
|
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
|
|
|
|
|
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
|
|
|
|
|
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
|
|
|
|
@ -5659,12 +5864,12 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
|
|
|
|
|
delta_radius += r_delta;
|
|
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
|
|
|
|
|
}
|
|
|
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
|
|
|
COPY(endstop_adj, e_old);
|
|
|
|
|
COPY(delta_endstop_adj, e_old);
|
|
|
|
|
delta_radius = dr_old;
|
|
|
|
|
home_offset[Z_AXIS] = zh_old;
|
|
|
|
|
COPY(delta_tower_angle_trim, ta_old);
|
|
|
|
@ -5672,44 +5877,29 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
|
|
|
// normalise angles to least squares
|
|
|
|
|
float a_sum = 0.0;
|
|
|
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
|
|
|
if (_angle_results) {
|
|
|
|
|
float a_sum = 0.0;
|
|
|
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
|
|
|
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
|
|
|
|
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
|
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
|
}
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
|
|
|
|
|
|
// print report
|
|
|
|
|
|
|
|
|
|
if (verbose_level != 1) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(". ");
|
|
|
|
|
print_signed_float(PSTR("c"), z_at_pt[0]);
|
|
|
|
|
if (_4p_towers_points || _7p_calibration) {
|
|
|
|
|
print_signed_float(PSTR(" x"), z_at_pt[1]);
|
|
|
|
|
print_signed_float(PSTR(" y"), z_at_pt[5]);
|
|
|
|
|
print_signed_float(PSTR(" z"), z_at_pt[9]);
|
|
|
|
|
}
|
|
|
|
|
if (!_4p_opposite_points) SERIAL_EOL();
|
|
|
|
|
if ((_4p_opposite_points) || _7p_calibration) {
|
|
|
|
|
if (_7p_calibration) {
|
|
|
|
|
SERIAL_CHAR('.');
|
|
|
|
|
SERIAL_PROTOCOL_SP(13);
|
|
|
|
|
}
|
|
|
|
|
print_signed_float(PSTR(" yz"), z_at_pt[7]);
|
|
|
|
|
print_signed_float(PSTR("zx"), z_at_pt[11]);
|
|
|
|
|
print_signed_float(PSTR("xy"), z_at_pt[3]);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (verbose_level != 1)
|
|
|
|
|
print_G33_results(z_at_pt, _tower_results, _opposite_results);
|
|
|
|
|
|
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
|
|
|
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
|
|
|
|
|
SERIAL_PROTOCOLPGM("Calibration OK");
|
|
|
|
|
SERIAL_PROTOCOL_SP(36);
|
|
|
|
|
SERIAL_PROTOCOL_SP(32);
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
if (zero_std_dev >= test_precision && !_1p_calibration)
|
|
|
|
|
SERIAL_PROTOCOLPGM("rolling back.");
|
|
|
|
@ -5727,7 +5917,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
else
|
|
|
|
|
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
|
|
|
|
|
lcd_setstatus(mess);
|
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
|
|
|
serialprintPGM(save_message);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
@ -5738,18 +5928,18 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
else
|
|
|
|
|
sprintf_P(mess, PSTR("No convergence"));
|
|
|
|
|
SERIAL_PROTOCOL(mess);
|
|
|
|
|
SERIAL_PROTOCOL_SP(36);
|
|
|
|
|
SERIAL_PROTOCOL_SP(32);
|
|
|
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
|
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
lcd_setstatus(mess);
|
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { // dry run
|
|
|
|
|
const char *enddryrun = PSTR("End DRY-RUN");
|
|
|
|
|
serialprintPGM(enddryrun);
|
|
|
|
|
SERIAL_PROTOCOL_SP(39);
|
|
|
|
|
SERIAL_PROTOCOL_SP(35);
|
|
|
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
|
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
@ -5765,7 +5955,8 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
|
home_delta();
|
|
|
|
|
if (!home_delta())
|
|
|
|
|
return;
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
@ -8649,11 +8840,11 @@ inline void gcode_M205() {
|
|
|
|
|
LOOP_XYZ(i) {
|
|
|
|
|
if (parser.seen(axis_codes[i])) {
|
|
|
|
|
if (parser.value_linear_units() * Z_HOME_DIR <= 0)
|
|
|
|
|
endstop_adj[i] = parser.value_linear_units();
|
|
|
|
|
delta_endstop_adj[i] = parser.value_linear_units();
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
|
|
|
|
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
|
|
|
|
|
SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
|
|
|
|
|
SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|