Merge pull request #4319 from thinkyhead/rc_feedrates_to_mess_with_you

Wrangle feed rate variables
master
Scott Lahteine 8 years ago committed by GitHub
commit f242aea032

@ -297,8 +297,18 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
#define CRITICAL_SECTION_END SREG = _sreg; #define CRITICAL_SECTION_END SREG = _sreg;
#endif #endif
/**
* Feedrate scaling and conversion
*/
extern int feedrate_percentage;
#define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
#define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
#define MMM_SCALED(MM_M) ((MM_M)*feedrate_percentage/100.0)
#define MMS_SCALED(MM_S) MMM_SCALED(MM_S)
#define MMM_TO_MMS_SCALED(MM_M) (MMS_SCALED(MMM_TO_MMS(MM_M)))
extern bool axis_relative_modes[]; extern bool axis_relative_modes[];
extern int feedrate_multiplier;
extern bool volumetric_enabled; extern bool volumetric_enabled;
extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
@ -386,7 +396,7 @@ float code_value_temp_diff();
extern bool autoretract_enabled; extern bool autoretract_enabled;
extern bool retracted[EXTRUDERS]; // extruder[n].retracted extern bool retracted[EXTRUDERS]; // extruder[n].retracted
extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift; extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s;
#endif #endif
// Print job timer // Print job timer

@ -280,7 +280,6 @@ bool Running = true;
uint8_t marlin_debug_flags = DEBUG_NONE; uint8_t marlin_debug_flags = DEBUG_NONE;
static float feedrate = 1500.0, saved_feedrate;
float current_position[NUM_AXIS] = { 0.0 }; float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 }; static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false }; bool axis_known_position[3] = { false };
@ -302,11 +301,15 @@ static uint8_t cmd_queue_index_r = 0,
TempUnit input_temp_units = TEMPUNIT_C; TempUnit input_temp_units = TEMPUNIT_C;
#endif #endif
const float homing_feedrate[] = HOMING_FEEDRATE; /**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
const float homing_feedrate_mm_m[] = HOMING_FEEDRATE;
static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
int feedrate_percentage = 100, saved_feedrate_percentage;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES; bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedrate_multiplier = 100; //100->1 200->2
int saved_feedrate_multiplier;
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
bool volumetric_enabled = false; bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA); float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
@ -382,16 +385,16 @@ static uint8_t target_extruder;
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif #endif
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS])) #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
int xy_probe_speed = XY_PROBE_SPEED; int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
bool bed_leveling_in_progress = false; bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE xy_probe_speed #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
#elif defined(XY_PROBE_SPEED) #elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE XY_PROBE_SPEED #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
#else #else
#define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60) #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA) #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
@ -430,7 +433,7 @@ static uint8_t target_extruder;
float retract_zlift = RETRACT_ZLIFT; float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT #endif // FWRETRACT
@ -1599,7 +1602,7 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
} }
feedrate = homing_feedrate[axis] / hbd; feedrate_mm_m = homing_feedrate_mm_m[axis] / hbd;
} }
// //
// line_to_current_position // line_to_current_position
@ -1607,19 +1610,19 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
// (or from wherever it has been told it is located). // (or from wherever it has been told it is located).
// //
inline void line_to_current_position() { inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
} }
inline void line_to_z(float zPosition) { inline void line_to_z(float zPosition) {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
} }
// //
// line_to_destination // line_to_destination
// Move the planner, not necessarily synced with current_position // Move the planner, not necessarily synced with current_position
// //
inline void line_to_destination(float mm_m) { inline void line_to_destination(float fr_mm_m) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder); planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
} }
inline void line_to_destination() { line_to_destination(feedrate); } inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
/** /**
* sync_plan_position * sync_plan_position
@ -1647,7 +1650,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
#endif #endif
refresh_cmd_timeout(); refresh_cmd_timeout();
calculate_delta(destination); calculate_delta(destination);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
set_current_to_destination(); set_current_to_destination();
} }
#endif #endif
@ -1656,8 +1659,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
* Plan a move to (X, Y, Z) and set the current_position * Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested * The final current_position may not be the one that was requested
*/ */
static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) { static void do_blocking_move_to(float x, float y, float z, float fr_mm_m = 0.0) {
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z); if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
@ -1665,7 +1668,7 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
#if ENABLED(DELTA) #if ENABLED(DELTA)
feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE; feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
@ -1680,19 +1683,19 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
// If Z needs to raise, do it before moving XY // If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < z) { if (current_position[Z_AXIS] < z) {
feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS]; feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
line_to_current_position(); line_to_current_position();
} }
feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE; feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
current_position[X_AXIS] = x; current_position[X_AXIS] = x;
current_position[Y_AXIS] = y; current_position[Y_AXIS] = y;
line_to_current_position(); line_to_current_position();
// If Z needs to lower, do it after moving XY // If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > z) { if (current_position[Z_AXIS] > z) {
feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS]; feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
line_to_current_position(); line_to_current_position();
} }
@ -1701,23 +1704,23 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
stepper.synchronize(); stepper.synchronize();
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
} }
inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) { inline void do_blocking_move_to_x(float x, float fr_mm_m = 0.0) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate); do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
} }
inline void do_blocking_move_to_y(float y) { inline void do_blocking_move_to_y(float y) {
do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]); do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
} }
inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) { inline void do_blocking_move_to_xy(float x, float y, float fr_mm_m = 0.0) {
do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate); do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m);
} }
inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) { inline void do_blocking_move_to_z(float z, float fr_mm_m = 0.0) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m);
} }
// //
@ -1733,9 +1736,9 @@ static void setup_for_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
#endif #endif
saved_feedrate = feedrate; saved_feedrate_mm_m = feedrate_mm_m;
saved_feedrate_multiplier = feedrate_multiplier; saved_feedrate_percentage = feedrate_percentage;
feedrate_multiplier = 100; feedrate_percentage = 100;
refresh_cmd_timeout(); refresh_cmd_timeout();
} }
@ -1743,8 +1746,8 @@ static void clean_up_after_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
#endif #endif
feedrate = saved_feedrate; feedrate_mm_m = saved_feedrate_mm_m;
feedrate_multiplier = saved_feedrate_multiplier; feedrate_percentage = saved_feedrate_percentage;
refresh_cmd_timeout(); refresh_cmd_timeout();
} }
@ -2003,6 +2006,7 @@ static void clean_up_after_endstop_or_probe_move() {
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
DEBUG_POS("set_probe_deployed", current_position); DEBUG_POS("set_probe_deployed", current_position);
SERIAL_ECHOPAIR("deploy: ", deploy); SERIAL_ECHOPAIR("deploy: ", deploy);
SERIAL_EOL;
} }
#endif #endif
@ -2062,7 +2066,7 @@ static void clean_up_after_endstop_or_probe_move() {
// at the height where the probe triggered. // at the height where the probe triggered.
static float run_z_probe() { static float run_z_probe() {
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
refresh_cmd_timeout(); refresh_cmd_timeout();
@ -2077,7 +2081,7 @@ static void clean_up_after_endstop_or_probe_move() {
#endif #endif
// move down slowly until you find the bed // move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4; feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS] / 4;
destination[Z_AXIS] = -10; destination[Z_AXIS] = -10;
prepare_move_to_destination_raw(); // this will also set_current_to_destination prepare_move_to_destination_raw(); // this will also set_current_to_destination
stepper.synchronize(); stepper.synchronize();
@ -2101,7 +2105,7 @@ static void clean_up_after_endstop_or_probe_move() {
planner.bed_level_matrix.set_to_identity(); planner.bed_level_matrix.set_to_identity();
#endif #endif
feedrate = homing_feedrate[Z_AXIS]; feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
// Move down until the Z probe (or endstop?) is triggered // Move down until the Z probe (or endstop?) is triggered
float zPosition = -(Z_MAX_LENGTH + 10); float zPosition = -(Z_MAX_LENGTH + 10);
@ -2140,7 +2144,7 @@ static void clean_up_after_endstop_or_probe_move() {
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
return current_position[Z_AXIS]; return current_position[Z_AXIS];
} }
@ -2165,7 +2169,7 @@ static void clean_up_after_endstop_or_probe_move() {
} }
#endif #endif
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
// Ensure a minimum height before moving the probe // Ensure a minimum height before moving the probe
do_probe_raise(Z_RAISE_BETWEEN_PROBINGS); do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
@ -2178,7 +2182,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
} }
#endif #endif
feedrate = XY_PROBE_FEEDRATE; feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -2215,7 +2219,7 @@ static void clean_up_after_endstop_or_probe_move() {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
#endif #endif
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
return measured_z; return measured_z;
} }
@ -2416,7 +2420,7 @@ static void homeaxis(AxisEnum axis) {
// Move towards the endstop until an endstop is triggered // Move towards the endstop until an endstop is triggered
destination[axis] = 1.5 * max_length(axis) * axis_home_dir; destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]; feedrate_mm_m = homing_feedrate_mm_m[axis];
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
@ -2456,7 +2460,7 @@ static void homeaxis(AxisEnum axis) {
sync_plan_position(); sync_plan_position();
// Move to the adjusted endstop height // Move to the adjusted endstop height
feedrate = homing_feedrate[axis]; feedrate_mm_m = homing_feedrate_mm_m[axis];
destination[Z_AXIS] = adj; destination[Z_AXIS] = adj;
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
@ -2520,13 +2524,13 @@ static void homeaxis(AxisEnum axis) {
if (retracting == retracted[active_extruder]) return; if (retracting == retracted[active_extruder]) return;
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
set_destination_to_current(); set_destination_to_current();
if (retracting) { if (retracting) {
feedrate = retract_feedrate_mm_s * 60; feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination();
@ -2544,14 +2548,14 @@ static void homeaxis(AxisEnum axis) {
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
} }
feedrate = retract_recover_feedrate * 60; feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
sync_plan_position_e(); sync_plan_position_e();
prepare_move_to_destination(); prepare_move_to_destination();
} }
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
retracted[active_extruder] = retracting; retracted[active_extruder] = retracting;
} // retract() } // retract()
@ -2613,7 +2617,7 @@ void gcode_get_destination() {
} }
if (code_seen('F') && code_value_linear_units() > 0.0) if (code_seen('F') && code_value_linear_units() > 0.0)
feedrate = code_value_linear_units(); feedrate_mm_m = code_value_linear_units();
#if ENABLED(PRINTCOUNTER) #if ENABLED(PRINTCOUNTER)
if (!DEBUGGING(DRYRUN)) if (!DEBUGGING(DRYRUN))
@ -2846,7 +2850,7 @@ inline void gcode_G4() {
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir; destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS); destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1); feedrate_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1);
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
@ -2943,7 +2947,7 @@ inline void gcode_G28() {
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH); for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
feedrate = 1.732 * homing_feedrate[X_AXIS]; feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
@ -3164,7 +3168,7 @@ inline void gcode_G28() {
#if ENABLED(MESH_G28_REST_ORIGIN) #if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = 0.0; current_position[Z_AXIS] = 0.0;
set_destination_to_current(); set_destination_to_current();
feedrate = homing_feedrate[Z_AXIS]; feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
line_to_destination(); line_to_destination();
stepper.synchronize(); stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -3224,8 +3228,8 @@ inline void gcode_G28() {
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset }; enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
inline void _mbl_goto_xy(float x, float y) { inline void _mbl_goto_xy(float x, float y) {
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
feedrate = homing_feedrate[X_AXIS]; feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
@ -3245,7 +3249,7 @@ inline void gcode_G28() {
line_to_current_position(); line_to_current_position();
#endif #endif
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
stepper.synchronize(); stepper.synchronize();
} }
@ -3492,7 +3496,7 @@ inline void gcode_G28() {
} }
#endif #endif
xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED; xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION, int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION, right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
@ -3594,7 +3598,7 @@ inline void gcode_G28() {
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/ */
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points; int abl2 = sq(auto_bed_leveling_grid_points);
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points eqnBVector[abl2], // "B" vector of Z points
@ -3627,7 +3631,7 @@ inline void gcode_G28() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe); float distance_from_center = HYPOT(xProbe, yProbe);
if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue; if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
#endif //DELTA #endif //DELTA
@ -4250,7 +4254,7 @@ inline void gcode_M42() {
return; return;
} }
#else #else
if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) { if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
return; return;
} }
@ -4340,7 +4344,7 @@ inline void gcode_M42() {
#else #else
// If we have gone out too far, we can do a simple fix and scale the numbers // If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin. // back in closer to the origin.
while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) { while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
X_current /= 1.25; X_current /= 1.25;
Y_current /= 1.25; Y_current /= 1.25;
if (verbose_level > 3) { if (verbose_level > 3) {
@ -4376,10 +4380,9 @@ inline void gcode_M42() {
* data points we have so far * data points we have so far
*/ */
sum = 0.0; sum = 0.0;
for (uint8_t j = 0; j <= n; j++) { for (uint8_t j = 0; j <= n; j++)
float ss = sample_set[j] - mean; sum += sq(sample_set[j] - mean);
sum += ss * ss;
}
sigma = sqrt(sum / (n + 1)); sigma = sqrt(sum / (n + 1));
if (verbose_level > 0) { if (verbose_level > 0) {
if (verbose_level > 1) { if (verbose_level > 1) {
@ -5163,7 +5166,7 @@ inline void gcode_M92() {
if (value < 20.0) { if (value < 20.0) {
float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
planner.max_e_jerk *= factor; planner.max_e_jerk *= factor;
planner.max_feedrate[i] *= factor; planner.max_feedrate_mm_s[i] *= factor;
planner.max_acceleration_steps_per_s2[i] *= factor; planner.max_acceleration_steps_per_s2[i] *= factor;
} }
planner.axis_steps_per_mm[i] = value; planner.axis_steps_per_mm[i] = value;
@ -5372,7 +5375,7 @@ inline void gcode_M201() {
inline void gcode_M203() { inline void gcode_M203() {
for (int8_t i = 0; i < NUM_AXIS; i++) for (int8_t i = 0; i < NUM_AXIS; i++)
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
planner.max_feedrate[i] = code_value_axis_units(i); planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
} }
/** /**
@ -5418,8 +5421,8 @@ inline void gcode_M204() {
* E = Max E Jerk (units/sec^2) * E = Max E Jerk (units/sec^2)
*/ */
inline void gcode_M205() { inline void gcode_M205() {
if (code_seen('S')) planner.min_feedrate = code_value_linear_units(); if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units(); if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
if (code_seen('B')) planner.min_segment_time = code_value_millis(); if (code_seen('B')) planner.min_segment_time = code_value_millis();
if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units(); if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS); if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
@ -5517,7 +5520,7 @@ inline void gcode_M206() {
*/ */
inline void gcode_M207() { inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS); if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60; if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS); if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS); if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
@ -5529,11 +5532,11 @@ inline void gcode_M206() {
* *
* S[+units] retract_recover_length (in addition to M207 S*) * S[+units] retract_recover_length (in addition to M207 S*)
* W[+units] retract_recover_length_swap (multi-extruder) * W[+units] retract_recover_length_swap (multi-extruder)
* F[units/min] retract_recover_feedrate * F[units/min] retract_recover_feedrate_mm_s
*/ */
inline void gcode_M208() { inline void gcode_M208() {
if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS); if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60; if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS); if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
#endif #endif
@ -5604,7 +5607,7 @@ inline void gcode_M206() {
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95) * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/ */
inline void gcode_M220() { inline void gcode_M220() {
if (code_seen('S')) feedrate_multiplier = code_value_int(); if (code_seen('S')) feedrate_percentage = code_value_int();
} }
/** /**
@ -6308,10 +6311,10 @@ inline void gcode_M503() {
// Define runplan for move axes // Define runplan for move axes
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define RUNPLAN(RATE) calculate_delta(destination); \ #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
#else #else
#define RUNPLAN(RATE) line_to_destination(RATE * 60); #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
#endif #endif
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -6726,14 +6729,14 @@ inline void gcode_T(uint8_t tmp_extruder) {
return; return;
} }
float old_feedrate = feedrate; float old_feedrate_mm_m = feedrate_mm_m;
if (code_seen('F')) { if (code_seen('F')) {
float next_feedrate = code_value_axis_units(X_AXIS); float next_feedrate_mm_m = code_value_axis_units(X_AXIS);
if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate; if (next_feedrate_mm_m > 0.0) old_feedrate_mm_m = feedrate_mm_m = next_feedrate_mm_m;
} }
else else
feedrate = XY_PROBE_FEEDRATE; feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
if (tmp_extruder != active_extruder) { if (tmp_extruder != active_extruder) {
bool no_move = code_seen('S') && code_value_bool(); bool no_move = code_seen('S') && code_value_bool();
@ -6776,7 +6779,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
current_position[Y_AXIS], current_position[Y_AXIS],
current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT), current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
current_position[E_AXIS], current_position[E_AXIS],
planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS], planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
active_extruder active_extruder
); );
stepper.synchronize(); stepper.synchronize();
@ -6839,7 +6842,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
current_position[Y_AXIS], current_position[Y_AXIS],
current_position[Z_AXIS] + z_raise, current_position[Z_AXIS] + z_raise,
current_position[E_AXIS], current_position[E_AXIS],
planner.max_feedrate[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS],
active_extruder active_extruder
); );
stepper.synchronize(); stepper.synchronize();
@ -6854,7 +6857,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
current_position[Y_AXIS], current_position[Y_AXIS],
current_position[Z_AXIS] + z_diff, current_position[Z_AXIS] + z_diff,
current_position[E_AXIS], current_position[E_AXIS],
planner.max_feedrate[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS],
active_extruder active_extruder
); );
stepper.synchronize(); stepper.synchronize();
@ -6985,7 +6988,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
enable_solenoid_on_active_extruder(); enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID #endif // EXT_SOLENOID
feedrate = old_feedrate; feedrate_mm_m = old_feedrate_mm_m;
#else // HOTENDS <= 1 #else // HOTENDS <= 1
@ -7838,9 +7841,9 @@ void clamp_to_software_endstops(float target[3]) {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area // This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
if (!mbl.active()) { if (!mbl.active()) {
planner.buffer_line(x, y, z, e, feed_rate, extruder); planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
@ -7854,7 +7857,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
NOMORE(cy, MESH_NUM_Y_POINTS - 2); NOMORE(cy, MESH_NUM_Y_POINTS - 2);
if (pcx == cx && pcy == cy) { if (pcx == cx && pcy == cy) {
// Start and end on same mesh square // Start and end on same mesh square
planner.buffer_line(x, y, z, e, feed_rate, extruder); planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
@ -7893,7 +7896,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
} }
else { else {
// Already split on a border // Already split on a border
planner.buffer_line(x, y, z, e, feed_rate, extruder); planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
@ -7902,12 +7905,12 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
destination[Y_AXIS] = ny; destination[Y_AXIS] = ny;
destination[Z_AXIS] = nz; destination[Z_AXIS] = nz;
destination[E_AXIS] = ne; destination[E_AXIS] = ne;
mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits); mesh_buffer_line(nx, ny, nz, ne, fr_mm_s, extruder, x_splits, y_splits);
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
destination[E_AXIS] = e; destination[E_AXIS] = e;
mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); mesh_buffer_line(x, y, z, e, fr_mm_s, extruder, x_splits, y_splits);
} }
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
@ -7920,8 +7923,8 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return false; if (cartesian_mm < 0.000001) return false;
float _feedrate = feedrate * feedrate_multiplier / 6000.0; float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
float seconds = cartesian_mm / _feedrate; float seconds = cartesian_mm / _feedrate_mm_s;
int steps = max(1, int(delta_segments_per_second * seconds)); int steps = max(1, int(delta_segments_per_second * seconds));
float inv_steps = 1.0/steps; float inv_steps = 1.0/steps;
@ -7945,7 +7948,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
//DEBUG_POS("prepare_delta_move_to", target); //DEBUG_POS("prepare_delta_move_to", target);
//DEBUG_POS("prepare_delta_move_to", delta); //DEBUG_POS("prepare_delta_move_to", delta);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
} }
return true; return true;
} }
@ -7964,7 +7967,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
// move duplicate extruder into correct duplication position. // move duplicate extruder into correct duplication position.
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1); current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize(); stepper.synchronize();
extruder_duplication_enabled = true; extruder_duplication_enabled = true;
@ -7984,9 +7987,9 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
} }
delayed_move_time = 0; delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
active_extruder_parked = false; active_extruder_parked = false;
} }
} }
@ -7998,16 +8001,16 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
#if DISABLED(DELTA) && DISABLED(SCARA) #if DISABLED(DELTA) && DISABLED(SCARA)
inline bool prepare_move_to_destination_cartesian() { inline bool prepare_move_to_destination_cartesian() {
// Do not use feedrate_multiplier for E or Z only moves // Do not use feedrate_percentage for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) { if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination(); line_to_destination();
} }
else { else {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
return false; return false;
#else #else
line_to_destination(feedrate * feedrate_multiplier / 100.0); line_to_destination(MMM_SCALED(feedrate_mm_m));
#endif #endif
} }
return true; return true;
@ -8082,7 +8085,7 @@ void prepare_move_to_destination() {
uint8_t clockwise // Clockwise? uint8_t clockwise // Clockwise?
) { ) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS], center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS], center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS], linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
@ -8101,7 +8104,7 @@ void prepare_move_to_destination() {
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
angular_travel += RADIANS(360); angular_travel += RADIANS(360);
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
if (mm_of_travel < 0.001) return; if (mm_of_travel < 0.001) return;
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1; if (segments == 0) segments = 1;
@ -8137,7 +8140,7 @@ void prepare_move_to_destination() {
* This is important when there are successive arc motions. * This is important when there are successive arc motions.
*/ */
// Vector rotation matrix values // Vector rotation matrix values
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
float sin_T = theta_per_segment; float sin_T = theta_per_segment;
float arc_target[NUM_AXIS]; float arc_target[NUM_AXIS];
@ -8151,7 +8154,7 @@ void prepare_move_to_destination() {
// Initialize the extruder axis // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS]; arc_target[E_AXIS] = current_position[E_AXIS];
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
millis_t next_idle_ms = millis() + 200UL; millis_t next_idle_ms = millis() + 200UL;
@ -8195,9 +8198,9 @@ void prepare_move_to_destination() {
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target); adjust_delta(arc_target);
#endif #endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#endif #endif
} }
@ -8207,9 +8210,9 @@ void prepare_move_to_destination() {
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(target); adjust_delta(target);
#endif #endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
#endif #endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
@ -8222,7 +8225,7 @@ void prepare_move_to_destination() {
#if ENABLED(BEZIER_CURVE_SUPPORT) #if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float offset[4]) { void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder); cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position
@ -8548,7 +8551,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS]; float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder); MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos; current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes; destination[E_AXIS] = oldedes;
planner.set_e_position_mm(oldepos); planner.set_e_position_mm(oldepos);

@ -49,13 +49,13 @@
* 104 EEPROM Checksum (uint16_t) * 104 EEPROM Checksum (uint16_t)
* *
* 106 M92 XYZE planner.axis_steps_per_mm (float x4) * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
* 122 M203 XYZE planner.max_feedrate (float x4) * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
* 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4) * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
* 154 M204 P planner.acceleration (float) * 154 M204 P planner.acceleration (float)
* 158 M204 R planner.retract_acceleration (float) * 158 M204 R planner.retract_acceleration (float)
* 162 M204 T planner.travel_acceleration (float) * 162 M204 T planner.travel_acceleration (float)
* 166 M205 S planner.min_feedrate (float) * 166 M205 S planner.min_feedrate_mm_s (float)
* 170 M205 T planner.min_travel_feedrate (float) * 170 M205 T planner.min_travel_feedrate_mm_s (float)
* 174 M205 B planner.min_segment_time (ulong) * 174 M205 B planner.min_segment_time (ulong)
* 178 M205 X planner.max_xy_jerk (float) * 178 M205 X planner.max_xy_jerk (float)
* 182 M205 Z planner.max_z_jerk (float) * 182 M205 Z planner.max_z_jerk (float)
@ -116,7 +116,7 @@
* 406 M207 Z retract_zlift (float) * 406 M207 Z retract_zlift (float)
* 410 M208 S retract_recover_length (float) * 410 M208 S retract_recover_length (float)
* 414 M208 W retract_recover_length_swap (float) * 414 M208 W retract_recover_length_swap (float)
* 418 M208 F retract_recover_feedrate (float) * 418 M208 F retract_recover_feedrate_mm_s (float)
* *
* Volumetric Extrusion: * Volumetric Extrusion:
* 422 M200 D volumetric_enabled (bool) * 422 M200 D volumetric_enabled (bool)
@ -202,13 +202,13 @@ void Config_StoreSettings() {
eeprom_checksum = 0; // clear before first "real data" eeprom_checksum = 0; // clear before first "real data"
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm); EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
EEPROM_WRITE_VAR(i, planner.max_feedrate); EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2); EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
EEPROM_WRITE_VAR(i, planner.acceleration); EEPROM_WRITE_VAR(i, planner.acceleration);
EEPROM_WRITE_VAR(i, planner.retract_acceleration); EEPROM_WRITE_VAR(i, planner.retract_acceleration);
EEPROM_WRITE_VAR(i, planner.travel_acceleration); EEPROM_WRITE_VAR(i, planner.travel_acceleration);
EEPROM_WRITE_VAR(i, planner.min_feedrate); EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate); EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.min_segment_time); EEPROM_WRITE_VAR(i, planner.min_segment_time);
EEPROM_WRITE_VAR(i, planner.max_xy_jerk); EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
EEPROM_WRITE_VAR(i, planner.max_z_jerk); EEPROM_WRITE_VAR(i, planner.max_z_jerk);
@ -343,7 +343,7 @@ void Config_StoreSettings() {
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE_VAR(i, dummy);
#endif #endif
EEPROM_WRITE_VAR(i, retract_recover_feedrate); EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, volumetric_enabled);
@ -389,14 +389,14 @@ void Config_RetrieveSettings() {
// version number match // version number match
EEPROM_READ_VAR(i, planner.axis_steps_per_mm); EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
EEPROM_READ_VAR(i, planner.max_feedrate); EEPROM_READ_VAR(i, planner.max_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2); EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
EEPROM_READ_VAR(i, planner.acceleration); EEPROM_READ_VAR(i, planner.acceleration);
EEPROM_READ_VAR(i, planner.retract_acceleration); EEPROM_READ_VAR(i, planner.retract_acceleration);
EEPROM_READ_VAR(i, planner.travel_acceleration); EEPROM_READ_VAR(i, planner.travel_acceleration);
EEPROM_READ_VAR(i, planner.min_feedrate); EEPROM_READ_VAR(i, planner.min_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.min_travel_feedrate); EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.min_segment_time); EEPROM_READ_VAR(i, planner.min_segment_time);
EEPROM_READ_VAR(i, planner.max_xy_jerk); EEPROM_READ_VAR(i, planner.max_xy_jerk);
EEPROM_READ_VAR(i, planner.max_z_jerk); EEPROM_READ_VAR(i, planner.max_z_jerk);
@ -525,7 +525,7 @@ void Config_RetrieveSettings() {
#else #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ_VAR(i, dummy);
#endif #endif
EEPROM_READ_VAR(i, retract_recover_feedrate); EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, volumetric_enabled);
@ -565,7 +565,7 @@ void Config_ResetDefault() {
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (uint8_t i = 0; i < NUM_AXIS; i++) { for (uint8_t i = 0; i < NUM_AXIS; i++) {
planner.axis_steps_per_mm[i] = tmp1[i]; planner.axis_steps_per_mm[i] = tmp1[i];
planner.max_feedrate[i] = tmp2[i]; planner.max_feedrate_mm_s[i] = tmp2[i];
planner.max_acceleration_mm_per_s2[i] = tmp3[i]; planner.max_acceleration_mm_per_s2[i] = tmp3[i];
#if ENABLED(SCARA) #if ENABLED(SCARA)
if (i < COUNT(axis_scaling)) if (i < COUNT(axis_scaling))
@ -576,9 +576,9 @@ void Config_ResetDefault() {
planner.acceleration = DEFAULT_ACCELERATION; planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE; planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_segment_time = DEFAULT_MINSEGMENTTIME; planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE; planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.max_xy_jerk = DEFAULT_XYJERK; planner.max_xy_jerk = DEFAULT_XYJERK;
planner.max_z_jerk = DEFAULT_ZJERK; planner.max_z_jerk = DEFAULT_ZJERK;
planner.max_e_jerk = DEFAULT_EJERK; planner.max_e_jerk = DEFAULT_EJERK;
@ -654,7 +654,7 @@ void Config_ResetDefault() {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif #endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif #endif
volumetric_enabled = false; volumetric_enabled = false;
@ -715,10 +715,10 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]); SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]); SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; CONFIG_ECHO_START;
@ -746,8 +746,8 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate); SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate); SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
SERIAL_ECHOPAIR(" B", planner.min_segment_time); SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_xy_jerk); SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
SERIAL_ECHOPAIR(" Z", planner.max_z_jerk); SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
@ -903,7 +903,7 @@ void Config_PrintSettings(bool forReplay) {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap); SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif #endif
SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60); SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
SERIAL_ECHOPAIR(" Z", retract_zlift); SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; CONFIG_ECHO_START;
@ -915,7 +915,7 @@ void Config_PrintSettings(bool forReplay) {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap); SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif #endif
SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60); SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; CONFIG_ECHO_START;
if (!forReplay) { if (!forReplay) {

@ -450,7 +450,7 @@ static void lcd_implementation_status_screen() {
lcd_setFont(FONT_STATUSMENU); lcd_setFont(FONT_STATUSMENU);
u8g.setPrintPos(12, 49); u8g.setPrintPos(12, 49);
lcd_print(itostr3(feedrate_multiplier)); lcd_print(itostr3(feedrate_percentage));
lcd_print('%'); lcd_print('%');
// Status line // Status line

@ -36,6 +36,7 @@
// Macros for maths shortcuts // Macros for maths shortcuts
#define RADIANS(d) ((d)*M_PI/180.0) #define RADIANS(d) ((d)*M_PI/180.0)
#define DEGREES(r) ((r)*180.0/M_PI) #define DEGREES(r) ((r)*180.0/M_PI)
#define HYPOT(x,y) sqrt(sq(x)+sq(y))
// Macros to contrain values // Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)

@ -80,20 +80,20 @@ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
volatile uint8_t Planner::block_buffer_tail = 0; volatile uint8_t Planner::block_buffer_tail = 0;
float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per second float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
float Planner::axis_steps_per_mm[NUM_AXIS]; float Planner::axis_steps_per_mm[NUM_AXIS];
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS]; unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
millis_t Planner::min_segment_time; millis_t Planner::min_segment_time;
float Planner::min_feedrate; float Planner::min_feedrate_mm_s;
float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float Planner::max_xy_jerk; // The largest speed change requiring no acceleration float Planner::max_xy_jerk; // The largest speed change requiring no acceleration
float Planner::max_z_jerk; float Planner::max_z_jerk;
float Planner::max_e_jerk; float Planner::max_e_jerk;
float Planner::min_travel_feedrate; float Planner::min_travel_feedrate_mm_s;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
@ -171,8 +171,8 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
} }
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE)
volatile long initial_advance = block->advance * entry_factor * entry_factor; volatile long initial_advance = block->advance * sq(entry_factor);
volatile long final_advance = block->advance * exit_factor * exit_factor; volatile long final_advance = block->advance * sq(exit_factor);
#endif // ADVANCE #endif // ADVANCE
// block->accelerate_until = accelerate_steps; // block->accelerate_until = accelerate_steps;
@ -527,14 +527,14 @@ void Planner::check_axes_activity() {
* Add a new linear movement to the buffer. * Add a new linear movement to the buffer.
* *
* x,y,z,e - target position in mm * x,y,z,e - target position in mm
* feed_rate - (target) speed of the move * fr_mm_s - (target) speed of the move
* extruder - target extruder * extruder - target extruder
*/ */
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder) void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
#else #else
void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder) void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
#endif // AUTO_BED_LEVELING_FEATURE #endif // AUTO_BED_LEVELING_FEATURE
{ {
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
@ -768,9 +768,9 @@ void Planner::check_axes_activity() {
} }
if (block->steps[E_AXIS]) if (block->steps[E_AXIS])
NOLESS(feed_rate, min_feedrate); NOLESS(fr_mm_s, min_feedrate_mm_s);
else else
NOLESS(feed_rate, min_travel_feedrate); NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
/** /**
* This part of the code calculates the total length of the movement. * This part of the code calculates the total length of the movement.
@ -815,20 +815,20 @@ void Planner::check_axes_activity() {
else { else {
block->millimeters = sqrt( block->millimeters = sqrt(
#if ENABLED(COREXY) #if ENABLED(COREXY)
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
#elif ENABLED(COREXZ) #elif ENABLED(COREXZ)
square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD]) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
#elif ENABLED(COREYZ) #elif ENABLED(COREYZ)
square(delta_mm[X_AXIS]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_HEAD]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
#else #else
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
#endif #endif
); );
} }
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks. // Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters; float inverse_second = fr_mm_s * inverse_millimeters;
int moves_queued = movesplanned(); int moves_queued = movesplanned();
@ -836,7 +836,7 @@ void Planner::check_axes_activity() {
#if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN) #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2; bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
#if ENABLED(OLD_SLOWDOWN) #if ENABLED(OLD_SLOWDOWN)
if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE); if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
#endif #endif
#if ENABLED(SLOWDOWN) #if ENABLED(SLOWDOWN)
// segment time im micro seconds // segment time im micro seconds
@ -895,7 +895,7 @@ void Planner::check_axes_activity() {
float speed_factor = 1.0; //factor <=1 do decrease speed float speed_factor = 1.0; //factor <=1 do decrease speed
for (int i = 0; i < NUM_AXIS; i++) { for (int i = 0; i < NUM_AXIS; i++) {
current_speed[i] = delta_mm[i] * inverse_second; current_speed[i] = delta_mm[i] * inverse_second;
float cs = fabs(current_speed[i]), mf = max_feedrate[i]; float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
if (cs > mf) speed_factor = min(speed_factor, mf / cs); if (cs > mf) speed_factor = min(speed_factor, mf / cs);
} }
@ -1030,7 +1030,7 @@ void Planner::check_axes_activity() {
dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS], dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
dsz = fabs(csz - previous_speed[Z_AXIS]), dsz = fabs(csz - previous_speed[Z_AXIS]),
dse = fabs(cse - previous_speed[E_AXIS]), dse = fabs(cse - previous_speed[E_AXIS]),
jerk = sqrt(dsx * dsx + dsy * dsy); jerk = HYPOT(dsx, dsy);
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed; vmax_junction = block->nominal_speed;
@ -1086,7 +1086,7 @@ void Planner::check_axes_activity() {
} }
else { else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2); long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256; float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
block->advance = advance; block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
} }

@ -119,20 +119,20 @@ class Planner {
static volatile uint8_t block_buffer_head; // Index of the next block to be pushed static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
static volatile uint8_t block_buffer_tail; static volatile uint8_t block_buffer_tail;
static float max_feedrate[NUM_AXIS]; // Max speeds in mm per second static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
static float axis_steps_per_mm[NUM_AXIS]; static float axis_steps_per_mm[NUM_AXIS];
static unsigned long max_acceleration_steps_per_s2[NUM_AXIS]; static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
static millis_t min_segment_time; static millis_t min_segment_time;
static float min_feedrate; static float min_feedrate_mm_s;
static float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX static float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
static float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX static float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
static float max_xy_jerk; // The largest speed change requiring no acceleration static float max_xy_jerk; // The largest speed change requiring no acceleration
static float max_z_jerk; static float max_z_jerk;
static float max_e_jerk; static float max_e_jerk;
static float min_travel_feedrate; static float min_travel_feedrate_mm_s;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
@ -211,10 +211,10 @@ class Planner {
* Add a new linear movement to the buffer. * Add a new linear movement to the buffer.
* *
* x,y,z,e - target position in mm * x,y,z,e - target position in mm
* feed_rate - (target) speed of the move * fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder * extruder - target extruder
*/ */
static void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder); static void buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder);
/** /**
* Set the planner.position and individual stepper positions. * Set the planner.position and individual stepper positions.
@ -229,7 +229,7 @@ class Planner {
#else #else
static void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder); static void buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder);
static void set_position_mm(const float& x, const float& y, const float& z, const float& e); static void set_position_mm(const float& x, const float& y, const float& z, const float& e);
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
@ -290,7 +290,7 @@ class Planner {
*/ */
static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) { static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0 if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
return (target_rate * target_rate - initial_rate * initial_rate) / (accel * 2); return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
} }
/** /**
@ -303,7 +303,7 @@ class Planner {
*/ */
static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) { static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
if (accel == 0) return 0; // accel was 0, set intersection distance to 0 if (accel == 0) return 0; // accel was 0, set intersection distance to 0
return (accel * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (accel * 4); return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
} }
/** /**
@ -312,7 +312,7 @@ class Planner {
* 'distance'. * 'distance'.
*/ */
static float max_allowable_speed(float accel, float target_velocity, float distance) { static float max_allowable_speed(float accel, float target_velocity, float distance) {
return sqrt(target_velocity * target_velocity - 2 * accel * distance); return sqrt(sq(target_velocity) - 2 * accel * distance);
} }
static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor); static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);

@ -105,7 +105,7 @@ inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(
* the mitigation offered by MIN_STEP and the small computational * the mitigation offered by MIN_STEP and the small computational
* power available on Arduino, I think it is not wise to implement it. * power available on Arduino, I think it is not wise to implement it.
*/ */
void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float feed_rate, uint8_t extruder) { void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) {
// Absolute first and second control points are recovered. // Absolute first and second control points are recovered.
float first0 = position[X_AXIS] + offset[0]; float first0 = position[X_AXIS] + offset[0];
float first1 = position[Y_AXIS] + offset[1]; float first1 = position[Y_AXIS] + offset[1];
@ -193,9 +193,9 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(bez_target); adjust_delta(bez_target);
#endif #endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#else #else
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder); planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#endif #endif
} }
} }

@ -36,7 +36,7 @@ void cubic_b_spline(
const float position[NUM_AXIS], // current position const float position[NUM_AXIS], // current position
const float target[NUM_AXIS], // target position const float target[NUM_AXIS], // target position
const float offset[4], // a pair of offsets const float offset[4], // a pair of offsets
float feed_rate, float fr_mm_s,
uint8_t extruder uint8_t extruder
); );

@ -104,7 +104,7 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
#if HAS_POWER_SWITCH #if HAS_POWER_SWITCH
extern bool powersupply; extern bool powersupply;
#endif #endif
const float manual_feedrate[] = MANUAL_FEEDRATE; const float manual_feedrate_mm_m[] = MANUAL_FEEDRATE;
static void lcd_main_menu(); static void lcd_main_menu();
static void lcd_tune_menu(); static void lcd_tune_menu();
static void lcd_prepare_menu(); static void lcd_prepare_menu();
@ -254,10 +254,10 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
* lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause) * lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
* menu_action_function(lcd_sdcard_pause) * menu_action_function(lcd_sdcard_pause)
* *
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999) * MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* *
*/ */
#define _MENU_ITEM_PART_1(TYPE, LABEL, ARGS...) \ #define _MENU_ITEM_PART_1(TYPE, LABEL, ARGS...) \
@ -523,29 +523,29 @@ static void lcd_status_screen() {
} }
#if ENABLED(ULTIPANEL_FEEDMULTIPLY) #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
int new_frm = feedrate_multiplier + (int32_t)encoderPosition; int new_frm = feedrate_percentage + (int32_t)encoderPosition;
// Dead zone at 100% feedrate // Dead zone at 100% feedrate
if ((feedrate_multiplier < 100 && new_frm > 100) || (feedrate_multiplier > 100 && new_frm < 100)) { if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
feedrate_multiplier = 100; feedrate_percentage = 100;
encoderPosition = 0; encoderPosition = 0;
} }
else if (feedrate_multiplier == 100) { else if (feedrate_percentage == 100) {
if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) { if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
feedrate_multiplier += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE); feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
encoderPosition = 0; encoderPosition = 0;
} }
else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) { else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
feedrate_multiplier += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE; feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0; encoderPosition = 0;
} }
} }
else { else {
feedrate_multiplier = new_frm; feedrate_percentage = new_frm;
encoderPosition = 0; encoderPosition = 0;
} }
#endif // ULTIPANEL_FEEDMULTIPLY #endif // ULTIPANEL_FEEDMULTIPLY
feedrate_multiplier = constrain(feedrate_multiplier, 10, 999); feedrate_percentage = constrain(feedrate_percentage, 10, 999);
#endif //ULTIPANEL #endif //ULTIPANEL
} }
@ -573,9 +573,9 @@ void kill_screen(const char* lcd_msg) {
inline void line_to_current(AxisEnum axis) { inline void line_to_current(AxisEnum axis) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
calculate_delta(current_position); calculate_delta(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
#else // !DELTA #else // !DELTA
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
#endif // !DELTA #endif // !DELTA
} }
@ -757,7 +757,7 @@ void kill_screen(const char* lcd_msg) {
// //
// Speed: // Speed:
// //
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999); MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
// Manual bed leveling, Bed Z: // Manual bed leveling, Bed Z:
#if ENABLED(MANUAL_BED_LEVELING) #if ENABLED(MANUAL_BED_LEVELING)
@ -1020,7 +1020,7 @@ void kill_screen(const char* lcd_msg) {
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
current_position[X_AXIS] = x + home_offset[X_AXIS]; current_position[X_AXIS] = x + home_offset[X_AXIS];
current_position[Y_AXIS] = y + home_offset[Y_AXIS]; current_position[Y_AXIS] = y + home_offset[Y_AXIS];
line_to_current(manual_feedrate[X_AXIS] <= manual_feedrate[Y_AXIS] ? X_AXIS : Y_AXIS); line_to_current(manual_feedrate_mm_m[X_AXIS] <= manual_feedrate_mm_m[Y_AXIS] ? X_AXIS : Y_AXIS);
#if MIN_Z_HEIGHT_FOR_HOMING > 0 #if MIN_Z_HEIGHT_FOR_HOMING > 0
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; // How do condition and action match? current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; // How do condition and action match?
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
@ -1310,9 +1310,9 @@ void kill_screen(const char* lcd_msg) {
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
calculate_delta(current_position); calculate_delta(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
#else #else
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
#endif #endif
manual_move_axis = (int8_t)NO_AXIS; manual_move_axis = (int8_t)NO_AXIS;
} }
@ -1356,7 +1356,7 @@ void kill_screen(const char* lcd_msg) {
} }
#if ENABLED(DELTA) #if ENABLED(DELTA)
static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS); static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); } static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - sq(a)); }
static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); } static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); } static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
#else #else
@ -1800,12 +1800,12 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990); MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990);
#endif #endif
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate_mm_s[X_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate_mm_s[Y_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate_mm_s[Z_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate_mm_s, 0, 999);
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate_mm_s, 0, 999);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
@ -1905,7 +1905,7 @@ void kill_screen(const char* lcd_msg) {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100);
#endif #endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999); MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate_mm_s, 1, 999);
END_MENU(); END_MENU();
} }
#endif // FWRETRACT #endif // FWRETRACT
@ -2257,15 +2257,15 @@ void kill_screen(const char* lcd_msg) {
* static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callback); // edit int with callback * static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callback); // edit int with callback
* *
* You can then use one of the menu macros to present the edit interface: * You can then use one of the menu macros to present the edit interface:
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999) * MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
* *
* This expands into a more primitive menu item: * This expands into a more primitive menu item:
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* *
* *
* Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK * Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
* *
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*/ */
#define menu_edit_type(_type, _name, _strFunc, scale) \ #define menu_edit_type(_type, _name, _strFunc, scale) \
bool _menu_edit_ ## _name () { \ bool _menu_edit_ ## _name () { \

@ -742,7 +742,7 @@ static void lcd_implementation_status_screen() {
lcd.setCursor(0, 2); lcd.setCursor(0, 2);
lcd.print(LCD_STR_FEEDRATE[0]); lcd.print(LCD_STR_FEEDRATE[0]);
lcd.print(itostr3(feedrate_multiplier)); lcd.print(itostr3(feedrate_percentage));
lcd.print('%'); lcd.print('%');
#if LCD_WIDTH > 19 && ENABLED(SDSUPPORT) #if LCD_WIDTH > 19 && ENABLED(SDSUPPORT)

Loading…
Cancel
Save