Simple code cleanup. Rename "homeing" to homing.

master
Scott Lahteine 10 years ago
parent cb4a6dd2dc
commit f989bd5435

@ -30,7 +30,6 @@
// Serial port 0 is still used by the Arduino bootloader regardless of this setting. // Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0 #define SERIAL_PORT 0
// This determines the communication speed of the printer
// This determines the communication speed of the printer // This determines the communication speed of the printer
#define BAUDRATE 250000 #define BAUDRATE 250000

@ -65,7 +65,7 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,max_xy_jerk); EEPROM_WRITE_VAR(i,max_xy_jerk);
EEPROM_WRITE_VAR(i,max_z_jerk); EEPROM_WRITE_VAR(i,max_z_jerk);
EEPROM_WRITE_VAR(i,max_e_jerk); EEPROM_WRITE_VAR(i,max_e_jerk);
EEPROM_WRITE_VAR(i,add_homeing); EEPROM_WRITE_VAR(i,add_homing);
#ifdef DELTA #ifdef DELTA
EEPROM_WRITE_VAR(i,endstop_adj); EEPROM_WRITE_VAR(i,endstop_adj);
EEPROM_WRITE_VAR(i,delta_radius); EEPROM_WRITE_VAR(i,delta_radius);
@ -170,9 +170,9 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHOLNPGM("Home offset (mm):");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M206 X",add_homeing[0] ); SERIAL_ECHOPAIR(" M206 X",add_homing[0] );
SERIAL_ECHOPAIR(" Y" ,add_homeing[1] ); SERIAL_ECHOPAIR(" Y" ,add_homing[1] );
SERIAL_ECHOPAIR(" Z" ,add_homeing[2] ); SERIAL_ECHOPAIR(" Z" ,add_homing[2] );
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#ifdef DELTA #ifdef DELTA
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -229,7 +229,7 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,max_xy_jerk); EEPROM_READ_VAR(i,max_xy_jerk);
EEPROM_READ_VAR(i,max_z_jerk); EEPROM_READ_VAR(i,max_z_jerk);
EEPROM_READ_VAR(i,max_e_jerk); EEPROM_READ_VAR(i,max_e_jerk);
EEPROM_READ_VAR(i,add_homeing); EEPROM_READ_VAR(i,add_homing);
#ifdef DELTA #ifdef DELTA
EEPROM_READ_VAR(i,endstop_adj); EEPROM_READ_VAR(i,endstop_adj);
EEPROM_READ_VAR(i,delta_radius); EEPROM_READ_VAR(i,delta_radius);
@ -303,7 +303,7 @@ void Config_ResetDefault()
max_xy_jerk=DEFAULT_XYJERK; max_xy_jerk=DEFAULT_XYJERK;
max_z_jerk=DEFAULT_ZJERK; max_z_jerk=DEFAULT_ZJERK;
max_e_jerk=DEFAULT_EJERK; max_e_jerk=DEFAULT_EJERK;
add_homeing[0] = add_homeing[1] = add_homeing[2] = 0; add_homing[0] = add_homing[1] = add_homing[2] = 0;
#ifdef DELTA #ifdef DELTA
endstop_adj[0] = endstop_adj[1] = endstop_adj[2] = 0; endstop_adj[0] = endstop_adj[1] = endstop_adj[2] = 0;
delta_radius= DELTA_RADIUS; delta_radius= DELTA_RADIUS;

@ -211,7 +211,7 @@ extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS] ; extern float current_position[NUM_AXIS] ;
extern float add_homeing[3]; extern float add_homing[3];
#ifdef DELTA #ifdef DELTA
extern float endstop_adj[3]; extern float endstop_adj[3];
extern float delta_radius; extern float delta_radius;

@ -73,7 +73,7 @@ void MarlinSerial::begin(long baud)
bool useU2X = true; bool useU2X = true;
#if F_CPU == 16000000UL && SERIAL_PORT == 0 #if F_CPU == 16000000UL && SERIAL_PORT == 0
// hard coded exception for compatibility with the bootloader shipped // hard-coded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2 // with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560. // on the Uno and Mega 2560.
if (baud == 57600) { if (baud == 57600) {

@ -220,7 +220,7 @@ float volumetric_multiplier[EXTRUDERS] = {1.0
#endif #endif
}; };
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homeing[3]={0,0,0}; float add_homing[3]={0,0,0};
#ifdef DELTA #ifdef DELTA
float endstop_adj[3]={0,0,0}; float endstop_adj[3]={0,0,0};
#endif #endif
@ -852,7 +852,7 @@ static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS]; return base_home_pos(X_AXIS) + add_homing[X_AXIS];
else else
// In dual carriage mode the extruder offset provides an override of the // In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@ -884,9 +884,9 @@ static void axis_is_at_home(int axis) {
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS]; min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS], max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
@ -914,11 +914,11 @@ static void axis_is_at_home(int axis) {
for (i=0; i<2; i++) for (i=0; i<2; i++)
{ {
delta[i] -= add_homeing[i]; delta[i] -= add_homing[i];
} }
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]); // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
@ -936,14 +936,14 @@ static void axis_is_at_home(int axis) {
} }
else else
{ {
current_position[axis] = base_home_pos(axis) + add_homeing[axis]; current_position[axis] = base_home_pos(axis) + add_homing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis]; min_pos[axis] = base_min_pos(axis) + add_homing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis]; max_pos[axis] = base_max_pos(axis) + add_homing[axis];
} }
#else #else
current_position[axis] = base_home_pos(axis) + add_homeing[axis]; current_position[axis] = base_home_pos(axis) + add_homing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis]; min_pos[axis] = base_min_pos(axis) + add_homing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis]; max_pos[axis] = base_max_pos(axis) + add_homing[axis];
#endif #endif
} }
@ -1516,7 +1516,7 @@ void process_commands()
#ifdef SCARA #ifdef SCARA
current_position[X_AXIS]=code_value(); current_position[X_AXIS]=code_value();
#else #else
current_position[X_AXIS]=code_value()+add_homeing[0]; current_position[X_AXIS]=code_value()+add_homing[0];
#endif #endif
} }
} }
@ -1526,7 +1526,7 @@ void process_commands()
#ifdef SCARA #ifdef SCARA
current_position[Y_AXIS]=code_value(); current_position[Y_AXIS]=code_value();
#else #else
current_position[Y_AXIS]=code_value()+add_homeing[1]; current_position[Y_AXIS]=code_value()+add_homing[1];
#endif #endif
} }
} }
@ -1591,7 +1591,7 @@ void process_commands()
if(code_seen(axis_codes[Z_AXIS])) { if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) { if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homeing[2]; current_position[Z_AXIS]=code_value()+add_homing[2];
} }
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
@ -1820,10 +1820,10 @@ void process_commands()
current_position[i] = code_value(); current_position[i] = code_value();
} }
else { else {
current_position[i] = code_value()+add_homeing[i]; current_position[i] = code_value()+add_homing[i];
} }
#else #else
current_position[i] = code_value()+add_homeing[i]; current_position[i] = code_value()+add_homing[i];
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
@ -2700,9 +2700,9 @@ Sigma_Exit:
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]); SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[0]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]); SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[1]);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
@ -2828,19 +2828,19 @@ Sigma_Exit:
if(code_seen('E')) max_e_jerk = code_value() ; if(code_seen('E')) max_e_jerk = code_value() ;
} }
break; break;
case 206: // M206 additional homeing offset case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++) for(int8_t i=0; i < 3; i++)
{ {
if(code_seen(axis_codes[i])) add_homeing[i] = code_value(); if(code_seen(axis_codes[i])) add_homing[i] = code_value();
} }
#ifdef SCARA #ifdef SCARA
if(code_seen('T')) // Theta if(code_seen('T')) // Theta
{ {
add_homeing[0] = code_value() ; add_homing[0] = code_value() ;
} }
if(code_seen('P')) // Psi if(code_seen('P')) // Psi
{ {
add_homeing[1] = code_value() ; add_homing[1] = code_value() ;
} }
#endif #endif
break; break;

@ -8,7 +8,7 @@
//=========================================================================== //===========================================================================
//============================= DELTA Printer =============================== //============================= DELTA Printer ===============================
//=========================================================================== //===========================================================================
// For a Delta printer rplace the configuration files wilth the files in the // For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory. // example_configurations/delta directory.
// //
@ -103,7 +103,7 @@
// and processor overload (too many expensive sqrt calls). // and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 200 #define DELTA_SEGMENTS_PER_SECOND 200
// NOTE NB all values for DELTA_* values MOUST be floating point, so always have a decimal point in them // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them
// Center-to-center distance of the holes in the diagonal push rods. // Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // mm #define DELTA_DIAGONAL_ROD 250.0 // mm
@ -132,7 +132,7 @@
// 0 is not used // 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup) // 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup) // 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is mendel-parts thermistor (4.7k pullup) // 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !! // 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup) // 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup) // 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
@ -141,13 +141,18 @@
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) // 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup) // 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup) // 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 60 is 100k Maker's Tool Works Kapton Bed Thermister // 60 is 100k Maker's Tool Works Kapton Bed Thermistor
// //
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k // 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID) // (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup) // 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup) // 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup) // 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
#define TEMP_SENSOR_0 -1 #define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1 #define TEMP_SENSOR_1 -1
@ -184,6 +189,10 @@
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals. // HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4 //#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
// PID settings: // PID settings:
// Comment the following line to disable PID and enable bang-bang. // Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP #define PIDTEMP
@ -198,13 +207,13 @@
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine #define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
#define DEFAULT_Kp 22.2 #define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08 #define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114 #define DEFAULT_Kd 114
// Makergear // MakerGear
// #define DEFAULT_Kp 7.0 // #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1 // #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12 // #define DEFAULT_Kd 12
@ -273,7 +282,7 @@
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS #ifndef ENDSTOPPULLUPS
// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined // fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX // #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX // #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX // #define ENDSTOPPULLUP_ZMAX
@ -359,7 +368,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define BACK_PROBE_BED_POSITION 180 #define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20
// these are the offsets to the prob relative to the extruder tip (Hotend - Probe) // these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 #define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 #define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 #define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
@ -380,7 +389,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// #define PROBE_SERVO_DEACTIVATION_DELAY 300 // #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing, //If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!! //it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area. #define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
@ -407,7 +416,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//Manual homing switch locations: //Manual homing switch locations:
#define MANUAL_HOME_POSITIONS // MANUAL_*_HOME_POS below will be used #define MANUAL_HOME_POSITIONS // MANUAL_*_HOME_POS below will be used
// For deltabots this means top and center of the cartesian print volume. // For deltabots this means top and center of the Cartesian print volume.
#define MANUAL_X_HOME_POS 0 #define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0 #define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 250 // For delta: Distance between nozzle and print surface after homing. #define MANUAL_Z_HOME_POS 250 // For delta: Distance between nozzle and print surface after homing.
@ -443,11 +452,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//=========================================================================== //===========================================================================
// EEPROM // EEPROM
// the microcontroller can store settings in the EEPROM, e.g. max velocity... // The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores paramters in EEPROM // M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable eeprom support //define this to enable EEPROM support
//#define EEPROM_SETTINGS //#define EEPROM_SETTINGS
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out: //to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can. // please keep turned on if you can.
@ -463,14 +472,14 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255 #define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support //LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2 //#define ULTRA_LCD //general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family) //#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console //#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error) //#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder //#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking //#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store. //#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse //#define ULTIPANEL //the UltiPanel as on Thingiverse
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
@ -594,7 +603,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define LCD_WIDTH 20 #define LCD_WIDTH 20
#define LCD_HEIGHT 4 #define LCD_HEIGHT 4
#endif #endif
#else //no panel but just lcd #else //no panel but just LCD
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20 #define LCD_WIDTH 20
@ -616,8 +625,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino // Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN //#define FAST_PWM_FAN
// Temperature status leds that display the hotend and bet temperature. // Temperature status LEDs that display the hotend and bet temperature.
// If alle hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on. // If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis. // Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS //#define TEMP_STAT_LEDS

Loading…
Cancel
Save