Merge branch 'Development' into marlin_configurator

Latest upstream changes
master
Scott Lahteine 10 years ago
commit fad14ae7eb

@ -5,16 +5,9 @@
#include "Marlin.h" #include "Marlin.h"
#ifdef BLINKM #ifdef BLINKM
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
#include "BlinkM.h" #include "BlinkM.h"
void SendColors(byte red, byte grn, byte blu) void SendColors(byte red, byte grn, byte blu) {
{
Wire.begin(); Wire.begin();
Wire.beginTransmission(0x09); Wire.beginTransmission(0x09);
Wire.write('o'); //to disable ongoing script, only needs to be used once Wire.write('o'); //to disable ongoing script, only needs to be used once

@ -2,7 +2,7 @@
BlinkM.h BlinkM.h
Library header file for BlinkM library Library header file for BlinkM library
*/ */
#if (ARDUINO >= 100) #if ARDUINO >= 100
#include "Arduino.h" #include "Arduino.h"
#else #else
#include "WProgram.h" #include "WProgram.h"
@ -11,4 +11,3 @@
#include "Wire.h" #include "Wire.h"
void SendColors(byte red, byte grn, byte blu); void SendColors(byte red, byte grn, byte blu);

@ -428,9 +428,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe) // these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers // X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 #define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 #define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 #define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance. #define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case // Be sure you have this distance over your Z_MAX_POS in case

@ -1,5 +1,5 @@
#ifndef CONFIG_STORE_H #ifndef CONFIGURATIONSTORE_H
#define CONFIG_STORE_H #define CONFIGURATIONSTORE_H
#include "Configuration.h" #include "Configuration.h"
@ -19,4 +19,4 @@ void Config_ResetDefault();
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); } FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif #endif
#endif // __CONFIG_STORE_H #endif //CONFIGURATIONSTORE_H

@ -181,7 +181,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#endif #endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend(); void FlushSerialRequestResend();
void ClearToSend(); void ClearToSend();

@ -154,6 +154,8 @@
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C) // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D // M304 - Set bed PID parameters P I and D
// M380 - Activate solenoid on active extruder
// M381 - Disable all solenoids
// M400 - Finish all moves // M400 - Finish all moves
// M401 - Lower z-probe if present // M401 - Lower z-probe if present
// M402 - Raise z-probe if present // M402 - Raise z-probe if present
@ -529,23 +531,20 @@ void setup_homepin(void)
void setup_photpin() void setup_photpin()
{ {
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN); OUT_WRITE(PHOTOGRAPH_PIN, LOW);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif #endif
} }
void setup_powerhold() void setup_powerhold()
{ {
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN); OUT_WRITE(SUICIDE_PIN, HIGH);
WRITE(SUICIDE_PIN, HIGH);
#endif #endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1 #if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF) #if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP); OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else #else
WRITE(PS_ON_PIN, PS_ON_AWAKE); OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif #endif
#endif #endif
} }
@ -553,8 +552,7 @@ void setup_powerhold()
void suicide() void suicide()
{ {
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN); OUT_WRITE(SUICIDE_PIN, LOW);
WRITE(SUICIDE_PIN, LOW);
#endif #endif
} }
@ -1200,22 +1198,24 @@ static void retract_z_probe() {
#endif #endif
} }
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
/// Probe bed height at position (x,y), returns the measured z value /// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, int retract_action=0) { static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
// move to right place // move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==1)) if (retract_action & ProbeEngage) engage_z_probe();
engage_z_probe(); // Engage Z Servo endstop if available #endif
#endif // Z_PROBE_SLED
run_z_probe(); run_z_probe();
float measured_z = current_position[Z_AXIS]; float measured_z = current_position[Z_AXIS];
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==3)) if (retract_action & ProbeRetract) retract_z_probe();
retract_z_probe(); #endif
#endif // Z_PROBE_SLED
SERIAL_PROTOCOLPGM(MSG_BED); SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: "); SERIAL_PROTOCOLPGM(" x: ");
@ -1376,6 +1376,11 @@ void refresh_cmd_timeout(void)
#endif //FWRETRACT #endif //FWRETRACT
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
// //
// Method to dock/undock a sled designed by Charles Bell. // Method to dock/undock a sled designed by Charles Bell.
// //
@ -1430,10 +1435,10 @@ void process_commands()
if(autoretract_enabled) if(autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS]; float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted); retract(!retracted[active_extruder]);
return; return;
} }
} }
@ -1662,10 +1667,10 @@ void process_commands()
// Let's see if X and Y are homed and probe is inside bed area. // Let's see if X and Y are homed and probe is inside bed area.
if(code_seen(axis_codes[Z_AXIS])) { if(code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ && (current_position[X_AXIS] >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ && (current_position[X_AXIS] <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ && (current_position[Y_AXIS] >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { && (current_position[Y_AXIS] <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER)) {
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
@ -1719,25 +1724,137 @@ void process_commands()
break; break;
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
/**
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 engages / disengages the probe for each point.
* Include "E" to engage and disengage the probe just once.
* There's no extra effect if you have a fixed probe.
* Usage: "G29 E" or "G29 e"
*
*/
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
// Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
{ {
#if Z_MIN_PIN == -1 // Use one of these defines to specify the origin
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin." // for a topographical map to be printed for your bed.
#endif #define ORIGIN_BACK_LEFT 1
#define ORIGIN_FRONT_RIGHT 2
#define ORIGIN_BACK_RIGHT 3
#define ORIGIN_FRONT_LEFT 4
#define TOPO_ORIGIN ORIGIN_FRONT_LEFT
// Prevent user from running a G29 without first homing in X and Y // Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
{
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are break; // abort G29, since we don't know where we are
} }
bool enhanced_g29 = code_seen('E') || code_seen('e');
#ifdef AUTO_BED_LEVELING_GRID
// Example Syntax: G29 N4 V2 E T
int verbose_level = 1;
bool topo_flag = code_seen('T') || code_seen('t');
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
break;
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
if (verbose_level > 2) topo_flag = true;
}
}
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
break;
}
// Define the possible boundaries for probing based on the set limits.
// Code above (in G28) might have these limits wrong, or I am wrong here.
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < min_probe_x,
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
left_out = left_out_l || left_out_r,
right_out_r = right_probe_bed_position > max_probe_x,
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
right_out = right_out_l || right_out_r,
front_out_f = front_probe_bed_position < min_probe_y,
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
front_out = front_out_f || front_out_b,
back_out_b = back_probe_bed_position > max_probe_y,
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
back_out = back_out_f || back_out_b;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
}
break;
}
#endif
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
dock_sled(false); dock_sled(false); // engage (un-dock) the probe
#endif // Z_PROBE_SLED #endif
st_synchronize(); st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm(); //vector_3 corrected_position = plan_get_position_mm();
@ -1752,144 +1869,164 @@ void process_commands()
setup_for_endstop_move(); setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid // probe at the points of a lattice grid
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
if (code_seen('L')) left_probe_bed_position=(int)code_value();
if (code_seen('R')) right_probe_bed_position=(int)code_value();
if (code_seen('B')) back_probe_bed_position=(int)code_value();
if (code_seen('F')) front_probe_bed_position=(int)code_value();
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1); int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1); int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
// solve the plane equation ax + by + d = z // solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points // A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions // B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
// "B" vector of Z points
double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
int probePointCounter = 0; int probePointCounter = 0;
bool zig = true; bool zig = true;
for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
{
int xProbe, xInc; int xProbe, xInc;
if (zig) if (zig)
{ xProbe = left_probe_bed_position, xInc = xGridSpacing;
xProbe = left_probe_bed_position; else
//xEnd = right_probe_bed_position; xProbe = right_probe_bed_position, xInc = -xGridSpacing;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = right_probe_bed_position;
//xEnd = left_probe_bed_position;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++) // If topo_flag is set then don't zig-zag. Just scan in one direction.
{ // This gets the probe points in more readable order.
float z_before; if (!topo_flag) zig = !zig;
if (probePointCounter == 0)
{ for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// raise extruder // raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
} measured_z;
float measured_z;
// Enhanced G29 - Do not retract servo between probes // Enhanced G29 - Do not retract servo between probes
if (code_seen('E') || code_seen('e') ) ProbeAction act;
{ if (enhanced_g29) {
if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0)) if (yProbe == front_probe_bed_position && xCount == 0)
{ act = ProbeEngage;
measured_z = probe_pt(xProbe, yProbe, z_before,1); else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
} else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1)) act = ProbeRetract;
{ else
measured_z = probe_pt(xProbe, yProbe, z_before,3); act = ProbeStay;
} else {
measured_z = probe_pt(xProbe, yProbe, z_before,2);
}
} else {
measured_z = probe_pt(xProbe, yProbe, z_before);
} }
else
act = ProbeEngageRetract;
measured_z = probe_pt(xProbe, yProbe, z_before, act);
mean += measured_z;
eqnBVector[probePointCounter] = measured_z; eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
probePointCounter++; probePointCounter++;
xProbe += xInc; xProbe += xInc;
}
} } //xProbe
} //yProbe
clean_up_after_endstop_move(); clean_up_after_endstop_move();
// solve lsq problem // solve lsq problem
double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector); double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]); SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" \n");
}
}
if (topo_flag) {
set_bed_level_equation_lsq(plane_equation_coefficients); int xx, yy;
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
#if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
#endif
{
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#else
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#endif
{
int ind =
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
yy * auto_bed_leveling_grid_points + xx
#elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
xx * auto_bed_leveling_grid_points + yy
#elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
#endif
;
float diff = eqnBVector[ind] - mean;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
else
SERIAL_PROTOCOLPGM(" -");
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_PROTOCOLPGM("\n");
} // yy
SERIAL_PROTOCOLPGM("\n");
} //topo_flag
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients); free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined #else // !AUTO_BED_LEVELING_GRID
// Probe at 3 arbitrary points // Probe at 3 arbitrary points
// Enhanced G29
float z_at_pt_1, z_at_pt_2, z_at_pt_3; float z_at_pt_1, z_at_pt_2, z_at_pt_3;
if (code_seen('E') || code_seen('e')) { if (enhanced_g29) {
// probe 1 // Basic Enhanced G29
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1); z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
// probe 2 z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
// probe 3
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
} }
else { else {
// probe 1
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
} }
clean_up_after_endstop_move(); clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
#endif // AUTO_BED_LEVELING_GRID
st_synchronize(); st_synchronize();
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// The following code correct the Z height difference from z-probe position and hotend tip position. // The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected. // When the bed is uneven, this height must be corrected.
@ -1901,11 +2038,13 @@ void process_commands()
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#endif // Z_PROBE_SLED #endif
} }
break; break;
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe case 30: // G30 Single Z Probe
{ {
@ -2038,6 +2177,7 @@ void process_commands()
enable_e0(); enable_e0();
enable_e1(); enable_e1();
enable_e2(); enable_e2();
enable_e3();
break; break;
#ifdef SDSUPPORT #ifdef SDSUPPORT
@ -2723,15 +2863,13 @@ Sigma_Exit:
#if defined(PS_ON_PIN) && PS_ON_PIN > -1 #if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
// If you have a switch on suicide pin, this is useful // If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after // if you want to start another print with suicide feature after
// a print without suicide... // a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1 #if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN); OUT_WRITE(SUICIDE_PIN, HIGH);
WRITE(SUICIDE_PIN, HIGH);
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -2748,6 +2886,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
fanSpeed = 0; fanSpeed = 0;
delay(1000); // Wait a little before to switch off delay(1000); // Wait a little before to switch off
@ -2755,8 +2894,7 @@ Sigma_Exit:
st_synchronize(); st_synchronize();
suicide(); suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1 #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN); OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
powersupply = false; powersupply = false;
@ -2785,6 +2923,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
} }
else else
@ -2798,6 +2937,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
} }
#endif #endif
} }
@ -3118,7 +3258,7 @@ Sigma_Exit:
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
#endif #endif
} }
SERIAL_ECHOLN(""); SERIAL_EOL;
}break; }break;
#endif #endif
case 220: // M220 S<factor in percent>- set speed factor override percentage case 220: // M220 S<factor in percent>- set speed factor override percentage
@ -3337,8 +3477,7 @@ Sigma_Exit:
{ {
#ifdef CHDK #ifdef CHDK
SET_OUTPUT(CHDK); OUT_WRITE(CHDK, HIGH);
WRITE(CHDK, HIGH);
chdkHigh = millis(); chdkHigh = millis();
chdkActive = true; chdkActive = true;
@ -3497,6 +3636,17 @@ Sigma_Exit:
} }
break; break;
#endif #endif
#ifdef EXT_SOLENOID
case 380:
enable_solenoid_on_active_extruder();
break;
case 381:
disable_all_solenoids();
break;
#endif //EXT_SOLENOID
case 400: // M400 finish all moves case 400: // M400 finish all moves
{ {
st_synchronize(); st_synchronize();
@ -3726,6 +3876,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
delay(100); delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0; uint8_t cnt=0;
@ -3737,9 +3888,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
if(cnt==0) if(cnt==0)
{ {
#if BEEPER > 0 #if BEEPER > 0
SET_OUTPUT(BEEPER); OUT_WRITE(BEEPER,HIGH);
WRITE(BEEPER,HIGH);
delay(3); delay(3);
WRITE(BEEPER,LOW); WRITE(BEEPER,LOW);
delay(3); delay(3);
@ -4000,6 +4149,13 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
prepare_move(); prepare_move();
} }
} }
#ifdef EXT_SOLENOID
st_synchronize();
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif //EXT_SOLENOID
#endif #endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER); SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
@ -4469,6 +4625,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
} }
} }
} }
@ -4574,6 +4731,7 @@ void kill()
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1 #if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT); pinMode(PS_ON_PIN,INPUT);
@ -4707,7 +4865,6 @@ bool setTargetedHotend(int code){
return false; return false;
} }
float calculate_volumetric_multiplier(float diameter) { float calculate_volumetric_multiplier(float diameter) {
if (!volumetric_enabled || diameter == 0) return 1.0; if (!volumetric_enabled || diameter == 0) return 1.0;
float d2 = diameter * 0.5; float d2 = diameter * 0.5;
@ -4718,3 +4875,43 @@ void calculate_volumetric_multipliers() {
for (int i=0; i<EXTRUDERS; i++) for (int i=0; i<EXTRUDERS; i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
} }
#ifdef EXT_SOLENOID
void enable_solenoid(uint8_t num) {
switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if defined(SOL1_PIN) && SOL1_PIN > -1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if defined(SOL2_PIN) && SOL2_PIN > -1
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if defined(SOL3_PIN) && SOL3_PIN > -1
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
#endif //EXT_SOLENOID

@ -7,17 +7,13 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
CardReader::CardReader() {
CardReader::CardReader()
{
filesize = 0; filesize = 0;
sdpos = 0; sdpos = 0;
sdprinting = false; sdprinting = false;
cardOK = false; cardOK = false;
saving = false; saving = false;
logging = false; logging = false;
autostart_atmillis=0;
workDirDepth = 0; workDirDepth = 0;
file_subcall_ctr = 0; file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents)); memset(workDirParents, 0, sizeof(workDirParents));
@ -26,49 +22,35 @@ CardReader::CardReader()
autostart_index = 0; autostart_index = 0;
//power to SD reader //power to SD reader
#if SDPOWER > -1 #if SDPOWER > -1
SET_OUTPUT(SDPOWER); OUT_WRITE(SDPOWER, HIGH);
WRITE(SDPOWER,HIGH);
#endif //SDPOWER #endif //SDPOWER
autostart_atmillis = millis() + 5000; autostart_atmillis = millis() + 5000;
} }
char *createFilename(char *buffer,const dir_t &p) //buffer>12characters char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
{
char *pos = buffer; char *pos = buffer;
for (uint8_t i = 0; i < 11; i++) for (uint8_t i = 0; i < 11; i++) {
{
if (p.name[i] == ' ') continue; if (p.name[i] == ' ') continue;
if (i == 8) if (i == 8) *pos++ = '.';
{
*pos++='.';
}
*pos++ = p.name[i]; *pos++ = p.name[i];
} }
*pos++ = 0; *pos++ = 0;
return buffer; return buffer;
} }
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/)
{
dir_t p; dir_t p;
uint8_t cnt = 0; uint8_t cnt = 0;
while (parent.readDir(p, longFilename) > 0) while (parent.readDir(p, longFilename) > 0) {
{ if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
if( DIR_IS_SUBDIR(&p) && lsAction!=LS_Count && lsAction!=LS_GetFilename) // hence LS_SerialPrint
{
char path[FILENAME_LENGTH*2]; char path[FILENAME_LENGTH*2];
char lfilename[FILENAME_LENGTH]; char lfilename[FILENAME_LENGTH];
createFilename(lfilename, p); createFilename(lfilename, p);
path[0] = 0; path[0] = 0;
if(prepend[0]==0) //avoid leading / if already in prepend if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend
{
strcat(path,"/");
}
strcat(path, prepend); strcat(path, prepend);
strcat(path, lfilename); strcat(path, lfilename);
strcat(path, "/"); strcat(path, "/");
@ -76,10 +58,8 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
//Serial.print(path); //Serial.print(path);
SdFile dir; SdFile dir;
if(!dir.open(parent,lfilename, O_READ)) if (!dir.open(parent, lfilename, O_READ)) {
{ if (lsAction == LS_SerialPrint) {
if(lsAction==LS_SerialPrint)
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR); SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR);
SERIAL_ECHOLN(lfilename); SERIAL_ECHOLN(lfilename);
@ -87,96 +67,74 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
} }
lsDive(path, dir); lsDive(path, dir);
//close done automatically by destructor of SdFile //close done automatically by destructor of SdFile
} }
else else {
{
char pn0 = p.name[0]; char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break; if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.' || pn0 == '_') continue; if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0]; char lf0 = longFilename[0];
if (lf0 == '.' || lf0 == '_') continue; if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue; if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
filenameIsDir = DIR_IS_SUBDIR(&p); filenameIsDir = DIR_IS_SUBDIR(&p);
if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
if(!filenameIsDir)
{
if(p.name[8]!='G') continue;
if(p.name[9]=='~') continue;
}
//if (cnt++ != nr) continue; //if (cnt++ != nr) continue;
createFilename(filename, p); createFilename(filename, p);
if(lsAction==LS_SerialPrint) if (lsAction == LS_SerialPrint) {
{
SERIAL_PROTOCOL(prepend); SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOLLN(filename); SERIAL_PROTOCOLLN(filename);
} }
else if(lsAction==LS_Count) else if (lsAction == LS_Count) {
{
nrFiles++; nrFiles++;
} }
else if(lsAction==LS_GetFilename) else if (lsAction == LS_GetFilename) {
{
if (match != NULL) { if (match != NULL) {
if (strcasecmp(match, filename) == 0) return; if (strcasecmp(match, filename) == 0) return;
} }
else if (cnt == nrFiles) return; else if (cnt == nrFiles) return;
cnt++; cnt++;
} }
} }
} }
} }
void CardReader::ls() void CardReader::ls() {
{
lsAction = LS_SerialPrint; lsAction = LS_SerialPrint;
if(lsAction==LS_Count)
nrFiles=0;
root.rewind(); root.rewind();
lsDive("", root); lsDive("", root);
} }
void CardReader::initsd() {
void CardReader::initsd()
{
cardOK = false; cardOK = false;
if(root.isOpen()) if (root.isOpen()) root.close();
root.close();
#ifdef SDSLOW #ifdef SDSLOW
if (!card.init(SPI_HALF_SPEED,SDSS) #define SPI_SPEED SPI_HALF_SPEED
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_HALF_SPEED,LCD_SDSS)
#endif
)
#else #else
if (!card.init(SPI_FULL_SPEED,SDSS) #define SPI_SPEED SPI_FULL_SPEED
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_FULL_SPEED,LCD_SDSS)
#endif #endif
)
if (!card.init(SPI_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_SPEED, LCD_SDSS)
#endif #endif
{ ) {
//if (!card.init(SPI_HALF_SPEED,SDSS)) //if (!card.init(SPI_HALF_SPEED,SDSS))
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL); SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL);
} }
else if (!volume.init(&card)) else if (!volume.init(&card)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL);
} }
else if (!root.openRoot(&volume)) else if (!root.openRoot(&volume)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL);
} }
else else {
{
cardOK = true; cardOK = true;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_CARD_OK); SERIAL_ECHOLNPGM(MSG_SD_CARD_OK);
@ -184,62 +142,46 @@ void CardReader::initsd()
workDir = root; workDir = root;
curDir = &root; curDir = &root;
/* /*
if(!workDir.openRoot(&volume)) if (!workDir.openRoot(&volume)) {
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
} }
*/ */
} }
void CardReader::setroot() void CardReader::setroot() {
{ /*if (!workDir.openRoot(&volume)) {
/*if(!workDir.openRoot(&volume))
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}*/ }*/
workDir = root; workDir = root;
curDir = &workDir; curDir = &workDir;
} }
void CardReader::release()
{ void CardReader::release() {
sdprinting = false; sdprinting = false;
cardOK = false; cardOK = false;
} }
void CardReader::startFileprint() void CardReader::startFileprint() {
{ if (cardOK) {
if(cardOK)
{
sdprinting = true; sdprinting = true;
} }
} }
void CardReader::pauseSDPrint() void CardReader::pauseSDPrint() {
{ if (sdprinting) sdprinting = false;
if(sdprinting)
{
sdprinting = false;
} }
}
void CardReader::openLogFile(char* name) void CardReader::openLogFile(char* name) {
{
logging = true; logging = true;
openFile(name, false); openFile(name, false);
} }
void CardReader::getAbsFilename(char *t) void CardReader::getAbsFilename(char *t) {
{
uint8_t cnt = 0; uint8_t cnt = 0;
*t = '/'; t++; cnt++; *t = '/'; t++; cnt++;
for(uint8_t i=0;i<workDirDepth;i++) for (uint8_t i = 0; i < workDirDepth; i++) {
{
workDirParents[i].getFilename(t); //SDBaseFile.getfilename! workDirParents[i].getFilename(t); //SDBaseFile.getfilename!
while(*t!=0 && cnt< MAXPATHNAMELENGTH) while(*t && cnt < MAXPATHNAMELENGTH) { t++; cnt++; } //crawl counter forward.
{t++;cnt++;} //crawl counter forward.
} }
if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH) if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH)
file.getFilename(t); file.getFilename(t);
@ -247,16 +189,11 @@ void CardReader::getAbsFilename(char *t)
t[0] = 0; t[0] = 0;
} }
void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/) void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
{ if (!cardOK) return;
if(!cardOK) if (file.isOpen()) { //replacing current file by new file, or subfile call
return; if (!replace_current) {
if(file.isOpen()) //replacing current file by new file, or subfile call if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
{
if(!replace_current)
{
if((int)file_subcall_ctr>(int)SD_PROCEDURE_DEPTH-1)
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:"); SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
SERIAL_ERRORLN(SD_PROCEDURE_DEPTH); SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
@ -278,16 +215,14 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
filespos[file_subcall_ctr] = sdpos; filespos[file_subcall_ctr] = sdpos;
file_subcall_ctr++; file_subcall_ctr++;
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now doing file: "); SERIAL_ECHOPGM("Now doing file: ");
SERIAL_ECHOLN(name); SERIAL_ECHOLN(name);
} }
file.close(); file.close();
} }
else //opening fresh file else { //opening fresh file
{
file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now fresh file: "); SERIAL_ECHOPGM("Now fresh file: ");
@ -295,59 +230,49 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
} }
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir = &root; curDir = &root;
char *fname = name; char *fname = name;
char *dirname_start, *dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{ dirname_start = &name[1];
dirname_start=strchr(name,'/')+1; while(dirname_start > 0) {
while(dirname_start>0)
{
dirname_end = strchr(dirname_start, '/'); dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name)); //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name)); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if(dirname_end>0 && dirname_end>dirname_start) if (dirname_end > 0 && dirname_end > dirname_start) {
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end - dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir = &myDir; curDir = &myDir;
dirname_start = dirname_end + 1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{
fname = dirname_start; fname = dirname_start;
//SERIAL_ECHOLN("remaider"); //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { //relative path
{
curDir = &workDir; curDir = &workDir;
} }
if(read)
{ if (read) {
if (file.open(curDir, fname, O_READ)) if (file.open(curDir, fname, O_READ)) {
{
filesize = file.fileSize(); filesize = file.fileSize();
SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED); SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
@ -359,105 +284,87 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
getfilename(0, fname); getfilename(0, fname);
lcd_setstatus(longFilename[0] ? longFilename : fname); lcd_setstatus(longFilename[0] ? longFilename : fname);
} }
else else {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
} }
else else { //write
{ //write if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
else else {
{
saving = true; saving = true;
SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE); SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
SERIAL_PROTOCOLLN(name); SERIAL_PROTOCOLLN(name);
lcd_setstatus(fname); lcd_setstatus(fname);
} }
} }
} }
void CardReader::removeFile(char* name) void CardReader::removeFile(char* name) {
{ if (!cardOK) return;
if(!cardOK)
return;
file.close(); file.close();
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir = &root; curDir = &root;
char *fname = name; char *fname = name;
char *dirname_start, *dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{
dirname_start = strchr(name, '/') + 1; dirname_start = strchr(name, '/') + 1;
while(dirname_start>0) while (dirname_start > 0) {
{
dirname_end = strchr(dirname_start, '/'); dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name)); //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name)); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if(dirname_end>0 && dirname_end>dirname_start) if (dirname_end > 0 && dirname_end > dirname_start) {
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end - dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM("open failed, File: "); SERIAL_PROTOCOLPGM("open failed, File: ");
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir = &myDir; curDir = &myDir;
dirname_start = dirname_end + 1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{
fname = dirname_start; fname = dirname_start;
//SERIAL_ECHOLN("remaider"); //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { // relative path
{
curDir = &workDir; curDir = &workDir;
} }
if (file.remove(curDir, fname))
{ if (file.remove(curDir, fname)) {
SERIAL_PROTOCOLPGM("File deleted:"); SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname); SERIAL_PROTOCOLLN(fname);
sdpos = 0; sdpos = 0;
} }
else else {
{
SERIAL_PROTOCOLPGM("Deletion failed, File: "); SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
} }
void CardReader::getStatus() void CardReader::getStatus() {
{
if (cardOK) { if (cardOK) {
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE); SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
SERIAL_PROTOCOL(sdpos); SERIAL_PROTOCOL(sdpos);
@ -468,15 +375,14 @@ void CardReader::getStatus()
SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING); SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING);
} }
} }
void CardReader::write_command(char *buf)
{ void CardReader::write_command(char *buf) {
char* begin = buf; char* begin = buf;
char* npos = 0; char* npos = 0;
char* end = buf + strlen(buf) - 1; char* end = buf + strlen(buf) - 1;
file.writeError = false; file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL) if ((npos = strchr(buf, 'N')) != NULL) {
{
begin = strchr(npos, ' ') + 1; begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1; end = strchr(npos, '*') - 1;
} }
@ -484,52 +390,36 @@ void CardReader::write_command(char *buf)
end[2] = '\n'; end[2] = '\n';
end[3] = '\0'; end[3] = '\0';
file.write(begin); file.write(begin);
if (file.writeError) if (file.writeError) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE); SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE);
} }
} }
void CardReader::checkautostart(bool force) {
void CardReader::checkautostart(bool force) if (!force && (!autostart_stilltocheck || autostart_atmillis < millis()))
{
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return; return;
}
autostart_stilltocheck = false; autostart_stilltocheck = false;
if(!cardOK)
{ if (!cardOK) {
initsd(); initsd();
if(!cardOK) //fail if (!cardOK) return; // fail
return;
} }
char autoname[30]; char autoname[30];
sprintf_P(autoname, PSTR("auto%i.g"), autostart_index); sprintf_P(autoname, PSTR("auto%i.g"), autostart_index);
for(int8_t i=0;i<(int8_t)strlen(autoname);i++) for (int8_t i = 0; i < (int8_t)strlen(autoname); i++) autoname[i] = tolower(autoname[i]);
autoname[i]=tolower(autoname[i]);
dir_t p; dir_t p;
root.rewind(); root.rewind();
bool found = false; bool found = false;
while (root.readDir(p, NULL) > 0) while (root.readDir(p, NULL) > 0) {
{ for (int8_t i = 0; i < (int8_t)strlen((char*)p.name); i++) p.name[i] = tolower(p.name[i]);
for(int8_t i=0;i<(int8_t)strlen((char*)p.name);i++) if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30]; char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname); sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd); enquecommand(cmd);
enquecommands_P(PSTR("M24")); enquecommands_P(PSTR("M24"));
@ -542,35 +432,29 @@ void CardReader::checkautostart(bool force)
autostart_index++; autostart_index++;
} }
void CardReader::closefile(bool store_location) void CardReader::closefile(bool store_location) {
{
file.sync(); file.sync();
file.close(); file.close();
saving = false; saving = logging = false;
logging = false;
if(store_location) if (store_location) {
{
//future: store printer state, filename and position for continuing a stopped print //future: store printer state, filename and position for continuing a stopped print
// so one can unplug the printer and continue printing the next day. // so one can unplug the printer and continue printing the next day.
} }
} }
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) /**
{ * Get the name of a file in the current directory by index
*/
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) {
curDir = &workDir; curDir = &workDir;
lsAction = LS_GetFilename; lsAction = LS_GetFilename;
nrFiles = nr; nrFiles = nr;
curDir->rewind(); curDir->rewind();
lsDive("", *curDir, match); lsDive("", *curDir, match);
} }
uint16_t CardReader::getnrfilenames() uint16_t CardReader::getnrfilenames() {
{
curDir = &workDir; curDir = &workDir;
lsAction = LS_Count; lsAction = LS_Count;
nrFiles = 0; nrFiles = 0;
@ -580,66 +464,55 @@ uint16_t CardReader::getnrfilenames()
return nrFiles; return nrFiles;
} }
void CardReader::chdir(const char * relpath) void CardReader::chdir(const char * relpath) {
{
SdFile newfile; SdFile newfile;
SdFile *parent = &root; SdFile *parent = &root;
if(workDir.isOpen()) if (workDir.isOpen()) parent = &workDir;
parent=&workDir;
if(!newfile.open(*parent,relpath, O_READ)) if (!newfile.open(*parent, relpath, O_READ)) {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR); SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHOLN(relpath); SERIAL_ECHOLN(relpath);
} }
else else {
{
if (workDirDepth < MAX_DIR_DEPTH) { if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;) ++workDirDepth;
workDirParents[d+1] = workDirParents[d]; for (int d = workDirDepth; d--;) workDirParents[d + 1] = workDirParents[d];
workDirParents[0] = *parent; workDirParents[0] = *parent;
} }
workDir = newfile; workDir = newfile;
} }
} }
void CardReader::updir() void CardReader::updir() {
{ if (workDirDepth > 0) {
if(workDirDepth > 0)
{
--workDirDepth; --workDirDepth;
workDir = workDirParents[0]; workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++) for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1]; workDirParents[d] = workDirParents[d+1];
} }
} }
void CardReader::printingHasFinished() {
void CardReader::printingHasFinished()
{
st_synchronize(); st_synchronize();
if(file_subcall_ctr>0) //heading up to a parent file that called current as a procedure. if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
{
file.close(); file.close();
file_subcall_ctr--; file_subcall_ctr--;
openFile(filenames[file_subcall_ctr], true, true); openFile(filenames[file_subcall_ctr], true, true);
setIndex(filespos[file_subcall_ctr]); setIndex(filespos[file_subcall_ctr]);
startFileprint(); startFileprint();
} }
else else {
{
quickStop(); quickStop();
file.close(); file.close();
sdprinting = false; sdprinting = false;
if(SD_FINISHED_STEPPERRELEASE) if (SD_FINISHED_STEPPERRELEASE) {
{
//finishAndDisableSteppers(); //finishAndDisableSteppers();
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
} }
autotempShutdown(); autotempShutdown();
} }
} }
#endif //SDSUPPORT #endif //SDSUPPORT

@ -3,12 +3,12 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10 #define MAX_DIR_DEPTH 10 // Maximum folder depth
#include "SdFile.h" #include "SdFile.h"
enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename }; enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename };
class CardReader
{ class CardReader {
public: public:
CardReader(); CardReader();
@ -33,7 +33,6 @@ public:
void getAbsFilename(char *t); void getAbsFilename(char *t);
void ls(); void ls();
void chdir(const char * relpath); void chdir(const char * relpath);
void updir(); void updir();
@ -41,20 +40,15 @@ public:
FORCE_INLINE bool isFileOpen() { return file.isOpen(); } FORCE_INLINE bool isFileOpen() { return file.isOpen(); }
FORCE_INLINE bool eof() { return sdpos>=filesize ;}; FORCE_INLINE bool eof() { return sdpos >= filesize; }
FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();}; FORCE_INLINE int16_t get() { sdpos = file.curPosition(); return (int16_t)file.read(); }
FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);}; FORCE_INLINE void setIndex(long index) { sdpos = index; file.seekSet(index); }
FORCE_INLINE uint8_t percentDone(){if(!isFileOpen()) return 0; if(filesize) return sdpos/((filesize+99)/100); else return 0;}; FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;}; FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
public: public:
bool saving; bool saving, logging, sdprinting, cardOK, filenameIsDir;
bool logging; char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];
bool sdprinting;
bool cardOK;
char filename[FILENAME_LENGTH];
char longFilename[LONG_FILENAME_LENGTH];
bool filenameIsDir;
int autostart_index; int autostart_index;
private: private:
SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH]; SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH];
@ -68,18 +62,19 @@ private:
uint32_t filespos[SD_PROCEDURE_DEPTH]; uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH]; char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize; uint32_t filesize;
//int16_t n;
unsigned long autostart_atmillis; unsigned long autostart_atmillis;
uint32_t sdpos; uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware. bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
LsAction lsAction; //stored for recursion. LsAction lsAction; //stored for recursion.
int16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory. uint16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
char* diveDirName; char* diveDirName;
void lsDive(const char *prepend, SdFile parent, const char * const match=NULL); void lsDive(const char *prepend, SdFile parent, const char * const match=NULL);
}; };
extern CardReader card; extern CardReader card;
#define IS_SD_PRINTING (card.sdprinting) #define IS_SD_PRINTING (card.sdprinting)
#if (SDCARDDETECT > -1) #if (SDCARDDETECT > -1)
@ -87,9 +82,9 @@ extern CardReader card;
#define IS_SD_INSERTED (READ(SDCARDDETECT) != 0) #define IS_SD_INSERTED (READ(SDCARDDETECT) != 0)
#else #else
#define IS_SD_INSERTED (READ(SDCARDDETECT) == 0) #define IS_SD_INSERTED (READ(SDCARDDETECT) == 0)
# endif //SDCARDTETECTINVERTED #endif
#else #else
//If we don't have a card detect line, aways asume the card is inserted //No card detect line? Assume the card is inserted.
#define IS_SD_INSERTED true #define IS_SD_INSERTED true
#endif #endif
@ -98,4 +93,5 @@ extern CardReader card;
#define IS_SD_PRINTING (false) #define IS_SD_PRINTING (false)
#endif //SDSUPPORT #endif //SDSUPPORT
#endif
#endif //__CARDREADER_H

@ -1,6 +1,7 @@
#include "Configuration.h" #include "Configuration.h"
#ifdef DIGIPOT_I2C #ifdef DIGIPOT_I2C
#include "Stream.h" #include "Stream.h"
#include "utility/twi.h" #include "utility/twi.h"
#include "Wire.h" #include "Wire.h"
@ -18,8 +19,7 @@ static byte current_to_wiper( float current ){
return byte(ceil(float((DIGIPOT_I2C_FACTOR*current)))); return byte(ceil(float((DIGIPOT_I2C_FACTOR*current))));
} }
static void i2c_send(byte addr, byte a, byte b) static void i2c_send(byte addr, byte a, byte b) {
{
Wire.beginTransmission(addr); Wire.beginTransmission(addr);
Wire.write(a); Wire.write(a);
Wire.write(b); Wire.write(b);
@ -27,8 +27,7 @@ static void i2c_send(byte addr, byte a, byte b)
} }
// This is for the MCP4451 I2C based digipot // This is for the MCP4451 I2C based digipot
void digipot_i2c_set_current( int channel, float current ) void digipot_i2c_set_current(int channel, float current) {
{
current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT); current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT);
// these addresses are specific to Azteeg X3 Pro, can be set to others, // these addresses are specific to Azteeg X3 Pro, can be set to others,
// In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1 // In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1
@ -47,8 +46,7 @@ void digipot_i2c_set_current( int channel, float current )
i2c_send(addr, addresses[channel], current_to_wiper(current)); i2c_send(addr, addresses[channel], current_to_wiper(current));
} }
void digipot_i2c_init() void digipot_i2c_init() {
{
const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS; const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS;
Wire.begin(); Wire.begin();
// setup initial currents as defined in Configuration_adv.h // setup initial currents as defined in Configuration_adv.h
@ -56,4 +54,5 @@ void digipot_i2c_init()
digipot_i2c_set_current(i, digipot_motor_current[i]); digipot_i2c_set_current(i, digipot_motor_current[i]);
} }
} }
#endif
#endif //DIGIPOT_I2C

@ -27,10 +27,6 @@
#define EN_A (1<<BLEN_A) #define EN_A (1<<BLEN_A)
#define EN_B (1<<BLEN_B) #define EN_B (1<<BLEN_B)
#define EN_C (1<<BLEN_C) #define EN_C (1<<BLEN_C)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#endif #endif

@ -83,6 +83,9 @@
/// check if pin is an timer wrapper /// check if pin is an timer wrapper
#define GET_TIMER(IO) _GET_TIMER(IO) #define GET_TIMER(IO) _GET_TIMER(IO)
// Shorthand
#define OUT_WRITE(IO, v) { SET_OUTPUT(IO); WRITE(IO, v); }
/* /*
ports and functions ports and functions

@ -121,6 +121,7 @@
#define MSG_UNKNOWN_COMMAND "Unknown command: \"" #define MSG_UNKNOWN_COMMAND "Unknown command: \""
#define MSG_ACTIVE_EXTRUDER "Active Extruder: " #define MSG_ACTIVE_EXTRUDER "Active Extruder: "
#define MSG_INVALID_EXTRUDER "Invalid extruder" #define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_X_MIN "x_min: " #define MSG_X_MIN "x_min: "
#define MSG_X_MAX "x_max: " #define MSG_X_MAX "x_max: "
#define MSG_Y_MIN "y_min: " #define MSG_Y_MIN "y_min: "

@ -87,9 +87,3 @@
// Cheaptronic v1.0 does not use this port // Cheaptronic v1.0 does not use this port
#define SDCARDDETECT -1 #define SDCARDDETECT -1
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

@ -74,12 +74,6 @@
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_A 0 #define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif // RA_CONTROL_PANEL #endif // RA_CONTROL_PANEL
#ifdef RA_DISCO #ifdef RA_DISCO

@ -83,10 +83,4 @@
#define SDCARDDETECT -1 // Ramps does not use this port #define SDCARDDETECT -1 // Ramps does not use this port
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif // ULTRA_LCD && NEWPANEL #endif // ULTRA_LCD && NEWPANEL

@ -80,9 +80,3 @@
#define BLEN_A 0 #define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port #define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

@ -95,9 +95,3 @@
#define BLEN_A 0 #define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port #define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

@ -95,9 +95,3 @@
#define BLEN_A 0 #define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port #define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

@ -116,11 +116,6 @@
#define SDCARDDETECT 81 // Ramps does not use this port #define SDCARDDETECT 81 // Ramps does not use this port
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else //!NEWPANEL - old style panel with shift register #else //!NEWPANEL - old style panel with shift register
//arduino pin witch triggers an piezzo beeper //arduino pin witch triggers an piezzo beeper
#define BEEPER 33 No Beeper added #define BEEPER 33 No Beeper added
@ -138,12 +133,6 @@
#define LCD_PINS_D6 27 #define LCD_PINS_D6 27
#define LCD_PINS_D7 29 #define LCD_PINS_D7 29
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//bits in the shift register that carry the buttons for: //bits in the shift register that carry the buttons for:
// left up center down right red // left up center down right red
#define BL_LE 7 #define BL_LE 7

@ -187,7 +187,7 @@ void checkHitEndstops()
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
} }
SERIAL_ECHOLN(""); SERIAL_EOL;
endstop_x_hit=false; endstop_x_hit=false;
endstop_y_hit=false; endstop_y_hit=false;
endstop_z_hit=false; endstop_z_hit=false;
@ -399,24 +399,24 @@ ISR(TIMER1_COMPA_vect)
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
} }
// Set direction en check limit switches if(check_endstops) // check X and Y Endstops
{
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif #endif
{ { // -direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -425,20 +425,17 @@ ISR(TIMER1_COMPA_vect)
#endif #endif
} }
} }
}
else else
{ // +direction { // +direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif #endif
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -447,19 +444,18 @@ ISR(TIMER1_COMPA_vect)
#endif #endif
} }
} }
}
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
#endif #endif
{ { // -direction
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -467,20 +463,19 @@ ISR(TIMER1_COMPA_vect)
old_y_min_endstop = y_min_endstop; old_y_min_endstop = y_min_endstop;
#endif #endif
} }
}
else else
{ // +direction { // +direction
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
old_y_max_endstop = y_max_endstop; old_y_max_endstop = y_max_endstop;
#endif #endif
} }
} }
@ -964,51 +959,41 @@ void st_init()
//Initialize Step Pins //Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1) #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN); OUT_WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
disable_x(); disable_x();
#endif #endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN); OUT_WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x(); disable_x();
#endif #endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN); OUT_WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1) #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN); OUT_WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif #endif
disable_y(); disable_y();
#endif #endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN); OUT_WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN); OUT_WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif #endif
disable_z(); disable_z();
#endif #endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN); OUT_WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0(); disable_e0();
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN); OUT_WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1(); disable_e1();
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN); OUT_WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2(); disable_e2();
#endif #endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1) #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
SET_OUTPUT(E3_STEP_PIN); OUT_WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
disable_e3(); disable_e3();
#endif #endif

@ -901,21 +901,15 @@ void tp_init()
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT #ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN); OUT_WRITE(SCK_PIN, LOW);
WRITE(SCK_PIN,0); OUT_WRITE(MOSI_PIN, HIGH);
OUT_WRITE(MISO_PIN, HIGH);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
#else #else
pinMode(SS_PIN, OUTPUT); pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH); digitalWrite(SS_PIN, HIGH);
#endif #endif
SET_OUTPUT(MAX6675_SS); OUT_WRITE(MAX6675_SS,HIGH);
WRITE(MAX6675_SS,1);
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675

@ -1394,6 +1394,17 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#ifdef ULTIPANEL #ifdef ULTIPANEL
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
/* Warning: This function is called from interrupt context */ /* Warning: This function is called from interrupt context */
void lcd_buttons_update() { void lcd_buttons_update() {
#ifdef NEWPANEL #ifdef NEWPANEL

@ -123,17 +123,6 @@
#define LCD_CLICKED (buttons&(B_MI|B_ST)) #define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif #endif
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#endif //ULTIPANEL #endif //ULTIPANEL
//////////////////////////////////// ////////////////////////////////////
@ -833,31 +822,27 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
static void lcd_implementation_quick_feedback() static void lcd_implementation_quick_feedback()
{ {
#ifdef LCD_USE_I2C_BUZZER #ifdef LCD_USE_I2C_BUZZER
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) #if defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) && defined(LCD_FEEDBACK_FREQUENCY_HZ)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#else
lcd_buzz(1000/6, 100);
#endif #endif
#elif defined(BEEPER) && BEEPER > -1 #elif defined(BEEPER) && BEEPER > -1
SET_OUTPUT(BEEPER); SET_OUTPUT(BEEPER);
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
for(int8_t i=0;i<10;i++) const unsigned int delay = 100;
{ uint8_t i = 10;
WRITE(BEEPER,HIGH);
delayMicroseconds(100);
WRITE(BEEPER,LOW);
delayMicroseconds(100);
}
#else #else
for(int8_t i=0;i<(LCD_FEEDBACK_FREQUENCY_DURATION_MS / (1000 / LCD_FEEDBACK_FREQUENCY_HZ));i++) const unsigned int delay = 1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2;
{ int8_t i = LCD_FEEDBACK_FREQUENCY_DURATION_MS * LCD_FEEDBACK_FREQUENCY_HZ / 1000;
#endif
while (i--) {
WRITE(BEEPER,HIGH); WRITE(BEEPER,HIGH);
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2); delayMicroseconds(delay);
WRITE(BEEPER,LOW); WRITE(BEEPER,LOW);
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2); delayMicroseconds(delay);
} }
#endif #endif
#endif
} }
#ifdef LCD_HAS_STATUS_INDICATORS #ifdef LCD_HAS_STATUS_INDICATORS

@ -47,12 +47,9 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
{ {
case U8G_DEV_MSG_INIT: case U8G_DEV_MSG_INIT:
{ {
SET_OUTPUT(ST7920_CS_PIN); OUT_WRITE(ST7920_CS_PIN,LOW);
WRITE(ST7920_CS_PIN,0); OUT_WRITE(ST7920_DAT_PIN,LOW);
SET_OUTPUT(ST7920_DAT_PIN); OUT_WRITE(ST7920_CLK_PIN,HIGH);
WRITE(ST7920_DAT_PIN,0);
SET_OUTPUT(ST7920_CLK_PIN);
WRITE(ST7920_CLK_PIN,1);
ST7920_CS(); ST7920_CS();
u8g_Delay(120); //initial delay for boot up u8g_Delay(120); //initial delay for boot up

Loading…
Cancel
Save