Feedrate scaling for G2/G3

master
Scott Lahteine 7 years ago
parent 4f375cd17d
commit fdd85a529a

@ -13184,7 +13184,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segments=", segments);
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) #if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s // SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s; inverse_secs = inv_segment_length * _feedrate_mm_s;
@ -13216,30 +13216,25 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s // For SCARA scale the feed rate from mm/s to degrees/s
// Use ratio between the length of the move and the larger angle change // Use ratio between the length of the move and the larger angle change
const float adiff = abs(delta[A_AXIS] - oldA), const float adiff = FABS(delta[A_AXIS] - oldA), bdiff = FABS(delta[B_AXIS] - oldB);
bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(adiff, bdiff) * inverse_secs, active_extruder);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder); oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
oldA = delta[A_AXIS];
oldB = delta[B_AXIS];
#else #else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
#endif #endif
} }
// Since segment_distance is only approximate, // Since segment_distance is only approximate,
// the final move must be to the exact destination. // the final move must be to the exact destination.
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// With segments > 1 length is 1 segment, otherwise total length
inverse_kinematics(rtarget); inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget); ADJUST_DELTA(rtarget);
const float adiff = abs(delta[A_AXIS] - oldA), const float adiff = FABS(delta[A_AXIS] - oldA), bdiff = FABS(delta[B_AXIS] - oldB);
bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], HYPOT(adiff, bdiff) * inverse_secs, active_extruder);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
#else #else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder); planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
#endif #endif
@ -13509,7 +13504,7 @@ void prepare_move_to_destination() {
* This is important when there are successive arc motions. * This is important when there are successive arc motions.
*/ */
// Vector rotation matrix values // Vector rotation matrix values
float arc_target[XYZE]; float raw[XYZE];
const float theta_per_segment = angular_travel / segments, const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments, linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments, extruder_per_segment = extruder_travel / segments,
@ -13517,10 +13512,10 @@ void prepare_move_to_destination() {
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis // Initialize the linear axis
arc_target[l_axis] = current_position[l_axis]; raw[l_axis] = current_position[l_axis];
// Initialize the extruder axis // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS]; raw[E_AXIS] = current_position[E_AXIS];
const float fr_mm_s = MMS_SCALED(feedrate_mm_s); const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
@ -13530,6 +13525,14 @@ void prepare_move_to_destination() {
int8_t arc_recalc_count = N_ARC_CORRECTION; int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif #endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater(); thermalManager.manage_heater();
@ -13561,19 +13564,43 @@ void prepare_move_to_destination() {
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti; r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
} }
// Update arc_target location // Update raw location
arc_target[p_axis] = center_P + r_P; raw[p_axis] = center_P + r_P;
arc_target[q_axis] = center_Q + r_Q; raw[q_axis] = center_Q + r_Q;
arc_target[l_axis] += linear_per_segment; raw[l_axis] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment; raw[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target); clamp_to_software_endstops(raw);
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder); #if IS_KINEMATIC
#if ENABLED(DELTA)
DELTA_RAW_IK(); // Delta can inline its kinematics
#else
inverse_kinematics(raw);
#endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
#endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// With segments > 1 length is 1 segment, otherwise total length
const float adiff = FABS(delta[A_AXIS] - oldA), bdiff = FABS(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(adiff, bdiff) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); #if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
const float adiff = FABS(delta[A_AXIS] - oldA), bdiff = FABS(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], HYPOT(adiff, bdiff) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

Loading…
Cancel
Save