With these changes the output of `M503 S0` is all you need to restore
the EEPROM. Building on this it is straightforward to save and restore
the EEPROM state using the SD card or external GCode file.
- Added `M145` to set “heatup states” for the LCD menu
- Added `M420` to toggle Mesh Bed Leveling
- Added `M421` to set a single Mesh coordinate
- Extended `Config_PrintSettings` with added M codes
- Cleaned up some comments here and there
- Add some documentation to planner and stepper headers
- Patch up RAMBO pins with undefs
- Add `sync_plan_position` inline to set current XYZE
- Swap indices in `extruder_offset` to fix initialization values
- Use named axis indexes, `X_AXIS` etc.
- Replace `block.steps_A` with block.steps[A]`
- Replace `A_segment_time` with `segment_time[A]`
- Add `A_AXIS`, `B_AXIS` for `COREXY` axes
- Conditional compile based on `EXTRUDERS`
- Add BLOCK_MOD macro for planner block indexes
- Apply coding standards to `planner.h` and `planner.cpp`
- Small optimizations of planner code
- Update `stepper.cpp` for new `block` struct
- Replace `memcpy` with loops, let the compiler unroll them
- Make `movesplanned` into an inline function
Added option to set Travel Acceleration (non printing moves).
The M204 options was a non sense (S for printing moves and T for retract
moves).
It has been changed to:
P = Printing moves
R = Retract only (no X, Y, Z) moves
T = Travel (non
printing) moves
I will add this info o G-Code wiki in reprap.org. I also advise to put
this info in Marlin next version changelog.
- Nonlinear auto bed leveling code (includes G29, G30, Z_RAISE_AFTER_PROBING). Cleaned it up to be a delta-specific AUTO_BED_LEVELING_GRID code path.
- Allen key z-probe deployment and retraction code. Cleaned it up and added safety checks.
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h