You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							882 lines
						
					
					
						
							35 KiB
						
					
					
				
			
		
		
	
	
							882 lines
						
					
					
						
							35 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Marlin Firmware -- G26 - Mesh Validation Tool
 | |
|  */
 | |
| 
 | |
| #include "MarlinConfig.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
 | |
| 
 | |
|   #include "ubl.h"
 | |
|   #include "Marlin.h"
 | |
|   #include "planner.h"
 | |
|   #include "stepper.h"
 | |
|   #include "temperature.h"
 | |
|   #include "ultralcd.h"
 | |
| 
 | |
|   #define EXTRUSION_MULTIPLIER 1.0
 | |
|   #define RETRACTION_MULTIPLIER 1.0
 | |
|   #define NOZZLE 0.4
 | |
|   #define FILAMENT 1.75
 | |
|   #define LAYER_HEIGHT 0.2
 | |
|   #define PRIME_LENGTH 10.0
 | |
|   #define BED_TEMP 60.0
 | |
|   #define HOTEND_TEMP 205.0
 | |
|   #define OOZE_AMOUNT 0.3
 | |
| 
 | |
|   #define SIZE_OF_INTERSECTION_CIRCLES 5
 | |
|   #define SIZE_OF_CROSSHAIRS 3
 | |
| 
 | |
|   #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
 | |
|     #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    *   G26 Mesh Validation Tool
 | |
|    *
 | |
|    *   G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
 | |
|    *   In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
 | |
|    *   be defined.  G29 is designed to allow the user to quickly validate the correctness of her Mesh.  It will
 | |
|    *   first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
 | |
|    *   the intersections of those lines (respectively).
 | |
|    *
 | |
|    *   This action allows the user to immediately see where the Mesh is properly defined and where it needs to
 | |
|    *   be edited.  The command will generate the Mesh lines closest to the nozzle's starting position.  Alternatively
 | |
|    *   the user can specify the X and Y position of interest with command parameters.  This allows the user to
 | |
|    *   focus on a particular area of the Mesh where attention is needed.
 | |
|    *
 | |
|    *   B #  Bed   Set the Bed Temperature.  If not specified, a default of 60 C. will be assumed.
 | |
|    *
 | |
|    *   C    Current   When searching for Mesh Intersection points to draw, use the current nozzle location
 | |
|    *        as the base for any distance comparison.
 | |
|    *
 | |
|    *   D    Disable   Disable the Unified Bed Leveling System.  In the normal case the user is invoking this
 | |
|    *        command to see how well a Mesh as been adjusted to match a print surface.  In order to do
 | |
|    *        this the Unified Bed Leveling System is turned on by the G26 command.  The D parameter
 | |
|    *        alters the command's normal behaviour and disables the Unified Bed Leveling System even if
 | |
|    *        it is on.
 | |
|    *
 | |
|    *   H #  Hotend    Set the Nozzle Temperature.  If not specified, a default of 205 C. will be assumed.
 | |
|    *
 | |
|    *   F #  Filament  Used to specify the diameter of the filament being used.  If not specified
 | |
|    *        1.75mm filament is assumed.  If you are not getting acceptable results by using the
 | |
|    *        'correct' numbers, you can scale this number up or down a little bit to change the amount
 | |
|    *        of filament that is being extruded during the printing of the various lines on the bed.
 | |
|    *
 | |
|    *   K    Keep-On   Keep the heaters turned on at the end of the command.
 | |
|    *
 | |
|    *   L #  Layer   Layer height.  (Height of nozzle above bed)  If not specified .20mm will be used.
 | |
|    *
 | |
|    *   Q #  Multiplier  Retraction Multiplier.  Normally not needed.  Retraction defaults to 1.0mm and
 | |
|    *        un-retraction is at 1.2mm   These numbers will be scaled by the specified amount
 | |
|    *
 | |
|    *   N #  Nozzle    Used to control the size of nozzle diameter.  If not specified, a .4mm nozzle is assumed.
 | |
|    *        'n' can be used instead if your host program does not appreciate you using 'N'.
 | |
|    *
 | |
|    *   O #  Ooooze    How much your nozzle will Ooooze filament while getting in position to print.  This
 | |
|    *        is over kill, but using this parameter will let you get the very first 'cicle' perfect
 | |
|    *        so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
 | |
|    *        Mesh calibrated.  If not specified, a filament length of .3mm is assumed.
 | |
|    *
 | |
|    *   P #  Prime   Prime the nozzle with specified length of filament.  If this parameter is not
 | |
|    *        given, no prime action will take place.  If the parameter specifies an amount, that much
 | |
|    *        will be purged before continuing.  If no amount is specified the command will start
 | |
|    *        purging filament until the user provides an LCD Click and then it will continue with
 | |
|    *        printing the Mesh.  You can carefully remove the spent filament with a needle nose
 | |
|    *        pliers while holding the LCD Click wheel in a depressed state.
 | |
|    *
 | |
|    *   R #  Random    Randomize the order that the circles are drawn on the bed.  The search for the closest
 | |
|    *        undrawn cicle is still done.  But the distance to the location for each circle has a
 | |
|    *        random number of the size specified added to it.  Specifying R50 will give an interesting
 | |
|    *        deviation from the normal behaviour on a 10 x 10 Mesh.
 | |
|    *
 | |
|    *   X #  X coordinate  Specify the starting location of the drawing activity.
 | |
|    *
 | |
|    *   Y #  Y coordinate  Specify the starting location of the drawing activity.
 | |
|    */
 | |
| 
 | |
|   // External references
 | |
| 
 | |
|   extern float feedrate;
 | |
|   extern Planner planner;
 | |
|   #if ENABLED(ULTRA_LCD)
 | |
|     extern char lcd_status_message[];
 | |
|   #endif
 | |
|   extern float destination[XYZE];
 | |
|   void set_destination_to_current();
 | |
|   void set_current_to_destination();
 | |
|   float code_value_float();
 | |
|   float code_value_linear_units();
 | |
|   float code_value_axis_units(const AxisEnum axis);
 | |
|   bool code_value_bool();
 | |
|   bool code_has_value();
 | |
|   void lcd_init();
 | |
|   void lcd_setstatuspgm(const char* const message, const uint8_t level);
 | |
|   bool prepare_move_to_destination_cartesian();
 | |
|   void line_to_destination();
 | |
|   void line_to_destination(float);
 | |
|   void sync_plan_position_e();
 | |
|   void chirp_at_user();
 | |
| 
 | |
|   // Private functions
 | |
| 
 | |
|   void un_retract_filament(float where[XYZE]);
 | |
|   void retract_filament(float where[XYZE]);
 | |
|   void look_for_lines_to_connect();
 | |
|   bool parse_G26_parameters();
 | |
|   void move_to(const float&, const float&, const float&, const float&) ;
 | |
|   void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
 | |
|   bool turn_on_heaters();
 | |
|   bool prime_nozzle();
 | |
| 
 | |
|   static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
 | |
|   float g26_e_axis_feedrate = 0.020,
 | |
|         random_deviation = 0.0,
 | |
|         layer_height = LAYER_HEIGHT;
 | |
| 
 | |
|   static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
 | |
|                                      // retracts/recovers won't result in a bad state.
 | |
| 
 | |
|   float valid_trig_angle(float);
 | |
|   mesh_index_pair find_closest_circle_to_print(const float&, const float&);
 | |
| 
 | |
|   static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
 | |
|                retraction_multiplier = RETRACTION_MULTIPLIER,
 | |
|                nozzle = NOZZLE,
 | |
|                filament_diameter = FILAMENT,
 | |
|                prime_length = PRIME_LENGTH,
 | |
|                x_pos, y_pos,
 | |
|                ooze_amount = OOZE_AMOUNT;
 | |
| 
 | |
|   static int16_t bed_temp = BED_TEMP,
 | |
|                  hotend_temp = HOTEND_TEMP;
 | |
| 
 | |
|   static int8_t prime_flag = 0;
 | |
| 
 | |
|   static bool keep_heaters_on = false;
 | |
| 
 | |
|   /**
 | |
|    * G26: Mesh Validation Pattern generation.
 | |
|    *
 | |
|    * Used to interactively edit UBL's Mesh by placing the
 | |
|    * nozzle in a problem area and doing a G29 P4 R command.
 | |
|    */
 | |
|   void gcode_G26() {
 | |
|     SERIAL_ECHOLNPGM("G26 command started.  Waiting for heater(s).");
 | |
|     float tmp, start_angle, end_angle;
 | |
|     int   i, xi, yi;
 | |
|     mesh_index_pair location;
 | |
| 
 | |
|     // Don't allow Mesh Validation without homing first,
 | |
|     // or if the parameter parsing did not go OK, abort
 | |
|     if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
 | |
| 
 | |
|     if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
 | |
|       do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
 | |
|       stepper.synchronize();
 | |
|       set_current_to_destination();
 | |
|     }
 | |
| 
 | |
|     if (turn_on_heaters()) goto LEAVE;
 | |
| 
 | |
|     current_position[E_AXIS] = 0.0;
 | |
|     sync_plan_position_e();
 | |
| 
 | |
|     if (prime_flag && prime_nozzle()) goto LEAVE;
 | |
| 
 | |
|     /**
 | |
|      *  Bed is preheated
 | |
|      *
 | |
|      *  Nozzle is at temperature
 | |
|      *
 | |
|      *  Filament is primed!
 | |
|      *
 | |
|      *  It's  "Show Time" !!!
 | |
|      */
 | |
| 
 | |
|     ZERO(circle_flags);
 | |
|     ZERO(horizontal_mesh_line_flags);
 | |
|     ZERO(vertical_mesh_line_flags);
 | |
| 
 | |
|     // Move nozzle to the specified height for the first layer
 | |
|     set_destination_to_current();
 | |
|     destination[Z_AXIS] = layer_height;
 | |
|     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
 | |
|     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
 | |
| 
 | |
|     ubl.has_control_of_lcd_panel = true;
 | |
|     //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
 | |
| 
 | |
|     /**
 | |
|      * Declare and generate a sin() & cos() table to be used during the circle drawing.  This will lighten
 | |
|      * the CPU load and make the arc drawing faster and more smooth
 | |
|      */
 | |
|     float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
 | |
|     for (i = 0; i <= 360 / 30; i++) {
 | |
|       cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
 | |
|       sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
 | |
|     }
 | |
| 
 | |
|     do {
 | |
| 
 | |
|       if (ubl_lcd_clicked()) {              // Check if the user wants to stop the Mesh Validation
 | |
|         #if ENABLED(ULTRA_LCD)
 | |
|           lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
 | |
|           lcd_quick_feedback();
 | |
|         #endif
 | |
|         while (!ubl_lcd_clicked()) {         // Wait until the user is done pressing the
 | |
|           idle();                            // Encoder Wheel if that is why we are leaving
 | |
|           lcd_reset_alert_level();
 | |
|           lcd_setstatuspgm(PSTR(""));
 | |
|         }
 | |
|         while (ubl_lcd_clicked()) {          // Wait until the user is done pressing the
 | |
|           idle();                            // Encoder Wheel if that is why we are leaving
 | |
|           lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
 | |
|         }
 | |
|         goto LEAVE;
 | |
|       }
 | |
| 
 | |
|       location = continue_with_closest
 | |
|         ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
 | |
|         : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
 | |
| 
 | |
|       if (location.x_index >= 0 && location.y_index >= 0) {
 | |
|         const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
 | |
|                     circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
 | |
| 
 | |
|         // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
 | |
|         #ifdef DELTA
 | |
|           if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
 | |
|             SERIAL_ERROR_START;
 | |
|             SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
 | |
|             goto LEAVE;
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         // TODO: Change this to use `position_is_reachable`
 | |
|         if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
 | |
|           SERIAL_ERROR_START;
 | |
|           SERIAL_ERRORLNPGM("Attempt to print off the bed.");
 | |
|           goto LEAVE;
 | |
|         }
 | |
| 
 | |
|         xi = location.x_index;  // Just to shrink the next few lines and make them easier to understand
 | |
|         yi = location.y_index;
 | |
| 
 | |
|         if (ubl.g26_debug_flag) {
 | |
|           SERIAL_ECHOPAIR("   Doing circle at: (xi=", xi);
 | |
|           SERIAL_ECHOPAIR(", yi=", yi);
 | |
|           SERIAL_CHAR(')');
 | |
|           SERIAL_EOL;
 | |
|         }
 | |
| 
 | |
|         start_angle = 0.0;    // assume it is going to be a full circle
 | |
|         end_angle   = 360.0;
 | |
|         if (xi == 0) {       // Check for bottom edge
 | |
|           start_angle = -90.0;
 | |
|           end_angle   =  90.0;
 | |
|           if (yi == 0)        // it is an edge, check for the two left corners
 | |
|             start_angle = 0.0;
 | |
|           else if (yi == GRID_MAX_POINTS_Y - 1)
 | |
|             end_angle = 0.0;
 | |
|         }
 | |
|         else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
 | |
|           start_angle =  90.0;
 | |
|           end_angle   = 270.0;
 | |
|           if (yi == 0)                  // it is an edge, check for the two right corners
 | |
|             end_angle = 180.0;
 | |
|           else if (yi == GRID_MAX_POINTS_Y - 1)
 | |
|             start_angle = 180.0;
 | |
|         }
 | |
|         else if (yi == 0) {
 | |
|           start_angle =   0.0;         // only do the top   side of the cirlce
 | |
|           end_angle   = 180.0;
 | |
|         }
 | |
|         else if (yi == GRID_MAX_POINTS_Y - 1) {
 | |
|           start_angle = 180.0;         // only do the bottom side of the cirlce
 | |
|           end_angle   = 360.0;
 | |
|         }
 | |
| 
 | |
|         for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
 | |
|           int tmp_div_30 = tmp / 30.0;
 | |
|           if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
 | |
|           if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
 | |
| 
 | |
|           float x = circle_x + cos_table[tmp_div_30],    // for speed, these are now a lookup table entry
 | |
|                 y = circle_y + sin_table[tmp_div_30],
 | |
|                 xe = circle_x + cos_table[tmp_div_30 + 1],
 | |
|                 ye = circle_y + sin_table[tmp_div_30 + 1];
 | |
|           #ifdef DELTA
 | |
|             if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS))   // Check to make sure this part of
 | |
|               continue;                                      // the 'circle' is on the bed.  If
 | |
|           #else                                              // not, we need to skip
 | |
|             x  = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
 | |
|             y  = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | |
|             xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
 | |
|             ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | |
|           #endif
 | |
| 
 | |
|           //if (ubl.g26_debug_flag) {
 | |
|           //  char ccc, *cptr, seg_msg[50], seg_num[10];
 | |
|           //  strcpy(seg_msg, "   segment: ");
 | |
|           //  strcpy(seg_num, "    \n");
 | |
|           //  cptr = (char*) "01234567890ABCDEF????????";
 | |
|           //  ccc = cptr[tmp_div_30];
 | |
|           //  seg_num[1] = ccc;
 | |
|           //  strcat(seg_msg, seg_num);
 | |
|           //  debug_current_and_destination(seg_msg);
 | |
|           //}
 | |
| 
 | |
|           print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         //debug_current_and_destination(PSTR("Looking for lines to connect."));
 | |
|         look_for_lines_to_connect();
 | |
|         //debug_current_and_destination(PSTR("Done with line connect."));
 | |
|       }
 | |
| 
 | |
|       //debug_current_and_destination(PSTR("Done with current circle."));
 | |
| 
 | |
|     } while (location.x_index >= 0 && location.y_index >= 0);
 | |
| 
 | |
|     LEAVE:
 | |
|     lcd_reset_alert_level();
 | |
|     lcd_setstatuspgm(PSTR("Leaving G26"));
 | |
| 
 | |
|     retract_filament(destination);
 | |
|     destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
 | |
| 
 | |
|     //debug_current_and_destination(PSTR("ready to do Z-Raise."));
 | |
|     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
 | |
|     //debug_current_and_destination(PSTR("done doing Z-Raise."));
 | |
| 
 | |
|     destination[X_AXIS] = x_pos;                                               // Move back to the starting position
 | |
|     destination[Y_AXIS] = y_pos;
 | |
|     //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                        // Keep the nozzle where it is
 | |
| 
 | |
|     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
 | |
|     //debug_current_and_destination(PSTR("done doing X/Y move."));
 | |
| 
 | |
|     ubl.has_control_of_lcd_panel = false;     // Give back control of the LCD Panel!
 | |
| 
 | |
|     if (!keep_heaters_on) {
 | |
|       #if HAS_TEMP_BED
 | |
|         thermalManager.setTargetBed(0);
 | |
|       #endif
 | |
|       thermalManager.setTargetHotend(0, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   float valid_trig_angle(float d) {
 | |
|     while (d > 360.0) d -= 360.0;
 | |
|     while (d < 0.0) d += 360.0;
 | |
|     return d;
 | |
|   }
 | |
| 
 | |
|   mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
 | |
|     float closest = 99999.99;
 | |
|     mesh_index_pair return_val;
 | |
| 
 | |
|     return_val.x_index = return_val.y_index = -1;
 | |
| 
 | |
|     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
 | |
|       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
 | |
|         if (!is_bit_set(circle_flags, i, j)) {
 | |
|           const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]),  // We found a circle that needs to be printed
 | |
|                       my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
 | |
| 
 | |
|           // Get the distance to this intersection
 | |
|           float f = HYPOT(X - mx, Y - my);
 | |
| 
 | |
|           // It is possible that we are being called with the values
 | |
|           // to let us find the closest circle to the start position.
 | |
|           // But if this is not the case, add a small weighting to the
 | |
|           // distance calculation to help it choose a better place to continue.
 | |
|           f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
 | |
| 
 | |
|           // Add in the specified amount of Random Noise to our search
 | |
|           if (random_deviation > 1.0)
 | |
|             f += random(0.0, random_deviation);
 | |
| 
 | |
|           if (f < closest) {
 | |
|             closest = f;              // We found a closer location that is still
 | |
|             return_val.x_index = i;   // un-printed  --- save the data for it
 | |
|             return_val.y_index = j;
 | |
|             return_val.distance = closest;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     bit_set(circle_flags, return_val.x_index, return_val.y_index);   // Mark this location as done.
 | |
|     return return_val;
 | |
|   }
 | |
| 
 | |
|   void look_for_lines_to_connect() {
 | |
|     float sx, sy, ex, ey;
 | |
| 
 | |
|     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
 | |
|       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
 | |
| 
 | |
|         if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
 | |
|                                          // This is already a half circle because we are at the edge of the bed.
 | |
| 
 | |
|           if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
 | |
|             if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
 | |
| 
 | |
|               //
 | |
|               // We found two circles that need a horizontal line to connect them
 | |
|               // Print it!
 | |
|               //
 | |
|               sx = pgm_read_float(&ubl.mesh_index_to_xpos[  i  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
 | |
|               ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
 | |
| 
 | |
|               sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
 | |
|               sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
 | |
|               ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
 | |
| 
 | |
|               if (ubl.g26_debug_flag) {
 | |
|                 SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
 | |
|                 SERIAL_ECHOPAIR(", sy=", sy);
 | |
|                 SERIAL_ECHOPAIR(") -> (ex=", ex);
 | |
|                 SERIAL_ECHOPAIR(", ey=", ey);
 | |
|                 SERIAL_CHAR(')');
 | |
|                 SERIAL_EOL;
 | |
|                 //debug_current_and_destination(PSTR("Connecting horizontal line."));
 | |
|               }
 | |
| 
 | |
|               print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
 | |
|               bit_set(horizontal_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
 | |
|                                            // This is already a half circle because we are at the edge  of the bed.
 | |
| 
 | |
|             if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
 | |
|               if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
 | |
|                 //
 | |
|                 // We found two circles that need a vertical line to connect them
 | |
|                 // Print it!
 | |
|                 //
 | |
|                 sy = pgm_read_float(&ubl.mesh_index_to_ypos[  j  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
 | |
|                 ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
 | |
| 
 | |
|                 sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
 | |
|                 sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | |
|                 ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | |
| 
 | |
|                 if (ubl.g26_debug_flag) {
 | |
|                   SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
 | |
|                   SERIAL_ECHOPAIR(", sy=", sy);
 | |
|                   SERIAL_ECHOPAIR(") -> (ex=", ex);
 | |
|                   SERIAL_ECHOPAIR(", ey=", ey);
 | |
|                   SERIAL_CHAR(')');
 | |
|                   SERIAL_EOL;
 | |
|                   debug_current_and_destination(PSTR("Connecting vertical line."));
 | |
|                 }
 | |
|                 print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
 | |
|                 bit_set(vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
 | |
|     float feed_value;
 | |
|     static float last_z = -999.99;
 | |
| 
 | |
|     bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
 | |
| 
 | |
|     //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  has_xy_component:", (int)has_xy_component);
 | |
| 
 | |
|     if (z != last_z) {
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  changing Z to ", (int)z);
 | |
| 
 | |
|       last_z = z;
 | |
|       feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0);  // Base the feed rate off of the configured Z_AXIS feed rate
 | |
| 
 | |
|       destination[X_AXIS] = current_position[X_AXIS];
 | |
|       destination[Y_AXIS] = current_position[Y_AXIS];
 | |
|       destination[Z_AXIS] = z;                          // We know the last_z==z or we wouldn't be in this block of code.
 | |
|       destination[E_AXIS] = current_position[E_AXIS];
 | |
| 
 | |
|       ubl_line_to_destination(feed_value, 0);
 | |
| 
 | |
|       stepper.synchronize();
 | |
|       set_destination_to_current();
 | |
| 
 | |
|       //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
 | |
|     }
 | |
| 
 | |
|     // Check if X or Y is involved in the movement.
 | |
|     // Yes: a 'normal' movement. No: a retract() or un_retract()
 | |
|     feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
 | |
| 
 | |
|     if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
 | |
| 
 | |
|     destination[X_AXIS] = x;
 | |
|     destination[Y_AXIS] = y;
 | |
|     destination[E_AXIS] += e_delta;
 | |
| 
 | |
|     //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
 | |
| 
 | |
|     ubl_line_to_destination(feed_value, 0);
 | |
| 
 | |
|     //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
 | |
| 
 | |
|     stepper.synchronize();
 | |
|     set_destination_to_current();
 | |
| 
 | |
|   }
 | |
| 
 | |
|   void retract_filament(float where[XYZE]) {
 | |
|     if (!g26_retracted) { // Only retract if we are not already retracted!
 | |
|       g26_retracted = true;
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
 | |
|       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void un_retract_filament(float where[XYZE]) {
 | |
|     if (g26_retracted) { // Only un-retract if we are retracted.
 | |
|       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
 | |
|       g26_retracted = false;
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
 | |
|    * to the other.  But there are really three sets of coordinates involved.  The first coordinate
 | |
|    * is the present location of the nozzle.  We don't necessarily want to print from this location.
 | |
|    * We first need to move the nozzle to the start of line segment where we want to print.  Once
 | |
|    * there, we can use the two coordinates supplied to draw the line.
 | |
|    *
 | |
|    * Note:  Although we assume the first set of coordinates is the start of the line and the second
 | |
|    * set of coordinates is the end of the line, it does not always work out that way.  This function
 | |
|    * optimizes the movement to minimize the travel distance before it can start printing.  This saves
 | |
|    * a lot of time and eleminates a lot of non-sensical movement of the nozzle.   However, it does
 | |
|    * cause a lot of very little short retracement of th nozzle when it draws the very first line
 | |
|    * segment of a 'circle'.   The time this requires is very short and is easily saved by the other
 | |
|    * cases where the optimization comes into play.
 | |
|    */
 | |
|   void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
 | |
|     const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual line segment
 | |
|                 dy_s = current_position[Y_AXIS] - sy,
 | |
|                 dist_start = HYPOT2(dx_s, dy_s),        // We don't need to do a sqrt(), we can compare the distance^2
 | |
|                                                         // to save computation time
 | |
|                 dx_e = current_position[X_AXIS] - ex,   // find our distance from the end of the actual line segment
 | |
|                 dy_e = current_position[Y_AXIS] - ey,
 | |
|                 dist_end = HYPOT2(dx_e, dy_e),
 | |
| 
 | |
|                 line_length = HYPOT(ex - sx, ey - sy);
 | |
| 
 | |
|     // If the end point of the line is closer to the nozzle, flip the direction,
 | |
|     // moving from the end to the start. On very small lines the optimization isn't worth it.
 | |
|     if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
 | |
|       return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
 | |
|     }
 | |
| 
 | |
|     // Decide whether to retract.
 | |
| 
 | |
|     if (dist_start > 2.0) {
 | |
|       retract_filament(destination);
 | |
|       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  filament retracted.");
 | |
|     }
 | |
|     move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
 | |
| 
 | |
|     const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
 | |
| 
 | |
|     un_retract_filament(destination);
 | |
| 
 | |
|     //if (ubl.g26_debug_flag) {
 | |
|     //  SERIAL_ECHOLNPGM("  doing printing move.");
 | |
|     //  debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
 | |
|     //}
 | |
|     move_to(ex, ey, ez, e_pos_delta);  // Get to the ending point with an appropriate amount of extrusion
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * This function used to be inline code in G26. But there are so many
 | |
|    * parameters it made sense to turn them into static globals and get
 | |
|    * this code out of sight of the main routine.
 | |
|    */
 | |
|   bool parse_G26_parameters() {
 | |
| 
 | |
|     extrusion_multiplier  = EXTRUSION_MULTIPLIER;
 | |
|     retraction_multiplier = RETRACTION_MULTIPLIER;
 | |
|     nozzle                = NOZZLE;
 | |
|     filament_diameter     = FILAMENT;
 | |
|     layer_height          = LAYER_HEIGHT;
 | |
|     prime_length          = PRIME_LENGTH;
 | |
|     bed_temp              = BED_TEMP;
 | |
|     hotend_temp           = HOTEND_TEMP;
 | |
|     ooze_amount           = OOZE_AMOUNT;
 | |
|     prime_flag            = 0;
 | |
|     keep_heaters_on       = false;
 | |
| 
 | |
|     if (code_seen('B')) {
 | |
|       bed_temp = code_value_temp_abs();
 | |
|       if (!WITHIN(bed_temp, 15, 140)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('C')) continue_with_closest++;
 | |
| 
 | |
|     if (code_seen('L')) {
 | |
|       layer_height = code_value_linear_units();
 | |
|       if (!WITHIN(layer_height, 0.0, 2.0)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('Q')) {
 | |
|       if (code_has_value()) {
 | |
|         retraction_multiplier = code_value_float();
 | |
|         if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
 | |
|           SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
 | |
|           return UBL_ERR;
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('N') || code_seen('n')) {
 | |
|       nozzle = code_value_float();
 | |
|       if (!WITHIN(nozzle, 0.1, 1.0)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('K')) keep_heaters_on++;
 | |
| 
 | |
|     if (code_seen('O') && code_has_value())
 | |
|       ooze_amount = code_value_linear_units();
 | |
| 
 | |
|     if (code_seen('P')) {
 | |
|       if (!code_has_value())
 | |
|         prime_flag = -1;
 | |
|       else {
 | |
|         prime_flag++;
 | |
|         prime_length = code_value_linear_units();
 | |
|         if (!WITHIN(prime_length, 0.0, 25.0)) {
 | |
|           SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
 | |
|           return UBL_ERR;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('F')) {
 | |
|       filament_diameter = code_value_linear_units();
 | |
|       if (!WITHIN(filament_diameter, 1.0, 4.0)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     extrusion_multiplier *= sq(1.75) / sq(filament_diameter);         // If we aren't using 1.75mm filament, we need to
 | |
|                                                                       // scale up or down the length needed to get the
 | |
|                                                                       // same volume of filament
 | |
| 
 | |
|     extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
 | |
| 
 | |
|     if (code_seen('H')) {
 | |
|       hotend_temp = code_value_temp_abs();
 | |
|       if (!WITHIN(hotend_temp, 165, 280)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (code_seen('R')) {
 | |
|       randomSeed(millis());
 | |
|       random_deviation = code_has_value() ? code_value_float() : 50.0;
 | |
|     }
 | |
| 
 | |
|     x_pos = current_position[X_AXIS];
 | |
|     y_pos = current_position[Y_AXIS];
 | |
| 
 | |
|     if (code_seen('X')) {
 | |
|       x_pos = code_value_axis_units(X_AXIS);
 | |
|       if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
| 
 | |
|     if (code_seen('Y')) {
 | |
|       y_pos = code_value_axis_units(Y_AXIS);
 | |
|       if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
 | |
|         return UBL_ERR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
 | |
|      * end.  The reason is, if one of the parameters specified up above is incorrect, we don't want to
 | |
|      * alter the system's status.  We wait until we know everything is correct before altering the state
 | |
|      * of the system.
 | |
|      */
 | |
|     ubl.state.active = !code_seen('D');
 | |
| 
 | |
|     return UBL_OK;
 | |
|   }
 | |
| 
 | |
|   bool exit_from_g26() {
 | |
|     //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
 | |
|     lcd_reset_alert_level();
 | |
|     lcd_setstatuspgm(PSTR("Leaving G26"));
 | |
|     while (ubl_lcd_clicked()) idle();
 | |
|     return UBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Turn on the bed and nozzle heat and
 | |
|    * wait for them to get up to temperature.
 | |
|    */
 | |
|   bool turn_on_heaters() {
 | |
|     millis_t next;
 | |
|     #if HAS_TEMP_BED
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         if (bed_temp > 25) {
 | |
|           lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
 | |
|           lcd_quick_feedback();
 | |
|       #endif
 | |
|           ubl.has_control_of_lcd_panel = true;
 | |
|           thermalManager.setTargetBed(bed_temp);
 | |
|           next = millis() + 5000UL;
 | |
|           while (abs(thermalManager.degBed() - bed_temp) > 3) {
 | |
|             if (ubl_lcd_clicked()) return exit_from_g26();
 | |
|             if (PENDING(millis(), next)) {
 | |
|               next = millis() + 5000UL;
 | |
|               print_heaterstates();
 | |
|             }
 | |
|             idle();
 | |
|           }
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         }
 | |
|         lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
 | |
|         lcd_quick_feedback();
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|     // Start heating the nozzle and wait for it to reach temperature.
 | |
|     thermalManager.setTargetHotend(hotend_temp, 0);
 | |
|     while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
 | |
|       if (ubl_lcd_clicked()) return exit_from_g26();
 | |
|       if (PENDING(millis(), next)) {
 | |
|         next = millis() + 5000UL;
 | |
|         print_heaterstates();
 | |
|       }
 | |
|       idle();
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(ULTRA_LCD)
 | |
|       lcd_reset_alert_level();
 | |
|       lcd_setstatuspgm(PSTR(""));
 | |
|       lcd_quick_feedback();
 | |
|     #endif
 | |
| 
 | |
|     return UBL_OK;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Prime the nozzle if needed. Return true on error.
 | |
|    */
 | |
|   bool prime_nozzle() {
 | |
|     float Total_Prime = 0.0;
 | |
| 
 | |
|     if (prime_flag == -1) {  // The user wants to control how much filament gets purged
 | |
| 
 | |
|       ubl.has_control_of_lcd_panel = true;
 | |
| 
 | |
|       lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
 | |
|       chirp_at_user();
 | |
| 
 | |
|       set_destination_to_current();
 | |
| 
 | |
|       un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
 | |
| 
 | |
|       while (!ubl_lcd_clicked()) {
 | |
|         chirp_at_user();
 | |
|         destination[E_AXIS] += 0.25;
 | |
|         #ifdef PREVENT_LENGTHY_EXTRUDE
 | |
|           Total_Prime += 0.25;
 | |
|           if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
 | |
|         #endif
 | |
|         ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
 | |
| 
 | |
|         stepper.synchronize();    // Without this synchronize, the purge is more consistent,
 | |
|                                   // but because the planner has a buffer, we won't be able
 | |
|                                   // to stop as quickly.  So we put up with the less smooth
 | |
|                                   // action to give the user a more responsive 'Stop'.
 | |
|         set_destination_to_current();
 | |
|         idle();
 | |
|       }
 | |
| 
 | |
|       while (ubl_lcd_clicked()) idle();           // Debounce Encoder Wheel
 | |
| 
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
 | |
|                                                             // So...  We cheat to get a message up.
 | |
|         lcd_setstatuspgm(PSTR("Done Priming"), 99);
 | |
|         lcd_quick_feedback();
 | |
|       #endif
 | |
| 
 | |
|       ubl.has_control_of_lcd_panel = false;
 | |
| 
 | |
|     }
 | |
|     else {
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
 | |
|         lcd_quick_feedback();
 | |
|       #endif
 | |
|       set_destination_to_current();
 | |
|       destination[E_AXIS] += prime_length;
 | |
|       ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
 | |
|       stepper.synchronize();
 | |
|       set_destination_to_current();
 | |
|       retract_filament(destination);
 | |
|     }
 | |
| 
 | |
|     return UBL_OK;
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
 |