|  |  |  | /**
 | 
					
						
							|  |  |  |  * Marlin 3D Printer Firmware | 
					
						
							|  |  |  |  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Based on Sprinter and grbl. | 
					
						
							|  |  |  |  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |  * it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |  * the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |  * (at your option) any later version. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |  * GNU General Public License for more details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Marlin Firmware -- G26 - Mesh Validation Tool | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "MarlinConfig.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #include "ubl.h"
 | 
					
						
							|  |  |  |   #include "Marlin.h"
 | 
					
						
							|  |  |  |   #include "planner.h"
 | 
					
						
							|  |  |  |   #include "stepper.h"
 | 
					
						
							|  |  |  |   #include "temperature.h"
 | 
					
						
							|  |  |  |   #include "ultralcd.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define EXTRUSION_MULTIPLIER 1.0
 | 
					
						
							|  |  |  |   #define RETRACTION_MULTIPLIER 1.0
 | 
					
						
							|  |  |  |   #define NOZZLE 0.4
 | 
					
						
							|  |  |  |   #define FILAMENT 1.75
 | 
					
						
							|  |  |  |   #define LAYER_HEIGHT 0.2
 | 
					
						
							|  |  |  |   #define PRIME_LENGTH 10.0
 | 
					
						
							|  |  |  |   #define BED_TEMP 60.0
 | 
					
						
							|  |  |  |   #define HOTEND_TEMP 205.0
 | 
					
						
							|  |  |  |   #define OOZE_AMOUNT 0.3
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define SIZE_OF_INTERSECTION_CIRCLES 5
 | 
					
						
							|  |  |  |   #define SIZE_OF_CROSSHAIRS 3
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
 | 
					
						
							|  |  |  |     #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    *   G26 Mesh Validation Tool | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. | 
					
						
							|  |  |  |    *   In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must | 
					
						
							|  |  |  |    *   be defined.  G29 is designed to allow the user to quickly validate the correctness of her Mesh.  It will | 
					
						
							|  |  |  |    *   first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and | 
					
						
							|  |  |  |    *   the intersections of those lines (respectively). | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   This action allows the user to immediately see where the Mesh is properly defined and where it needs to | 
					
						
							|  |  |  |    *   be edited.  The command will generate the Mesh lines closest to the nozzle's starting position.  Alternatively | 
					
						
							|  |  |  |    *   the user can specify the X and Y position of interest with command parameters.  This allows the user to | 
					
						
							|  |  |  |    *   focus on a particular area of the Mesh where attention is needed. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   B #  Bed   Set the Bed Temperature.  If not specified, a default of 60 C. will be assumed. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   C    Current   When searching for Mesh Intersection points to draw, use the current nozzle location | 
					
						
							|  |  |  |    *        as the base for any distance comparison. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   D    Disable   Disable the Unified Bed Leveling System.  In the normal case the user is invoking this | 
					
						
							|  |  |  |    *        command to see how well a Mesh as been adjusted to match a print surface.  In order to do | 
					
						
							|  |  |  |    *        this the Unified Bed Leveling System is turned on by the G26 command.  The D parameter | 
					
						
							|  |  |  |    *        alters the command's normal behaviour and disables the Unified Bed Leveling System even if | 
					
						
							|  |  |  |    *        it is on. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   H #  Hotend    Set the Nozzle Temperature.  If not specified, a default of 205 C. will be assumed. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   F #  Filament  Used to specify the diameter of the filament being used.  If not specified | 
					
						
							|  |  |  |    *        1.75mm filament is assumed.  If you are not getting acceptable results by using the | 
					
						
							|  |  |  |    *        'correct' numbers, you can scale this number up or down a little bit to change the amount | 
					
						
							|  |  |  |    *        of filament that is being extruded during the printing of the various lines on the bed. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   K    Keep-On   Keep the heaters turned on at the end of the command. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   L #  Layer   Layer height.  (Height of nozzle above bed)  If not specified .20mm will be used. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   Q #  Multiplier  Retraction Multiplier.  Normally not needed.  Retraction defaults to 1.0mm and | 
					
						
							|  |  |  |    *        un-retraction is at 1.2mm   These numbers will be scaled by the specified amount | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   N #  Nozzle    Used to control the size of nozzle diameter.  If not specified, a .4mm nozzle is assumed. | 
					
						
							|  |  |  |    *        'n' can be used instead if your host program does not appreciate you using 'N'. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   O #  Ooooze    How much your nozzle will Ooooze filament while getting in position to print.  This | 
					
						
							|  |  |  |    *        is over kill, but using this parameter will let you get the very first 'cicle' perfect | 
					
						
							|  |  |  |    *        so you have a trophy to peel off of the bed and hang up to show how perfectly you have your | 
					
						
							|  |  |  |    *        Mesh calibrated.  If not specified, a filament length of .3mm is assumed. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   P #  Prime   Prime the nozzle with specified length of filament.  If this parameter is not | 
					
						
							|  |  |  |    *        given, no prime action will take place.  If the parameter specifies an amount, that much | 
					
						
							|  |  |  |    *        will be purged before continuing.  If no amount is specified the command will start | 
					
						
							|  |  |  |    *        purging filament until the user provides an LCD Click and then it will continue with | 
					
						
							|  |  |  |    *        printing the Mesh.  You can carefully remove the spent filament with a needle nose | 
					
						
							|  |  |  |    *        pliers while holding the LCD Click wheel in a depressed state. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   R #  Random    Randomize the order that the circles are drawn on the bed.  The search for the closest | 
					
						
							|  |  |  |    *        undrawn cicle is still done.  But the distance to the location for each circle has a | 
					
						
							|  |  |  |    *        random number of the size specified added to it.  Specifying R50 will give an interesting | 
					
						
							|  |  |  |    *        deviation from the normal behaviour on a 10 x 10 Mesh. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   X #  X coordinate  Specify the starting location of the drawing activity. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    *   Y #  Y coordinate  Specify the starting location of the drawing activity. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // External references
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   extern float feedrate; | 
					
						
							|  |  |  |   extern Planner planner; | 
					
						
							|  |  |  |   #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |     extern char lcd_status_message[]; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   extern float destination[XYZE]; | 
					
						
							|  |  |  |   void set_destination_to_current(); | 
					
						
							|  |  |  |   void set_current_to_destination(); | 
					
						
							|  |  |  |   float code_value_float(); | 
					
						
							|  |  |  |   float code_value_linear_units(); | 
					
						
							|  |  |  |   float code_value_axis_units(const AxisEnum axis); | 
					
						
							|  |  |  |   bool code_value_bool(); | 
					
						
							|  |  |  |   bool code_has_value(); | 
					
						
							|  |  |  |   void lcd_init(); | 
					
						
							|  |  |  |   void lcd_setstatuspgm(const char* const message, const uint8_t level); | 
					
						
							|  |  |  |   bool prepare_move_to_destination_cartesian(); | 
					
						
							|  |  |  |   void line_to_destination(); | 
					
						
							|  |  |  |   void line_to_destination(float); | 
					
						
							|  |  |  |   void sync_plan_position_e(); | 
					
						
							|  |  |  |   void chirp_at_user(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Private functions
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void un_retract_filament(float where[XYZE]); | 
					
						
							|  |  |  |   void retract_filament(float where[XYZE]); | 
					
						
							|  |  |  |   void look_for_lines_to_connect(); | 
					
						
							|  |  |  |   bool parse_G26_parameters(); | 
					
						
							|  |  |  |   void move_to(const float&, const float&, const float&, const float&) ; | 
					
						
							|  |  |  |   void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); | 
					
						
							|  |  |  |   bool turn_on_heaters(); | 
					
						
							|  |  |  |   bool prime_nozzle(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0; | 
					
						
							|  |  |  |   float g26_e_axis_feedrate = 0.020, | 
					
						
							|  |  |  |         random_deviation = 0.0, | 
					
						
							|  |  |  |         layer_height = LAYER_HEIGHT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
 | 
					
						
							|  |  |  |                                      // retracts/recovers won't result in a bad state.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   float valid_trig_angle(float); | 
					
						
							|  |  |  |   mesh_index_pair find_closest_circle_to_print(const float&, const float&); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static float extrusion_multiplier = EXTRUSION_MULTIPLIER, | 
					
						
							|  |  |  |                retraction_multiplier = RETRACTION_MULTIPLIER, | 
					
						
							|  |  |  |                nozzle = NOZZLE, | 
					
						
							|  |  |  |                filament_diameter = FILAMENT, | 
					
						
							|  |  |  |                prime_length = PRIME_LENGTH, | 
					
						
							|  |  |  |                x_pos, y_pos, | 
					
						
							|  |  |  |                ooze_amount = OOZE_AMOUNT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static int16_t bed_temp = BED_TEMP, | 
					
						
							|  |  |  |                  hotend_temp = HOTEND_TEMP; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static int8_t prime_flag = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static bool keep_heaters_on = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * G26: Mesh Validation Pattern generation. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    * Used to interactively edit UBL's Mesh by placing the | 
					
						
							|  |  |  |    * nozzle in a problem area and doing a G29 P4 R command. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   void gcode_G26() { | 
					
						
							|  |  |  |     SERIAL_ECHOLNPGM("G26 command started.  Waiting for heater(s)."); | 
					
						
							|  |  |  |     float tmp, start_angle, end_angle; | 
					
						
							|  |  |  |     int   i, xi, yi; | 
					
						
							|  |  |  |     mesh_index_pair location; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Don't allow Mesh Validation without homing first,
 | 
					
						
							|  |  |  |     // or if the parameter parsing did not go OK, abort
 | 
					
						
							|  |  |  |     if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { | 
					
						
							|  |  |  |       do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); | 
					
						
							|  |  |  |       stepper.synchronize(); | 
					
						
							|  |  |  |       set_current_to_destination(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (turn_on_heaters()) goto LEAVE; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     current_position[E_AXIS] = 0.0; | 
					
						
							|  |  |  |     sync_plan_position_e(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (prime_flag && prime_nozzle()) goto LEAVE; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      *  Bed is preheated | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *  Nozzle is at temperature | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *  Filament is primed! | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *  It's  "Show Time" !!! | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ZERO(circle_flags); | 
					
						
							|  |  |  |     ZERO(horizontal_mesh_line_flags); | 
					
						
							|  |  |  |     ZERO(vertical_mesh_line_flags); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Move nozzle to the specified height for the first layer
 | 
					
						
							|  |  |  |     set_destination_to_current(); | 
					
						
							|  |  |  |     destination[Z_AXIS] = layer_height; | 
					
						
							|  |  |  |     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); | 
					
						
							|  |  |  |     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ubl.has_control_of_lcd_panel = true; | 
					
						
							|  |  |  |     //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * Declare and generate a sin() & cos() table to be used during the circle drawing.  This will lighten | 
					
						
							|  |  |  |      * the CPU load and make the arc drawing faster and more smooth | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; | 
					
						
							|  |  |  |     for (i = 0; i <= 360 / 30; i++) { | 
					
						
							|  |  |  |       cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); | 
					
						
							|  |  |  |       sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     do { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (ubl_lcd_clicked()) {              // Check if the user wants to stop the Mesh Validation
 | 
					
						
							|  |  |  |         #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |           lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99); | 
					
						
							|  |  |  |           lcd_quick_feedback(); | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |         while (!ubl_lcd_clicked()) {         // Wait until the user is done pressing the
 | 
					
						
							|  |  |  |           idle();                            // Encoder Wheel if that is why we are leaving
 | 
					
						
							|  |  |  |           lcd_reset_alert_level(); | 
					
						
							|  |  |  |           lcd_setstatuspgm(PSTR("")); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         while (ubl_lcd_clicked()) {          // Wait until the user is done pressing the
 | 
					
						
							|  |  |  |           idle();                            // Encoder Wheel if that is why we are leaving
 | 
					
						
							|  |  |  |           lcd_setstatuspgm(PSTR("Unpress Wheel"), 99); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         goto LEAVE; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       location = continue_with_closest | 
					
						
							|  |  |  |         ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) | 
					
						
							|  |  |  |         : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (location.x_index >= 0 && location.y_index >= 0) { | 
					
						
							|  |  |  |         const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), | 
					
						
							|  |  |  |                     circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
 | 
					
						
							|  |  |  |         #ifdef DELTA
 | 
					
						
							|  |  |  |           if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) { | 
					
						
							|  |  |  |             SERIAL_ERROR_START; | 
					
						
							|  |  |  |             SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS."); | 
					
						
							|  |  |  |             goto LEAVE; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // TODO: Change this to use `position_is_reachable`
 | 
					
						
							|  |  |  |         if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) { | 
					
						
							|  |  |  |           SERIAL_ERROR_START; | 
					
						
							|  |  |  |           SERIAL_ERRORLNPGM("Attempt to print off the bed."); | 
					
						
							|  |  |  |           goto LEAVE; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         xi = location.x_index;  // Just to shrink the next few lines and make them easier to understand
 | 
					
						
							|  |  |  |         yi = location.y_index; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (ubl.g26_debug_flag) { | 
					
						
							|  |  |  |           SERIAL_ECHOPAIR("   Doing circle at: (xi=", xi); | 
					
						
							|  |  |  |           SERIAL_ECHOPAIR(", yi=", yi); | 
					
						
							|  |  |  |           SERIAL_CHAR(')'); | 
					
						
							|  |  |  |           SERIAL_EOL; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         start_angle = 0.0;    // assume it is going to be a full circle
 | 
					
						
							|  |  |  |         end_angle   = 360.0; | 
					
						
							|  |  |  |         if (xi == 0) {       // Check for bottom edge
 | 
					
						
							|  |  |  |           start_angle = -90.0; | 
					
						
							|  |  |  |           end_angle   =  90.0; | 
					
						
							|  |  |  |           if (yi == 0)        // it is an edge, check for the two left corners
 | 
					
						
							|  |  |  |             start_angle = 0.0; | 
					
						
							|  |  |  |           else if (yi == GRID_MAX_POINTS_Y - 1) | 
					
						
							|  |  |  |             end_angle = 0.0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
 | 
					
						
							|  |  |  |           start_angle =  90.0; | 
					
						
							|  |  |  |           end_angle   = 270.0; | 
					
						
							|  |  |  |           if (yi == 0)                  // it is an edge, check for the two right corners
 | 
					
						
							|  |  |  |             end_angle = 180.0; | 
					
						
							|  |  |  |           else if (yi == GRID_MAX_POINTS_Y - 1) | 
					
						
							|  |  |  |             start_angle = 180.0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         else if (yi == 0) { | 
					
						
							|  |  |  |           start_angle =   0.0;         // only do the top   side of the cirlce
 | 
					
						
							|  |  |  |           end_angle   = 180.0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         else if (yi == GRID_MAX_POINTS_Y - 1) { | 
					
						
							|  |  |  |           start_angle = 180.0;         // only do the bottom side of the cirlce
 | 
					
						
							|  |  |  |           end_angle   = 360.0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { | 
					
						
							|  |  |  |           int tmp_div_30 = tmp / 30.0; | 
					
						
							|  |  |  |           if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; | 
					
						
							|  |  |  |           if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           float x = circle_x + cos_table[tmp_div_30],    // for speed, these are now a lookup table entry
 | 
					
						
							|  |  |  |                 y = circle_y + sin_table[tmp_div_30], | 
					
						
							|  |  |  |                 xe = circle_x + cos_table[tmp_div_30 + 1], | 
					
						
							|  |  |  |                 ye = circle_y + sin_table[tmp_div_30 + 1]; | 
					
						
							|  |  |  |           #ifdef DELTA
 | 
					
						
							|  |  |  |             if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS))   // Check to make sure this part of
 | 
					
						
							|  |  |  |               continue;                                      // the 'circle' is on the bed.  If
 | 
					
						
							|  |  |  |           #else                                              // not, we need to skip
 | 
					
						
							|  |  |  |             x  = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
 | 
					
						
							|  |  |  |             y  = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); | 
					
						
							|  |  |  |             xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); | 
					
						
							|  |  |  |             ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); | 
					
						
							|  |  |  |           #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           //if (ubl.g26_debug_flag) {
 | 
					
						
							|  |  |  |           //  char ccc, *cptr, seg_msg[50], seg_num[10];
 | 
					
						
							|  |  |  |           //  strcpy(seg_msg, "   segment: ");
 | 
					
						
							|  |  |  |           //  strcpy(seg_num, "    \n");
 | 
					
						
							|  |  |  |           //  cptr = (char*) "01234567890ABCDEF????????";
 | 
					
						
							|  |  |  |           //  ccc = cptr[tmp_div_30];
 | 
					
						
							|  |  |  |           //  seg_num[1] = ccc;
 | 
					
						
							|  |  |  |           //  strcat(seg_msg, seg_num);
 | 
					
						
							|  |  |  |           //  debug_current_and_destination(seg_msg);
 | 
					
						
							|  |  |  |           //}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         //debug_current_and_destination(PSTR("Looking for lines to connect."));
 | 
					
						
							|  |  |  |         look_for_lines_to_connect(); | 
					
						
							|  |  |  |         //debug_current_and_destination(PSTR("Done with line connect."));
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       //debug_current_and_destination(PSTR("Done with current circle."));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     } while (location.x_index >= 0 && location.y_index >= 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     LEAVE: | 
					
						
							|  |  |  |     lcd_reset_alert_level(); | 
					
						
							|  |  |  |     lcd_setstatuspgm(PSTR("Leaving G26")); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     retract_filament(destination); | 
					
						
							|  |  |  |     destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //debug_current_and_destination(PSTR("ready to do Z-Raise."));
 | 
					
						
							|  |  |  |     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
 | 
					
						
							|  |  |  |     //debug_current_and_destination(PSTR("done doing Z-Raise."));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     destination[X_AXIS] = x_pos;                                               // Move back to the starting position
 | 
					
						
							|  |  |  |     destination[Y_AXIS] = y_pos; | 
					
						
							|  |  |  |     //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                        // Keep the nozzle where it is
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
 | 
					
						
							|  |  |  |     //debug_current_and_destination(PSTR("done doing X/Y move."));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ubl.has_control_of_lcd_panel = false;     // Give back control of the LCD Panel!
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (!keep_heaters_on) { | 
					
						
							|  |  |  |       #if HAS_TEMP_BED
 | 
					
						
							|  |  |  |         thermalManager.setTargetBed(0); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       thermalManager.setTargetHotend(0, 0); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   float valid_trig_angle(float d) { | 
					
						
							|  |  |  |     while (d > 360.0) d -= 360.0; | 
					
						
							|  |  |  |     while (d < 0.0) d += 360.0; | 
					
						
							|  |  |  |     return d; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { | 
					
						
							|  |  |  |     float closest = 99999.99; | 
					
						
							|  |  |  |     mesh_index_pair return_val; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return_val.x_index = return_val.y_index = -1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { | 
					
						
							|  |  |  |       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { | 
					
						
							|  |  |  |         if (!is_bit_set(circle_flags, i, j)) { | 
					
						
							|  |  |  |           const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]),  // We found a circle that needs to be printed
 | 
					
						
							|  |  |  |                       my = pgm_read_float(&ubl.mesh_index_to_ypos[j]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           // Get the distance to this intersection
 | 
					
						
							|  |  |  |           float f = HYPOT(X - mx, Y - my); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           // It is possible that we are being called with the values
 | 
					
						
							|  |  |  |           // to let us find the closest circle to the start position.
 | 
					
						
							|  |  |  |           // But if this is not the case, add a small weighting to the
 | 
					
						
							|  |  |  |           // distance calculation to help it choose a better place to continue.
 | 
					
						
							|  |  |  |           f += HYPOT(x_pos - mx, y_pos - my) / 15.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           // Add in the specified amount of Random Noise to our search
 | 
					
						
							|  |  |  |           if (random_deviation > 1.0) | 
					
						
							|  |  |  |             f += random(0.0, random_deviation); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           if (f < closest) { | 
					
						
							|  |  |  |             closest = f;              // We found a closer location that is still
 | 
					
						
							|  |  |  |             return_val.x_index = i;   // un-printed  --- save the data for it
 | 
					
						
							|  |  |  |             return_val.y_index = j; | 
					
						
							|  |  |  |             return_val.distance = closest; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     bit_set(circle_flags, return_val.x_index, return_val.y_index);   // Mark this location as done.
 | 
					
						
							|  |  |  |     return return_val; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void look_for_lines_to_connect() { | 
					
						
							|  |  |  |     float sx, sy, ex, ey; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { | 
					
						
							|  |  |  |       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
 | 
					
						
							|  |  |  |                                          // This is already a half circle because we are at the edge of the bed.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
 | 
					
						
							|  |  |  |             if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |               //
 | 
					
						
							|  |  |  |               // We found two circles that need a horizontal line to connect them
 | 
					
						
							|  |  |  |               // Print it!
 | 
					
						
							|  |  |  |               //
 | 
					
						
							|  |  |  |               sx = pgm_read_float(&ubl.mesh_index_to_xpos[  i  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
 | 
					
						
							|  |  |  |               ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |               sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); | 
					
						
							|  |  |  |               sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1); | 
					
						
							|  |  |  |               ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |               if (ubl.g26_debug_flag) { | 
					
						
							|  |  |  |                 SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); | 
					
						
							|  |  |  |                 SERIAL_ECHOPAIR(", sy=", sy); | 
					
						
							|  |  |  |                 SERIAL_ECHOPAIR(") -> (ex=", ex); | 
					
						
							|  |  |  |                 SERIAL_ECHOPAIR(", ey=", ey); | 
					
						
							|  |  |  |                 SERIAL_CHAR(')'); | 
					
						
							|  |  |  |                 SERIAL_EOL; | 
					
						
							|  |  |  |                 //debug_current_and_destination(PSTR("Connecting horizontal line."));
 | 
					
						
							|  |  |  |               } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |               print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); | 
					
						
							|  |  |  |               bit_set(horizontal_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
 | 
					
						
							|  |  |  |                                            // This is already a half circle because we are at the edge  of the bed.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
 | 
					
						
							|  |  |  |               if (!is_bit_set( vertical_mesh_line_flags, i, j)) { | 
					
						
							|  |  |  |                 //
 | 
					
						
							|  |  |  |                 // We found two circles that need a vertical line to connect them
 | 
					
						
							|  |  |  |                 // Print it!
 | 
					
						
							|  |  |  |                 //
 | 
					
						
							|  |  |  |                 sy = pgm_read_float(&ubl.mesh_index_to_ypos[  j  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
 | 
					
						
							|  |  |  |                 ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1); | 
					
						
							|  |  |  |                 sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); | 
					
						
							|  |  |  |                 ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 if (ubl.g26_debug_flag) { | 
					
						
							|  |  |  |                   SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); | 
					
						
							|  |  |  |                   SERIAL_ECHOPAIR(", sy=", sy); | 
					
						
							|  |  |  |                   SERIAL_ECHOPAIR(") -> (ex=", ex); | 
					
						
							|  |  |  |                   SERIAL_ECHOPAIR(", ey=", ey); | 
					
						
							|  |  |  |                   SERIAL_CHAR(')'); | 
					
						
							|  |  |  |                   SERIAL_EOL; | 
					
						
							|  |  |  |                   debug_current_and_destination(PSTR("Connecting vertical line.")); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); | 
					
						
							|  |  |  |                 bit_set(vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again
 | 
					
						
							|  |  |  |               } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void move_to(const float &x, const float &y, const float &z, const float &e_delta) { | 
					
						
							|  |  |  |     float feed_value; | 
					
						
							|  |  |  |     static float last_z = -999.99; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  has_xy_component:", (int)has_xy_component);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (z != last_z) { | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  changing Z to ", (int)z);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       last_z = z; | 
					
						
							|  |  |  |       feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0);  // Base the feed rate off of the configured Z_AXIS feed rate
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       destination[X_AXIS] = current_position[X_AXIS]; | 
					
						
							|  |  |  |       destination[Y_AXIS] = current_position[Y_AXIS]; | 
					
						
							|  |  |  |       destination[Z_AXIS] = z;                          // We know the last_z==z or we wouldn't be in this block of code.
 | 
					
						
							|  |  |  |       destination[E_AXIS] = current_position[E_AXIS]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       ubl_line_to_destination(feed_value, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       stepper.synchronize(); | 
					
						
							|  |  |  |       set_destination_to_current(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Check if X or Y is involved in the movement.
 | 
					
						
							|  |  |  |     // Yes: a 'normal' movement. No: a retract() or un_retract()
 | 
					
						
							|  |  |  |     feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     destination[X_AXIS] = x; | 
					
						
							|  |  |  |     destination[Y_AXIS] = y; | 
					
						
							|  |  |  |     destination[E_AXIS] += e_delta; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ubl_line_to_destination(feed_value, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     stepper.synchronize(); | 
					
						
							|  |  |  |     set_destination_to_current(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void retract_filament(float where[XYZE]) { | 
					
						
							|  |  |  |     if (!g26_retracted) { // Only retract if we are not already retracted!
 | 
					
						
							|  |  |  |       g26_retracted = true; | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
 | 
					
						
							|  |  |  |       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void un_retract_filament(float where[XYZE]) { | 
					
						
							|  |  |  |     if (g26_retracted) { // Only un-retract if we are retracted.
 | 
					
						
							|  |  |  |       move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); | 
					
						
							|  |  |  |       g26_retracted = false; | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one | 
					
						
							|  |  |  |    * to the other.  But there are really three sets of coordinates involved.  The first coordinate | 
					
						
							|  |  |  |    * is the present location of the nozzle.  We don't necessarily want to print from this location. | 
					
						
							|  |  |  |    * We first need to move the nozzle to the start of line segment where we want to print.  Once | 
					
						
							|  |  |  |    * there, we can use the two coordinates supplied to draw the line. | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    * Note:  Although we assume the first set of coordinates is the start of the line and the second | 
					
						
							|  |  |  |    * set of coordinates is the end of the line, it does not always work out that way.  This function | 
					
						
							|  |  |  |    * optimizes the movement to minimize the travel distance before it can start printing.  This saves | 
					
						
							|  |  |  |    * a lot of time and eleminates a lot of non-sensical movement of the nozzle.   However, it does | 
					
						
							|  |  |  |    * cause a lot of very little short retracement of th nozzle when it draws the very first line | 
					
						
							|  |  |  |    * segment of a 'circle'.   The time this requires is very short and is easily saved by the other | 
					
						
							|  |  |  |    * cases where the optimization comes into play. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { | 
					
						
							|  |  |  |     const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual line segment
 | 
					
						
							|  |  |  |                 dy_s = current_position[Y_AXIS] - sy, | 
					
						
							|  |  |  |                 dist_start = HYPOT2(dx_s, dy_s),        // We don't need to do a sqrt(), we can compare the distance^2
 | 
					
						
							|  |  |  |                                                         // to save computation time
 | 
					
						
							|  |  |  |                 dx_e = current_position[X_AXIS] - ex,   // find our distance from the end of the actual line segment
 | 
					
						
							|  |  |  |                 dy_e = current_position[Y_AXIS] - ey, | 
					
						
							|  |  |  |                 dist_end = HYPOT2(dx_e, dy_e), | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 line_length = HYPOT(ex - sx, ey - sy); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // If the end point of the line is closer to the nozzle, flip the direction,
 | 
					
						
							|  |  |  |     // moving from the end to the start. On very small lines the optimization isn't worth it.
 | 
					
						
							|  |  |  |     if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
 | 
					
						
							|  |  |  |       return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Decide whether to retract.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (dist_start > 2.0) { | 
					
						
							|  |  |  |       retract_filament(destination); | 
					
						
							|  |  |  |       //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM("  filament retracted.");
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     un_retract_filament(destination); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //if (ubl.g26_debug_flag) {
 | 
					
						
							|  |  |  |     //  SERIAL_ECHOLNPGM("  doing printing move.");
 | 
					
						
							|  |  |  |     //  debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
 | 
					
						
							|  |  |  |     //}
 | 
					
						
							|  |  |  |     move_to(ex, ey, ez, e_pos_delta);  // Get to the ending point with an appropriate amount of extrusion
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * This function used to be inline code in G26. But there are so many | 
					
						
							|  |  |  |    * parameters it made sense to turn them into static globals and get | 
					
						
							|  |  |  |    * this code out of sight of the main routine. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   bool parse_G26_parameters() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     extrusion_multiplier  = EXTRUSION_MULTIPLIER; | 
					
						
							|  |  |  |     retraction_multiplier = RETRACTION_MULTIPLIER; | 
					
						
							|  |  |  |     nozzle                = NOZZLE; | 
					
						
							|  |  |  |     filament_diameter     = FILAMENT; | 
					
						
							|  |  |  |     layer_height          = LAYER_HEIGHT; | 
					
						
							|  |  |  |     prime_length          = PRIME_LENGTH; | 
					
						
							|  |  |  |     bed_temp              = BED_TEMP; | 
					
						
							|  |  |  |     hotend_temp           = HOTEND_TEMP; | 
					
						
							|  |  |  |     ooze_amount           = OOZE_AMOUNT; | 
					
						
							|  |  |  |     prime_flag            = 0; | 
					
						
							|  |  |  |     keep_heaters_on       = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('B')) { | 
					
						
							|  |  |  |       bed_temp = code_value_temp_abs(); | 
					
						
							|  |  |  |       if (!WITHIN(bed_temp, 15, 140)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('C')) continue_with_closest++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('L')) { | 
					
						
							|  |  |  |       layer_height = code_value_linear_units(); | 
					
						
							|  |  |  |       if (!WITHIN(layer_height, 0.0, 2.0)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('Q')) { | 
					
						
							|  |  |  |       if (code_has_value()) { | 
					
						
							|  |  |  |         retraction_multiplier = code_value_float(); | 
					
						
							|  |  |  |         if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { | 
					
						
							|  |  |  |           SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); | 
					
						
							|  |  |  |           return UBL_ERR; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('N') || code_seen('n')) { | 
					
						
							|  |  |  |       nozzle = code_value_float(); | 
					
						
							|  |  |  |       if (!WITHIN(nozzle, 0.1, 1.0)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('K')) keep_heaters_on++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('O') && code_has_value()) | 
					
						
							|  |  |  |       ooze_amount = code_value_linear_units(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('P')) { | 
					
						
							|  |  |  |       if (!code_has_value()) | 
					
						
							|  |  |  |         prime_flag = -1; | 
					
						
							|  |  |  |       else { | 
					
						
							|  |  |  |         prime_flag++; | 
					
						
							|  |  |  |         prime_length = code_value_linear_units(); | 
					
						
							|  |  |  |         if (!WITHIN(prime_length, 0.0, 25.0)) { | 
					
						
							|  |  |  |           SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); | 
					
						
							|  |  |  |           return UBL_ERR; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('F')) { | 
					
						
							|  |  |  |       filament_diameter = code_value_linear_units(); | 
					
						
							|  |  |  |       if (!WITHIN(filament_diameter, 1.0, 4.0)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     extrusion_multiplier *= sq(1.75) / sq(filament_diameter);         // If we aren't using 1.75mm filament, we need to
 | 
					
						
							|  |  |  |                                                                       // scale up or down the length needed to get the
 | 
					
						
							|  |  |  |                                                                       // same volume of filament
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('H')) { | 
					
						
							|  |  |  |       hotend_temp = code_value_temp_abs(); | 
					
						
							|  |  |  |       if (!WITHIN(hotend_temp, 165, 280)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('R')) { | 
					
						
							|  |  |  |       randomSeed(millis()); | 
					
						
							|  |  |  |       random_deviation = code_has_value() ? code_value_float() : 50.0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x_pos = current_position[X_AXIS]; | 
					
						
							|  |  |  |     y_pos = current_position[Y_AXIS]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('X')) { | 
					
						
							|  |  |  |       x_pos = code_value_axis_units(X_AXIS); | 
					
						
							|  |  |  |       if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (code_seen('Y')) { | 
					
						
							|  |  |  |       y_pos = code_value_axis_units(Y_AXIS); | 
					
						
							|  |  |  |       if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) { | 
					
						
							|  |  |  |         SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible."); | 
					
						
							|  |  |  |         return UBL_ERR; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * We save the question of what to do with the Unified Bed Leveling System's Activation until the very | 
					
						
							|  |  |  |      * end.  The reason is, if one of the parameters specified up above is incorrect, we don't want to | 
					
						
							|  |  |  |      * alter the system's status.  We wait until we know everything is correct before altering the state | 
					
						
							|  |  |  |      * of the system. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     ubl.state.active = !code_seen('D'); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return UBL_OK; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   bool exit_from_g26() { | 
					
						
							|  |  |  |     //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
 | 
					
						
							|  |  |  |     lcd_reset_alert_level(); | 
					
						
							|  |  |  |     lcd_setstatuspgm(PSTR("Leaving G26")); | 
					
						
							|  |  |  |     while (ubl_lcd_clicked()) idle(); | 
					
						
							|  |  |  |     return UBL_ERR; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * Turn on the bed and nozzle heat and | 
					
						
							|  |  |  |    * wait for them to get up to temperature. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   bool turn_on_heaters() { | 
					
						
							|  |  |  |     millis_t next; | 
					
						
							|  |  |  |     #if HAS_TEMP_BED
 | 
					
						
							|  |  |  |       #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |         if (bed_temp > 25) { | 
					
						
							|  |  |  |           lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); | 
					
						
							|  |  |  |           lcd_quick_feedback(); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |           ubl.has_control_of_lcd_panel = true; | 
					
						
							|  |  |  |           thermalManager.setTargetBed(bed_temp); | 
					
						
							|  |  |  |           next = millis() + 5000UL; | 
					
						
							|  |  |  |           while (abs(thermalManager.degBed() - bed_temp) > 3) { | 
					
						
							|  |  |  |             if (ubl_lcd_clicked()) return exit_from_g26(); | 
					
						
							|  |  |  |             if (PENDING(millis(), next)) { | 
					
						
							|  |  |  |               next = millis() + 5000UL; | 
					
						
							|  |  |  |               print_heaterstates(); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             idle(); | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |       #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99); | 
					
						
							|  |  |  |         lcd_quick_feedback(); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Start heating the nozzle and wait for it to reach temperature.
 | 
					
						
							|  |  |  |     thermalManager.setTargetHotend(hotend_temp, 0); | 
					
						
							|  |  |  |     while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { | 
					
						
							|  |  |  |       if (ubl_lcd_clicked()) return exit_from_g26(); | 
					
						
							|  |  |  |       if (PENDING(millis(), next)) { | 
					
						
							|  |  |  |         next = millis() + 5000UL; | 
					
						
							|  |  |  |         print_heaterstates(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       idle(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |       lcd_reset_alert_level(); | 
					
						
							|  |  |  |       lcd_setstatuspgm(PSTR("")); | 
					
						
							|  |  |  |       lcd_quick_feedback(); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return UBL_OK; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * Prime the nozzle if needed. Return true on error. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   bool prime_nozzle() { | 
					
						
							|  |  |  |     float Total_Prime = 0.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (prime_flag == -1) {  // The user wants to control how much filament gets purged
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       ubl.has_control_of_lcd_panel = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); | 
					
						
							|  |  |  |       chirp_at_user(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       set_destination_to_current(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       while (!ubl_lcd_clicked()) { | 
					
						
							|  |  |  |         chirp_at_user(); | 
					
						
							|  |  |  |         destination[E_AXIS] += 0.25; | 
					
						
							|  |  |  |         #ifdef PREVENT_LENGTHY_EXTRUDE
 | 
					
						
							|  |  |  |           Total_Prime += 0.25; | 
					
						
							|  |  |  |           if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |         ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         stepper.synchronize();    // Without this synchronize, the purge is more consistent,
 | 
					
						
							|  |  |  |                                   // but because the planner has a buffer, we won't be able
 | 
					
						
							|  |  |  |                                   // to stop as quickly.  So we put up with the less smooth
 | 
					
						
							|  |  |  |                                   // action to give the user a more responsive 'Stop'.
 | 
					
						
							|  |  |  |         set_destination_to_current(); | 
					
						
							|  |  |  |         idle(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       while (ubl_lcd_clicked()) idle();           // Debounce Encoder Wheel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |         strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
 | 
					
						
							|  |  |  |                                                             // So...  We cheat to get a message up.
 | 
					
						
							|  |  |  |         lcd_setstatuspgm(PSTR("Done Priming"), 99); | 
					
						
							|  |  |  |         lcd_quick_feedback(); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       ubl.has_control_of_lcd_panel = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |         lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99); | 
					
						
							|  |  |  |         lcd_quick_feedback(); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       set_destination_to_current(); | 
					
						
							|  |  |  |       destination[E_AXIS] += prime_length; | 
					
						
							|  |  |  |       ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); | 
					
						
							|  |  |  |       stepper.synchronize(); | 
					
						
							|  |  |  |       set_destination_to_current(); | 
					
						
							|  |  |  |       retract_filament(destination); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return UBL_OK; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
 |