You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							353 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							353 lines
						
					
					
						
							15 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifndef UNIFIED_BED_LEVELING_H
 | |
| #define UNIFIED_BED_LEVELING_H
 | |
| 
 | |
| #include "MarlinConfig.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|   #include "Marlin.h"
 | |
|   #include "planner.h"
 | |
|   #include "math.h"
 | |
|   #include "vector_3.h"
 | |
| 
 | |
|   #define UBL_VERSION "1.00"
 | |
|   #define UBL_OK false
 | |
|   #define UBL_ERR true
 | |
| 
 | |
|   typedef struct {
 | |
|     int8_t x_index, y_index;
 | |
|     float distance; // When populated, the distance from the search location
 | |
|   } mesh_index_pair;
 | |
| 
 | |
|   // ubl.cpp
 | |
| 
 | |
|   void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
 | |
|   void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
 | |
|   bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
 | |
| 
 | |
|   // ubl_motion.cpp
 | |
| 
 | |
|   void debug_current_and_destination(const char * const title);
 | |
|   void ubl_line_to_destination(const float&, uint8_t);
 | |
| 
 | |
|   // ubl_G29.cpp
 | |
| 
 | |
|   enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
 | |
| 
 | |
|   void dump(char * const str, const float &f);
 | |
|   void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
 | |
|   void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
 | |
|   float measure_business_card_thickness(const float&);
 | |
|   mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
 | |
|   void shift_mesh_height();
 | |
|   void fine_tune_mesh(const float&, const float&, const bool);
 | |
|   bool g29_parameter_parsing();
 | |
|   void g29_what_command();
 | |
|   void g29_eeprom_dump();
 | |
|   void g29_compare_current_mesh_to_stored_mesh();
 | |
| 
 | |
|   // External references
 | |
| 
 | |
|   char *ftostr43sign(const float&, char);
 | |
|   bool ubl_lcd_clicked();
 | |
|   void home_all_axes();
 | |
|   void gcode_G26();
 | |
|   void gcode_G29();
 | |
| 
 | |
|   extern uint8_t ubl_cnt;
 | |
| 
 | |
|   ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   #if ENABLED(ULTRA_LCD)
 | |
|     extern char lcd_status_message[];
 | |
|     void lcd_quick_feedback();
 | |
|   #endif
 | |
| 
 | |
|   #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
 | |
|   #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
 | |
| 
 | |
|   typedef struct {
 | |
|     bool active = false;
 | |
|     float z_offset = 0.0;
 | |
|     int8_t eeprom_storage_slot = -1;
 | |
|   } ubl_state;
 | |
| 
 | |
|   class unified_bed_leveling {
 | |
|     private:
 | |
| 
 | |
|       static float last_specified_z;
 | |
| 
 | |
|     public:
 | |
| 
 | |
|       void find_mean_mesh_height();
 | |
|       void shift_mesh_height();
 | |
|       void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
 | |
|       void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
 | |
|       void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
 | |
|       void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map);
 | |
|       void save_ubl_active_state_and_disable();
 | |
|       void restore_ubl_active_state_and_leave();
 | |
|       void g29_what_command();
 | |
|       void g29_eeprom_dump() ;
 | |
|       void g29_compare_current_mesh_to_stored_mesh();
 | |
|       void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
 | |
|       void smart_fill_mesh();
 | |
|       void display_map(const int);
 | |
|       void reset();
 | |
|       void invalidate();
 | |
|       void store_state();
 | |
|       void load_state();
 | |
|       void store_mesh(const int16_t);
 | |
|       void load_mesh(const int16_t);
 | |
|       bool sanity_check();
 | |
| 
 | |
|       static ubl_state state;
 | |
| 
 | |
|       static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
 | |
| 
 | |
|       // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
 | |
|       // until determinism prevails
 | |
|       constexpr static float mesh_index_to_xpos[16] PROGMEM = {
 | |
|                                 UBL_MESH_MIN_X +  0 * (MESH_X_DIST), UBL_MESH_MIN_X +  1 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X +  2 * (MESH_X_DIST), UBL_MESH_MIN_X +  3 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X +  4 * (MESH_X_DIST), UBL_MESH_MIN_X +  5 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X +  6 * (MESH_X_DIST), UBL_MESH_MIN_X +  7 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X +  8 * (MESH_X_DIST), UBL_MESH_MIN_X +  9 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
 | |
|                                 UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
 | |
|                               };
 | |
| 
 | |
|       constexpr static float mesh_index_to_ypos[16] PROGMEM = {
 | |
|                                 UBL_MESH_MIN_Y +  0 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  1 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y +  2 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  3 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y +  4 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  5 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y +  6 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  7 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y +  8 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  9 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
 | |
|                                 UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
 | |
|                               };
 | |
| 
 | |
|       static bool g26_debug_flag, has_control_of_lcd_panel;
 | |
| 
 | |
|       static int16_t eeprom_start;    // Please do no change this to 8 bits in size
 | |
|                                       // It needs to hold values bigger than this.
 | |
| 
 | |
|       static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
 | |
| 
 | |
|       unified_bed_leveling();
 | |
| 
 | |
|       FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
 | |
|         int8_t get_cell_index_x(const float &x) {
 | |
|         const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
 | |
|         return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1);   // -1 is appropriate if we want all movement to the X_MAX
 | |
|       }                                                     // position. But with this defined this way, it is possible
 | |
|                                                             // to extrapolate off of this point even further out. Probably
 | |
|                                                             // that is OK because something else should be keeping that from
 | |
|                                                             // happening and should not be worried about at this level.
 | |
|       int8_t get_cell_index_y(const float &y) {
 | |
|         const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
 | |
|         return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1);   // -1 is appropriate if we want all movement to the Y_MAX
 | |
|       }                                                     // position. But with this defined this way, it is possible
 | |
|                                                             // to extrapolate off of this point even further out. Probably
 | |
|                                                             // that is OK because something else should be keeping that from
 | |
|                                                             // happening and should not be worried about at this level.
 | |
| 
 | |
|       int8_t find_closest_x_index(const float &x) {
 | |
|         const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
 | |
|         return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
 | |
|       }
 | |
| 
 | |
|       int8_t find_closest_y_index(const float &y) {
 | |
|         const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
 | |
|         return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        *                           z2   --|
 | |
|        *                 z0        |      |
 | |
|        *                  |        |      + (z2-z1)
 | |
|        *   z1             |        |      |
 | |
|        * ---+-------------+--------+--  --|
 | |
|        *   a1            a0        a2
 | |
|        *    |<---delta_a---------->|
 | |
|        *
 | |
|        *  calc_z0 is the basis for all the Mesh Based correction. It is used to
 | |
|        *  find the expected Z Height at a position between two known Z-Height locations.
 | |
|        *
 | |
|        *  It is fairly expensive with its 4 floating point additions and 2 floating point
 | |
|        *  multiplications.
 | |
|        */
 | |
|       FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
 | |
|         return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * z_correction_for_x_on_horizontal_mesh_line is an optimization for
 | |
|        * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
 | |
|        */
 | |
|       inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
 | |
|         if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
|           SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
 | |
|           SERIAL_ECHOPAIR(",x1_i=", x1_i);
 | |
|           SERIAL_ECHOPAIR(",yi=", yi);
 | |
|           SERIAL_CHAR(')');
 | |
|           SERIAL_EOL;
 | |
|           return NAN;
 | |
|         }
 | |
| 
 | |
|         const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)),
 | |
|                     z1 = z_values[x1_i][yi];
 | |
| 
 | |
|         return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // See comments above for z_correction_for_x_on_horizontal_mesh_line
 | |
|       //
 | |
|       inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
 | |
|         if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
|           SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
 | |
|           SERIAL_ECHOPAIR(", x1_i=", xi);
 | |
|           SERIAL_ECHOPAIR(", yi=", y1_i);
 | |
|           SERIAL_CHAR(')');
 | |
|           SERIAL_EOL;
 | |
|           return NAN;
 | |
|         }
 | |
| 
 | |
|         const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)),
 | |
|                     z1 = z_values[xi][y1_i];
 | |
| 
 | |
|         return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
 | |
|        * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
 | |
|        * Z-Height at both ends. Then it does a linear interpolation of these heights based
 | |
|        * on the Y position within the cell.
 | |
|        */
 | |
|       float get_z_correction(const float &lx0, const float &ly0) {
 | |
|         const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
 | |
|                      cy = get_cell_index_y(RAW_Y_POSITION(ly0));
 | |
| 
 | |
|         if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
| 
 | |
|           SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
 | |
|           SERIAL_ECHOPAIR(", ly0=", ly0);
 | |
|           SERIAL_CHAR(')');
 | |
|           SERIAL_EOL;
 | |
| 
 | |
|           #if ENABLED(ULTRA_LCD)
 | |
|             strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
 | |
|             lcd_quick_feedback();
 | |
|           #endif
 | |
|           return 0.0; // this used to return state.z_offset
 | |
|         }
 | |
| 
 | |
|         const float z1 = calc_z0(RAW_X_POSITION(lx0),
 | |
|                                  pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy],
 | |
|                                  pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]);
 | |
| 
 | |
|         const float z2 = calc_z0(RAW_X_POSITION(lx0),
 | |
|                                  pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1],
 | |
|                                  pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]);
 | |
| 
 | |
|         float z0 = calc_z0(RAW_Y_POSITION(ly0),
 | |
|                            pgm_read_float(&mesh_index_to_ypos[cy]), z1,
 | |
|                            pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2);
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(MESH_ADJUST)) {
 | |
|             SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
 | |
|             SERIAL_CHAR(',');
 | |
|             SERIAL_ECHO(ly0);
 | |
|             SERIAL_ECHOPGM(") = ");
 | |
|             SERIAL_ECHO_F(z0, 6);
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(MESH_ADJUST)) {
 | |
|             SERIAL_ECHOPGM(" >>>---> ");
 | |
|             SERIAL_ECHO_F(z0, 6);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
 | |
|           z0 = 0.0;      // in ubl.z_values[][] and propagate through the
 | |
|                          // calculations. If our correction is NAN, we throw it out
 | |
|                          // because part of the Mesh is undefined and we don't have the
 | |
|                          // information we need to complete the height correction.
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(MESH_ADJUST)) {
 | |
|               SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", lx0);
 | |
|               SERIAL_CHAR(',');
 | |
|               SERIAL_ECHO(ly0);
 | |
|               SERIAL_CHAR(')');
 | |
|               SERIAL_EOL;
 | |
|             }
 | |
|           #endif
 | |
|         }
 | |
|         return z0; // there used to be a +state.z_offset on this line
 | |
|       }
 | |
| 
 | |
|       /**
 | |
|        * This function sets the Z leveling fade factor based on the given Z height,
 | |
|        * only re-calculating when necessary.
 | |
|        *
 | |
|        *  Returns 1.0 if planner.z_fade_height is 0.0.
 | |
|        *  Returns 0.0 if Z is past the specified 'Fade Height'.
 | |
|        */
 | |
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
| 
 | |
|         FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
 | |
|           if (planner.z_fade_height == 0.0) return 1.0;
 | |
| 
 | |
|           static float fade_scaling_factor = 1.0;
 | |
|           const float rz = RAW_Z_POSITION(lz);
 | |
|           if (last_specified_z != rz) {
 | |
|             last_specified_z = rz;
 | |
|             fade_scaling_factor =
 | |
|               rz < planner.z_fade_height
 | |
|                 ? 1.0 - (rz * planner.inverse_z_fade_height)
 | |
|                 : 0.0;
 | |
|           }
 | |
|           return fade_scaling_factor;
 | |
|         }
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|   }; // class unified_bed_leveling
 | |
| 
 | |
|   extern unified_bed_leveling ubl;
 | |
| 
 | |
|   #define UBL_LAST_EEPROM_INDEX E2END
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL
 | |
| #endif // UNIFIED_BED_LEVELING_H
 |