Practice60 RGB and PWM Backlight (#4929)

* Update Practice60 to enable RGB via SPI DMA and use PWM backlight breathing

* Correct stm32f103c8t6 flash size in eeprom definition

* Remove unused files and improve ifdef checks

* Update quantum/rgblight.c

Co-Authored-By: awkannan <andrew.kannan@klaviyo.com>

* Update quantum/rgblight.c

Co-Authored-By: awkannan <andrew.kannan@klaviyo.com>

* EEPROM implementation fix and updated p60 code

* Update define

* Remove dead code

* Update keymap to remove test key

* Update keymap again
pull/5150/head 0.6.260
Andrew Kannan 6 years ago committed by Drashna Jaelre
parent d9120412d3
commit 0f507f0169

@ -7,4 +7,4 @@
// STM32F103* does NOT have an USB bootloader in ROM (only serial), // STM32F103* does NOT have an USB bootloader in ROM (only serial),
// so setting anything here does not make much sense // so setting anything here does not make much sense
// #define STM32_BOOTLOADER_ADDRESS 0x1FFFC800 #define STM32_BOOTLOADER_ADDRESS 0x80000000

@ -35,7 +35,9 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define MATRIX_ROW_PINS { B3, B4, B5, B6, B7 } #define MATRIX_ROW_PINS { B3, B4, B5, B6, B7 }
#define DIODE_DIRECTION COL2ROW #define DIODE_DIRECTION COL2ROW
#define BACKLIGHT_LEVELS 1 #define BACKLIGHT_LEVELS 6
#define BACKLIGHT_BREATHING
#define BREATHING_PERIOD 6
/* define if matrix has ghost */ /* define if matrix has ghost */
//#define MATRIX_HAS_GHOST //#define MATRIX_HAS_GHOST
@ -48,6 +50,15 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
/* Locking resynchronize hack */ /* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE #define LOCKING_RESYNC_ENABLE
#define RGBLIGHT_ANIMATIONS
#define WS2812_LED_N 9
#define RGBLED_NUM WS2812_LED_N
#define PORT_WS2812 GPIOB
#define PIN_WS2812 15
#define WS2812_SPI SPID2
/* /*
* Feature disable options * Feature disable options
* These options are also useful to firmware size reduction. * These options are also useful to firmware size reduction.

@ -111,7 +111,7 @@
* @brief Enables the PWM subsystem. * @brief Enables the PWM subsystem.
*/ */
#if !defined(HAL_USE_PWM) || defined(__DOXYGEN__) #if !defined(HAL_USE_PWM) || defined(__DOXYGEN__)
#define HAL_USE_PWM FALSE #define HAL_USE_PWM TRUE
#endif #endif
/** /**

@ -1,80 +0,0 @@
/* hsv2rgb.c
* Integer only conversion functions between HSV and RGB
*/
#include "hsv2rgb.h"
// TODO fix these buggy macros
#define max(x,y) ((x>y) ? x:y)
#define min(x,y) ((x>y) ? y:x)
#define min3(x,y,z) (min(min(x,y),z))
#define max3(x,y,z) (max(max(x,y),z))
rgb_color hsv2rgb(hsv_color hsv)
{
// From : http://qscribble.blogspot.fr/2008/06/integer-conversion-from-hsl-to-rgb.html
int h = hsv.h;
int s = hsv.s;
int v = hsv.v;
rgb_color rgb = {0, 0, 0};
if (v == 0)
return rgb;
// sextant = 0 .. 5
int sextant = (h*6)/256;
// f = 0 .. 42
int f = h - (sextant*256)/6;
int p = (v * (256 - s))/256;
int q = (v * (256*43 - s*f))/(256*43);
int t = (v * (256*43 - s*(43-f)))/(256*43);
// Corrige les erreurs dues aux arrondis
p = max(min(p, 255), 0);
q = max(min(q, 255), 0);
t = max(min(t, 255), 0);
switch(sextant){
case 0: rgb.r = v; rgb.g = t; rgb.b = p; break;
case 1: rgb.r = q; rgb.g = v; rgb.b = p; break;
case 2: rgb.r = p; rgb.g = v; rgb.b = t; break;
case 3: rgb.r = p; rgb.g = q; rgb.b = v; break;
case 4: rgb.r = t; rgb.g = p; rgb.b = v; break;
default:rgb.r = v; rgb.g = p; rgb.b = q; break;
}
return rgb;
}
hsv_color rgb2hsv(rgb_color rgb)
{
// From : http://www.ruinelli.ch/rgb-to-hsv
hsv_color hsv = {0, 0, 0};
int min, max, delta;
min = min3(rgb.r, rgb.g, rgb.b);
max = max3(rgb.r, rgb.g, rgb.b);
if(max==0) {
hsv.h = 0;
hsv.s = 0;
hsv.v = 0;
return hsv;
}
hsv.v = max;
delta = max - min;
hsv.s = (delta)*255 / max;
if(rgb.r == max)
hsv.h = (rgb.g - rgb.b)*42/delta; // between yellow & magenta
else if(rgb.g == max)
hsv.h = 120 + (rgb.b - rgb.r)*42/delta; // between cyan & yellow
else
hsv.h = 240 + (rgb.r - rgb.g)*42/delta; // between magenta & cyan
return hsv;
}

@ -1,23 +0,0 @@
/* hsv2rgb.h
* Convert Hue Saturation Value to Red Green Blue
*
* Programme de convertion d'une information HSV en RGB
*/
#ifndef HSV2RGB_H
#define HSV2RGB_H
typedef struct {
unsigned char h;
unsigned char s;
unsigned char v;
} hsv_color;
typedef struct {
unsigned char r;
unsigned char g;
unsigned char b;
} rgb_color;
rgb_color hsv2rgb(hsv_color hsv);
#endif

@ -32,16 +32,16 @@ enum custom_keycodes {
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = { const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_BASE] = LAYOUT_60_ansi( [_BASE] = LAYOUT_60_ansi(
KC_GESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, \ KC_GESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, \
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, MT(MOD_LSFT, KC_Y), KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, \ KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, \
KC_CAPS, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, \ KC_CAPS, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, \
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, \ KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, \
KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_RALT, KC_RGUI, MO(_FN1), KC_RCTL KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_RALT, KC_RGUI, MO(_FN1), KC_RCTL
), ),
[_FN1] = LAYOUT_60_ansi( [_FN1] = LAYOUT_60_ansi(
KC_GESC, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_BSPC, \ KC_GESC, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_DEL, \
RGB_TOG, RGB_MOD, KC_UP, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \ RGB_TOG, RGB_MOD, KC_UP, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, KC_LEFT, KC_DOWN, KC_RGHT, _______, _______, _______, _______, _______, _______, _______, _______, _______, \ BL_BRTG, KC_LEFT, KC_DOWN, KC_RGHT, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
BL_INC, BL_DEC, BL_TOGG, _______, _______, _______, _______, _______, _______, _______, _______, _______, \ BL_INC, BL_DEC, BL_TOGG, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
KC_GRV, _______, _______, _______, _______, _______, _______, _______ KC_GRV, _______, _______, _______, _______, _______, _______, _______
) )

@ -18,34 +18,240 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "hal.h" #include "hal.h"
#include "backlight.h" #include "backlight.h"
#include "led.h" #include "led.h"
#include "led_custom.h"
#include "printf.h" #include "printf.h"
static void breathing_callback(PWMDriver *pwmp);
static PWMConfig pwmCFG = {
0xFFFF, /* PWM clock frequency */
256, /* PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
NULL, /* No Callback */
{
{PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* Enable Channel 0 */
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL}
},
0, /* HW dependent part.*/
0
};
static PWMConfig pwmCFG_breathing = {
0xFFFF, /* 10kHz PWM clock frequency */
256, /* PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
breathing_callback, /* Breathing Callback */
{
{PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* Enable Channel 0 */
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL},
{PWM_OUTPUT_DISABLED, NULL}
},
0, /* HW dependent part.*/
0
};
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
if (v <= 5243) // if below 8% of max
return v / 9; // same as dividing by 900%
else {
uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y >> 8;
if (y > 0xFFFFUL) // prevent overflow
return 0xFFFFU;
else
return (uint16_t) y;
}
}
void backlight_init_ports(void) { void backlight_init_ports(void) {
printf("backlight_init_ports()\n"); printf("backlight_init_ports()\n");
#ifdef BACKLIGHT_ENABLE #ifdef BACKLIGHT_ENABLE
palSetPadMode(GPIOA, 8, PAL_MODE_OUTPUT_PUSHPULL);
palSetPad(GPIOA, 8); palSetPadMode(GPIOA, 8, PAL_MODE_STM32_ALTERNATE_PUSHPULL);
pwmStart(&PWMD1, &pwmCFG);
pwmEnableChannel(&PWMD1, 0, PWM_FRACTION_TO_WIDTH(&PWMD1, 0xFFFF,cie_lightness(0xFFFF)));
#endif #endif
} }
void backlight_set(uint8_t level) { void backlight_set(uint8_t level) {
printf("backlight_set(%d)\n", level); printf("backlight_set(%d)\n", level);
#ifdef BACKLIGHT_ENABLE #ifdef BACKLIGHT_ENABLE
uint32_t duty = (uint32_t)(cie_lightness(0xFFFF * (uint32_t) level / BACKLIGHT_LEVELS));
printf("duty: (%d)\n", duty);
if (level == 0) { if (level == 0) {
// Turn backlight off // Turn backlight off
palSetPad(GPIOA, 8); pwmDisableChannel(&PWMD1, 0);
} else { } else {
// Turn backlight on // Turn backlight on
palClearPad(GPIOA, 8); if(!is_breathing()){
pwmEnableChannel(&PWMD1, 0, PWM_FRACTION_TO_WIDTH(&PWMD1,0xFFFF,duty));
}
} }
#endif #endif
} }
uint8_t backlight_tick = 0;
void backlight_task(void) {
}
#define BREATHING_NO_HALT 0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON 2
#define BREATHING_STEPS 128
static uint8_t breathing_period = BREATHING_PERIOD;
static uint8_t breathing_halt = BREATHING_NO_HALT;
static uint16_t breathing_counter = 0;
bool is_breathing(void) {
return PWMD1.config == &pwmCFG_breathing;
}
#define breathing_min() do {breathing_counter = 0;} while (0)
#define breathing_max() do {breathing_counter = breathing_period * 256 / 2;} while (0)
void breathing_interrupt_enable(void){
pwmStop(&PWMD1);
printf("starting with callback\n");
pwmStart(&PWMD1, &pwmCFG_breathing);
chSysLockFromISR();
pwmEnablePeriodicNotification(&PWMD1);
pwmEnableChannelI(
&PWMD1,
0,
PWM_FRACTION_TO_WIDTH(
&PWMD1,
0xFFFF,
0xFFFF
)
);
chSysUnlockFromISR();
}
void breathing_interrupt_disable(void){
pwmStop(&PWMD1);
printf("starting without callback\n");
pwmStart(&PWMD1, &pwmCFG);
}
void breathing_enable(void)
{
printf("breathing_enable()\n");
breathing_counter = 0;
breathing_halt = BREATHING_NO_HALT;
breathing_interrupt_enable();
}
void breathing_pulse(void)
{
if (get_backlight_level() == 0)
breathing_min();
else
breathing_max();
breathing_halt = BREATHING_HALT_ON;
breathing_interrupt_enable();
}
void breathing_disable(void)
{
printf("breathing_disable()\n");
breathing_interrupt_disable();
// Restore backlight level
backlight_set(get_backlight_level());
}
void breathing_self_disable(void)
{
if (get_backlight_level() == 0)
breathing_halt = BREATHING_HALT_OFF;
else
breathing_halt = BREATHING_HALT_ON;
}
void breathing_toggle(void) {
if (is_breathing()){
printf("disable breathing\n");
breathing_disable();
} else {
printf("enable breathing\n");
breathing_enable();
}
}
void breathing_period_set(uint8_t value)
{
if (!value)
value = 1;
breathing_period = value;
}
void breathing_period_default(void) {
breathing_period_set(BREATHING_PERIOD);
}
void breathing_period_inc(void)
{
breathing_period_set(breathing_period+1);
}
void breathing_period_dec(void)
{
breathing_period_set(breathing_period-1);
}
/* To generate breathing curve in python:
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
*/
static const uint8_t breathing_table[BREATHING_STEPS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
return v / BACKLIGHT_LEVELS * get_backlight_level();
}
static void breathing_callback(PWMDriver *pwmp)
{
(void)pwmp;
uint16_t interval = (uint16_t) breathing_period * 256 / BREATHING_STEPS;
// resetting after one period to prevent ugly reset at overflow.
breathing_counter = (breathing_counter + 1) % (breathing_period * 256);
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
{
breathing_interrupt_disable();
}
uint32_t duty = cie_lightness(scale_backlight(breathing_table[index] * 256));
chSysLockFromISR();
pwmEnableChannelI(
&PWMD1,
0,
PWM_FRACTION_TO_WIDTH(
&PWMD1,
0xFFFF,
duty
)
);
chSysUnlockFromISR();
}
void led_set(uint8_t usb_led) void led_set(uint8_t usb_led)
{ {
if (usb_led & (1<<USB_LED_CAPS_LOCK)) { if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
palClearPad(GPIOC, 13);
} else {
palSetPad(GPIOC, 13); palSetPad(GPIOC, 13);
} else {
palClearPad(GPIOC, 13);
} }
} }

@ -0,0 +1,6 @@
#pragma once
void backlight_task(void);
void breathing_interrupt_disable(void);
void breathing_interrupt_enable(void);
bool is_breathing(void);

@ -132,7 +132,7 @@
* PWM driver system settings. * PWM driver system settings.
*/ */
#define STM32_PWM_USE_ADVANCED FALSE #define STM32_PWM_USE_ADVANCED FALSE
#define STM32_PWM_USE_TIM1 FALSE #define STM32_PWM_USE_TIM1 TRUE
#define STM32_PWM_USE_TIM2 FALSE #define STM32_PWM_USE_TIM2 FALSE
#define STM32_PWM_USE_TIM3 FALSE #define STM32_PWM_USE_TIM3 FALSE
#define STM32_PWM_USE_TIM4 FALSE #define STM32_PWM_USE_TIM4 FALSE

@ -3,8 +3,7 @@
#include "ch.h" #include "ch.h"
#include "hal.h" #include "hal.h"
#include "led_custom.h"
#include "underglow.h"
#include "print.h" #include "print.h"
#include "debug.h" #include "debug.h"
#include "util.h" #include "util.h"
@ -19,14 +18,18 @@
void matrix_init_kb(void){ void matrix_init_kb(void){
/* MOSI pin*/ /* MOSI pin*/
palSetPadMode(GPIOB, 15, PAL_MODE_STM32_ALTERNATE_PUSHPULL); palSetPadMode(GPIOB, 15, PAL_MODE_STM32_ALTERNATE_PUSHPULL);
LED_ON(); LED_ON();
palSetPad(GPIOA, 8);
wait_ms(500); wait_ms(500);
palClearPad(GPIOA, 8);
LED_OFF(); LED_OFF();
#ifdef RGBLIGHT_ENABLE
leds_init(); leds_init();
#endif
}
void matrix_scan_kb(void)
{
#ifdef RGBLIGHT_ENABLE
rgblight_task();
#endif
} }

@ -1,7 +1,6 @@
# project specific files # project specific files
SRC = led.c \ SRC = led.c \
underglow.c \ ws2812.c
hsv2rgb.c
# GENERIC STM32F103C8T6 board - stm32duino bootloader # GENERIC STM32F103C8T6 board - stm32duino bootloader
OPT_DEFS = -DCORTEX_VTOR_INIT=0x2000 OPT_DEFS = -DCORTEX_VTOR_INIT=0x2000
@ -50,6 +49,7 @@ COMMAND_ENABLE = yes # Commands for debug and configuration
SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover NKRO_ENABLE = yes # USB Nkey Rollover
BACKLIGHT_ENABLE = yes BACKLIGHT_ENABLE = yes
RGBLIGHT_ENABLE = yes
LAYOUTS = 60_ansi LAYOUTS = 60_ansi

@ -1,10 +0,0 @@
#pragma once
#include "hsv2rgb.h"
void set_leds_color_hsv(hsv_color color);
void set_leds_color_rgb(rgb_color color);
void set_led_color_hsv(hsv_color color, int pos);
void set_led_color_rgb(rgb_color color, int pos);
void leds_init(void);

@ -1,8 +1,12 @@
#include "ch.h" /*
#include "hal.h" * LEDDriver.c
*
* Created on: Aug 26, 2013
* Author: Omri Iluz
*/
#include "hsv2rgb.h" #include "ws2812.h"
#include "underglow.h" #include "stdlib.h"
#define BYTES_FOR_LED_BYTE 4 #define BYTES_FOR_LED_BYTE 4
#define NB_COLORS 3 #define NB_COLORS 3
@ -10,11 +14,10 @@
#define DATA_SIZE BYTES_FOR_LED*NB_LEDS #define DATA_SIZE BYTES_FOR_LED*NB_LEDS
#define RESET_SIZE 200 #define RESET_SIZE 200
#define PREAMBLE_SIZE 4 #define PREAMBLE_SIZE 4
// Define the spi your LEDs are plugged to here // Define the spi your LEDs are plugged to here
#define LEDS_SPI SPID2 #define WS2812_SPI SPID2
// Define the number of LEDs you wish to control in your LED strip // Define the number of LEDs you wish to control in your LED strip
#define NB_LEDS 8 #define NB_LEDS RGBLED_NUM
#define LED_SPIRAL 1 #define LED_SPIRAL 1
@ -37,35 +40,15 @@ static THD_WORKING_AREA(LEDS_THREAD_WA, 128);
static THD_FUNCTION(ledsThread, arg) { static THD_FUNCTION(ledsThread, arg) {
(void) arg; (void) arg;
while(1){ while(1){
spiSend(&LEDS_SPI, PREAMBLE_SIZE + DATA_SIZE + RESET_SIZE, txbuf); spiSend(&WS2812_SPI, PREAMBLE_SIZE + DATA_SIZE + RESET_SIZE, txbuf);
}
}
#if LED_SPIRAL
/*
* 'Led spiral' is a simple demo in which we put all the leds to the same
* color, where this color does all the hsv circle in loop.
* If you want to launch the thread that will chage the led colors to the
* appropriate value, simply set LED_SPIRAL to 1.
*/
static THD_WORKING_AREA(HSVTRANS_WA, 128);
static THD_FUNCTION(hsv_transThread, arg){
(void) arg;
hsv_color color = {0, 255, 127};
while(1){
color.h += 1;
color.h %= 256;
set_leds_color_hsv(color);
chThdSleepMilliseconds(50);
} }
} }
#endif
static const SPIConfig spicfg = { static const SPIConfig spicfg = {
NULL, NULL,
GPIOB, PORT_WS2812,
15, PIN_WS2812,
SPI_CR1_BR_1|SPI_CR1_BR_0 // baudrate : fpclk / 8 => 1tick is 0.32us SPI_CR1_BR_1|SPI_CR1_BR_0 // baudrate : fpclk / 8 => 1tick is 0.32us (2.25 MHz)
}; };
/* /*
@ -77,18 +60,16 @@ static const SPIConfig spicfg = {
* txbuff values) * txbuff values)
*/ */
void leds_init(void){ void leds_init(void){
/* MOSI pin*/
palSetPadMode(PORT_WS2812, PIN_WS2812, PAL_MODE_STM32_ALTERNATE_PUSHPULL);
for(int i = 0; i < RESET_SIZE; i++) for(int i = 0; i < RESET_SIZE; i++)
txbuf[DATA_SIZE+i] = 0x00; txbuf[DATA_SIZE+i] = 0x00;
for (int i=0; i<PREAMBLE_SIZE; i++) for (int i=0; i<PREAMBLE_SIZE; i++)
txbuf[i] = 0x00; txbuf[i] = 0x00;
spiAcquireBus(&LEDS_SPI); /* Acquire ownership of the bus. */ spiAcquireBus(&WS2812_SPI); /* Acquire ownership of the bus. */
spiStart(&LEDS_SPI, &spicfg); /* Setup transfer parameters. */ spiStart(&WS2812_SPI, &spicfg); /* Setup transfer parameters. */
spiSelect(&LEDS_SPI); /* Slave Select assertion. */ spiSelect(&WS2812_SPI); /* Slave Select assertion. */
chThdCreateStatic(LEDS_THREAD_WA, sizeof(LEDS_THREAD_WA),NORMALPRIO, ledsThread, NULL); chThdCreateStatic(LEDS_THREAD_WA, sizeof(LEDS_THREAD_WA),NORMALPRIO, ledsThread, NULL);
#if LED_SPIRAL
chThdCreateStatic(HSVTRANS_WA, sizeof(HSVTRANS_WA),
NORMALPRIO, hsv_transThread, NULL);
#endif
} }
/* /*
@ -109,17 +90,17 @@ static uint8_t get_protocol_eq(uint8_t data, int pos){
return eq; return eq;
} }
/*
* If you want to set a LED's color in the HSV color space, simply call this void WS2812_init(void) {
* function with a hsv_color containing the desired color and the index of the leds_init();
* led on the LED strip (starting from 0, the first one being the closest the }
* first plugged to the board)
* void ws2812_setleds(LED_TYPE *ledarray, uint16_t number_of_leds) {
* Only set the color of the LEDs through the functions given by this API uint8_t i = 0;
* (unless you really know what you are doing) while (i < number_of_leds) {
*/ set_led_color_rgb(ledarray[i], i);
void set_led_color_hsv(hsv_color color, int pos){ i++;
set_led_color_rgb(hsv2rgb(color), pos); }
} }
/* /*
@ -131,7 +112,7 @@ void set_led_color_hsv(hsv_color color, int pos){
* Only set the color of the LEDs through the functions given by this API * Only set the color of the LEDs through the functions given by this API
* (unless you really know what you are doing) * (unless you really know what you are doing)
*/ */
void set_led_color_rgb(rgb_color color, int pos){ void set_led_color_rgb(LED_TYPE color, int pos){
for(int j = 0; j < 4; j++) for(int j = 0; j < 4; j++)
txbuf[PREAMBLE_SIZE + BYTES_FOR_LED*pos + j] = get_protocol_eq(color.g, j); txbuf[PREAMBLE_SIZE + BYTES_FOR_LED*pos + j] = get_protocol_eq(color.g, j);
for(int j = 0; j < 4; j++) for(int j = 0; j < 4; j++)
@ -140,18 +121,12 @@ void set_led_color_rgb(rgb_color color, int pos){
txbuf[PREAMBLE_SIZE + BYTES_FOR_LED*pos + BYTES_FOR_LED_BYTE*2+j] = get_protocol_eq(color.b, j); txbuf[PREAMBLE_SIZE + BYTES_FOR_LED*pos + BYTES_FOR_LED_BYTE*2+j] = get_protocol_eq(color.b, j);
} }
/* void set_leds_color_rgb(LED_TYPE color){
* Same as the two above, but sets all the LEDs in the LED strip (HSV)
*/
void set_leds_color_hsv(hsv_color color){
for(int i = 0; i < NB_LEDS; i++) for(int i = 0; i < NB_LEDS; i++)
set_led_color_hsv(color, i); set_led_color_rgb(color, i);
} }
/*
* Same as the two above, but sets all the LEDs in the LED strip (RGB) void ws2812_setleds_rgbw(LED_TYPE *ledarray, uint16_t number_of_leds) {
*/
void set_leds_color_rgb(rgb_color color){
for(int i = 0; i < NB_LEDS; i++)
set_led_color_rgb(color, i);
} }

@ -0,0 +1,20 @@
#pragma once
#include "hal.h"
#include "rgblight_types.h"
void set_leds_color_rgb(LED_TYPE color);
void set_led_color_rgb(LED_TYPE color, int pos);
void leds_init(void);
// This is what users will use to interface with this
void ws2812_setleds(LED_TYPE *ledarray, uint16_t number_of_leds);
void ws2812_setleds_rgbw(LED_TYPE *ledarray, uint16_t number_of_leds);
void WS2812_init(void);
void WS2812_set_color( uint8_t index, uint8_t red, uint8_t green, uint8_t blue );
void WS2812_set_color_all( uint8_t red, uint8_t green, uint8_t blue );
void WS2812_send_colors(void);

@ -19,6 +19,11 @@
#include <avr/eeprom.h> #include <avr/eeprom.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#endif #endif
#ifdef STM32_EEPROM_ENABLE
#include "hal.h"
#include "eeprom.h"
#include "eeprom_stm32.h"
#endif
#include "wait.h" #include "wait.h"
#include "progmem.h" #include "progmem.h"
#include "timer.h" #include "timer.h"
@ -120,14 +125,14 @@ void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) {
uint32_t eeconfig_read_rgblight(void) { uint32_t eeconfig_read_rgblight(void) {
#ifdef __AVR__ #if defined(__AVR__) || defined(STM32_EEPROM_ENABLE) || defined(PROTOCOL_ARM_ATSAM) || defined(EEPROM_SIZE)
return eeprom_read_dword(EECONFIG_RGBLIGHT); return eeprom_read_dword(EECONFIG_RGBLIGHT);
#else #else
return 0; return 0;
#endif #endif
} }
void eeconfig_update_rgblight(uint32_t val) { void eeconfig_update_rgblight(uint32_t val) {
#ifdef __AVR__ #if defined(__AVR__) || defined(STM32_EEPROM_ENABLE) || defined(PROTOCOL_ARM_ATSAM) || defined(EEPROM_SIZE)
if (eeconfig_read_rgblight() != val) { if (eeconfig_read_rgblight() != val) {
eeprom_update_dword(EECONFIG_RGBLIGHT, val); eeprom_update_dword(EECONFIG_RGBLIGHT, val);
} }
@ -333,7 +338,7 @@ void rgblight_disable_noeeprom(void) {
#ifdef RGBLIGHT_USE_TIMER #ifdef RGBLIGHT_USE_TIMER
rgblight_timer_disable(); rgblight_timer_disable();
#endif #endif
_delay_ms(50); wait_ms(50);
rgblight_set(); rgblight_set();
} }

@ -75,17 +75,13 @@ uint16_t EEPROM_WriteDataByte (uint16_t Address, uint8_t DataByte) {
} }
// calculate which page is affected (Pagenum1/Pagenum2...PagenumN) // calculate which page is affected (Pagenum1/Pagenum2...PagenumN)
page = (FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)) & 0x00000FFF; page = FEE_ADDR_OFFSET(Address) / FEE_PAGE_SIZE;
if (page % FEE_PAGE_SIZE) page = page + FEE_PAGE_SIZE;
page = (page / FEE_PAGE_SIZE) - 1;
// if current data is 0xFF, the byte is empty, just overwrite with the new one // if current data is 0xFF, the byte is empty, just overwrite with the new one
if ((*(__IO uint16_t*)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) { if ((*(__IO uint16_t*)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) {
FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte)); FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte));
} } else {
else {
// Copy Page to a buffer // Copy Page to a buffer
memcpy(DataBuf, (uint8_t*)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page memcpy(DataBuf, (uint8_t*)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page
@ -96,18 +92,17 @@ uint16_t EEPROM_WriteDataByte (uint16_t Address, uint8_t DataByte) {
} }
// manipulate desired data byte in temp data array if new byte is differ to the current // manipulate desired data byte in temp data array if new byte is differ to the current
DataBuf[FEE_ADDR_OFFSET(Address)] = DataByte; DataBuf[FEE_ADDR_OFFSET(Address) % FEE_PAGE_SIZE] = DataByte;
//Erase Page //Erase Page
FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + page); FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE));
// Write new data (whole page) to flash if data has beed changed // Write new data (whole page) to flash if data has been changed
for(i = 0; i < (FEE_PAGE_SIZE / 2); i++) { for(i = 0; i < (FEE_PAGE_SIZE / 2); i++) {
if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) { if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) {
FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)])); FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]));
} }
} }
} }
return FlashStatus; return FlashStatus;
} }

Loading…
Cancel
Save