added ergodox

pull/32/head
Jack Humbert 9 years ago
parent 46e7fb2d3c
commit 35a81f5b8b

@ -0,0 +1,139 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = ergodox
# Directory common source filess exist
TOP_DIR = ../..
# Directory keyboard dependent files exist
TARGET_DIR = .
# # project specific files
SRC = ergodox.c \
twimaster.c \
backlight.c
ifdef KEYMAP
SRC := keymaps/keymap_$(KEYMAP).c $(SRC)
else
SRC := keymaps/keymap_default.c $(SRC)
endif
CONFIG_H = config.h
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = yes # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
# BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
# MIDI_ENABLE = YES # MIDI controls
# UNICODE_ENABLE = YES # Unicode
# BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
include $(TOP_DIR)/quantum.mk

@ -0,0 +1,56 @@
# TMK Generic
* I'm not sure what the Magic + H does.
Is this a menu that will pop up regardless of what platform and program is open?
Yes, this is sort of debugging.
Use PJRC's [hid_listen](https://www.pjrc.com/teensy/hid_listen.html) to see debug messages.
# TMK/Ergodox specific
* I would like to configure my leds to indicate the active layer.
I read that can be done, but I haven't seen an example for this firmware.
Can someone please post an example or a link?
TMK for Ergodox have support for seven (!) led's:
- three on right
- three on left (see http://geekhack.org/index.php?topic=22780.msg873819#msg873819 for more details)
- Teensy onboard led as well
Any of these leds can be used as layer indicator or NumLock/CapsLock/ScrollLock led.
[Here is example](https://github.com/cub-uanic/tmk_keyboard/blob/cub_layout/keyboard/ergodox/matrix.c#L121-167)
how you can assign some meaning to each led.
In this code only left leds are used to show layers, but you can
[change `led_set()`](https://github.com/cub-uanic/tmk_keyboard/blob/cub_layout/keyboard/ergodox/led.c)
and do anything you want with all leds.
# Firmware
Q: Where to get binaries?
A:
Q: Where to get sources?
A:
Q: How to compile?
A:
# Layouts
description of layouts in base firmware binaries
# Things TO-DO
- [ ] Flash NumLock led only when "numpad" layer is active
- [ ] Command (in terms of IS_COMMAND) to switch to no-leds mode
- [ ] Increase count of ACTION keys
- [ ] Fix command_state() onboard led: it should flash only when kbd in some specific mode (CONSOLE || MOUSE)
- [ ] ergodox_blink_all_leds() should save current state of leds, and restore after blink. initial state of all leds == off
- [ ] add support for pseudo-backlight (reversed LEDs) + docs/photo
- [ ] command to debug all LEDs (on/off/blink)
- [ ] proper (in-core) implementation of DEBUG_MATRIX_SCAN_RATE (non-Ergodox specific)
- [ ] proper (in-core) support for per-layer fn_actions[]

@ -0,0 +1,61 @@
#include <avr/io.h>
#include "backlight.h"
#define CHANNEL OCR1C
void backlight_init_ports()
{
// Setup PB7 as output and output low.
DDRB |= (1<<7);
PORTB &= ~(1<<7);
// Use full 16-bit resolution.
ICR1 = 0xFFFF;
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
backlight_init();
}
void backlight_set(uint8_t level)
{
if ( level == 0 )
{
// Turn off PWM control on PB7, revert to output low.
TCCR1A &= ~(_BV(COM1C1));
CHANNEL = 0x0;
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
}
else if ( level == BACKLIGHT_LEVELS )
{
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF;
}
else
{
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
}
}

@ -0,0 +1,88 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x1307
#define DEVICE_VER 0x0001
#define MANUFACTURER ErgoDox EZ
#define PRODUCT ErgoDox EZ
#define DESCRIPTION t.m.k. keyboard firmware for Ergodox
/* key matrix size */
#define MATRIX_ROWS 14
#define MATRIX_COLS 6
#define MOUSEKEY_DELAY 100
#define MOUSEKEY_INTERVAL 20
#define MOUSEKEY_MAX_SPEED 3
#define MOUSEKEY_TIME_TO_MAX 10
#define COLS (int []){ F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }
#define ROWS (int []){ D0, D5, B5, B6 }
/* COL2ROW or ROW2COL */
#define DIODE_DIRECTION COL2ROW
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
#define BACKLIGHT_LEVELS 3
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 2
#define TAPPING_TERM 230
#define TAPPING_TOGGLE 2
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL)) || \
keyboard_report->mods == (MOD_BIT(KC_LSFT) | MOD_BIT(KC_RSFT)) \
)
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
// #define NO_DEBUG
/* disable print */
// #define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE
#endif

@ -0,0 +1,121 @@
#include "ergodox.h"
#include "i2cmaster.h"
bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20;
bool ergodox_left_led_1 = 0; // left top
bool ergodox_left_led_2 = 0; // left middle
bool ergodox_left_led_3 = 0; // left bottom
void * matrix_init_user(void) {
};
void * matrix_scan_user(void) {
};
void * matrix_init_kb(void) {
// keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md")
TCCR1A = 0b10101001; // set and configure fast PWM
TCCR1B = 0b00001001; // set and configure fast PWM
// (tied to Vcc for hardware convenience)
DDRB &= ~(1<<4); // set B(4) as input
PORTB &= ~(1<<4); // set B(4) internal pull-up disabled
// unused pins - C7, D4, D5, D7, E6
// set as input with internal pull-ip enabled
DDRC &= ~(1<<7);
DDRD &= ~(1<<7 | 1<<5 | 1<<4);
DDRE &= ~(1<<6);
PORTC |= (1<<7);
PORTD |= (1<<7 | 1<<5 | 1<<4);
PORTE |= (1<<6);
ergodox_blink_all_leds();
if (matrix_init_user) {
(*matrix_init_user)();
}
};
void * matrix_scan_kb(void) {
if (matrix_scan_user) {
(*matrix_scan_user)();
}
};
void ergodox_blink_all_leds(void)
{
ergodox_led_all_off();
ergodox_led_all_set(LED_BRIGHTNESS_HI);
ergodox_led_all_on();
_delay_ms(333);
ergodox_led_all_off();
}
uint8_t init_mcp23018(void) {
mcp23018_status = 0x20;
// I2C subsystem
if (i2c_initialized == 0) {
i2c_init(); // on pins D(1,0)
i2c_initialized++;
_delay_ms(1000);
}
// set pin direction
// - unused : input : 1
// - input : input : 1
// - driving : output : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(IODIRA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
i2c_stop();
// set pull-up
// - unused : on : 1
// - input : on : 1
// - driving : off : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPPUA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
out:
i2c_stop();
if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update();
return mcp23018_status;
}
uint8_t ergodox_left_leds_update(void) {
if (mcp23018_status) { // if there was an error
return mcp23018_status;
}
// set logical value (doesn't matter on inputs)
// - unused : hi-Z : 1
// - input : hi-Z : 1
// - driving : hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(OLATA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b11111111
& ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT)
); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b11111111
& ~(ergodox_left_led_2<<LEFT_LED_2_SHIFT)
& ~(ergodox_left_led_1<<LEFT_LED_1_SHIFT)
); if (mcp23018_status) goto out;
out:
i2c_stop();
return mcp23018_status;
}

@ -0,0 +1,145 @@
#ifndef PLANCK_H
#define PLANCK_H
#include "matrix.h"
#include "keymap_common.h"
#include "backlight.h"
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "i2cmaster.h"
#include <util/delay.h>
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz 0x00
// I2C aliases and register addresses (see "mcp23018.md")
#define I2C_ADDR 0b0100000
#define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE )
#define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ )
#define IODIRA 0x00 // i/o direction register
#define IODIRB 0x01
#define GPPUA 0x0C // GPIO pull-up resistor register
#define GPPUB 0x0D
#define GPIOA 0x12 // general purpose i/o port register (write modifies OLAT)
#define GPIOB 0x13
#define OLATA 0x14 // output latch register
#define OLATB 0x15
extern uint8_t mcp23018_status;
void init_ergodox(void);
void ergodox_blink_all_leds(void);
uint8_t init_mcp23018(void);
uint8_t ergodox_left_leds_update(void);
#define LED_BRIGHTNESS_LO 31
#define LED_BRIGHTNESS_HI 255
#define LEFT_LED_1_SHIFT 7 // in MCP23018 port B
#define LEFT_LED_2_SHIFT 6 // in MCP23018 port B
#define LEFT_LED_3_SHIFT 7 // in MCP23018 port A
extern bool ergodox_left_led_1; // left top
extern bool ergodox_left_led_2; // left middle
extern bool ergodox_left_led_3; // left bottom
inline void ergodox_board_led_on(void) { DDRD |= (1<<6); PORTD |= (1<<6); }
inline void ergodox_right_led_1_on(void) { DDRB |= (1<<5); PORTB |= (1<<5); }
inline void ergodox_right_led_2_on(void) { DDRB |= (1<<6); PORTB |= (1<<6); }
inline void ergodox_right_led_3_on(void) { DDRB |= (1<<7); PORTB |= (1<<7); }
inline void ergodox_left_led_1_on(void) { ergodox_left_led_1 = 1; }
inline void ergodox_left_led_2_on(void) { ergodox_left_led_2 = 1; }
inline void ergodox_left_led_3_on(void) { ergodox_left_led_3 = 1; }
inline void ergodox_board_led_off(void) { DDRD &= ~(1<<6); PORTD &= ~(1<<6); }
inline void ergodox_right_led_1_off(void) { DDRB &= ~(1<<5); PORTB &= ~(1<<5); }
inline void ergodox_right_led_2_off(void) { DDRB &= ~(1<<6); PORTB &= ~(1<<6); }
inline void ergodox_right_led_3_off(void) { DDRB &= ~(1<<7); PORTB &= ~(1<<7); }
inline void ergodox_left_led_1_off(void) { ergodox_left_led_1 = 0; }
inline void ergodox_left_led_2_off(void) { ergodox_left_led_2 = 0; }
inline void ergodox_left_led_3_off(void) { ergodox_left_led_3 = 0; }
inline void ergodox_led_all_on(void)
{
ergodox_board_led_on();
ergodox_right_led_1_on();
ergodox_right_led_2_on();
ergodox_right_led_3_on();
ergodox_left_led_1_on();
ergodox_left_led_2_on();
ergodox_left_led_3_on();
ergodox_left_leds_update();
}
inline void ergodox_led_all_off(void)
{
ergodox_board_led_off();
ergodox_right_led_1_off();
ergodox_right_led_2_off();
ergodox_right_led_3_off();
ergodox_left_led_1_off();
ergodox_left_led_2_off();
ergodox_left_led_3_off();
ergodox_left_leds_update();
}
inline void ergodox_right_led_1_set(uint8_t n) { OCR1A = n; }
inline void ergodox_right_led_2_set(uint8_t n) { OCR1B = n; }
inline void ergodox_right_led_3_set(uint8_t n) { OCR1C = n; }
inline void ergodox_led_all_set(uint8_t n)
{
ergodox_right_led_1_set(n);
ergodox_right_led_2_set(n);
ergodox_right_led_3_set(n);
}
#define KEYMAP( \
\
/* left hand, spatial positions */ \
k00,k01,k02,k03,k04,k05,k06, \
k10,k11,k12,k13,k14,k15,k16, \
k20,k21,k22,k23,k24,k25, \
k30,k31,k32,k33,k34,k35,k36, \
k40,k41,k42,k43,k44, \
k55,k56, \
k54, \
k53,k52,k51, \
\
/* right hand, spatial positions */ \
k07,k08,k09,k0A,k0B,k0C,k0D, \
k17,k18,k19,k1A,k1B,k1C,k1D, \
k28,k29,k2A,k2B,k2C,k2D, \
k37,k38,k39,k3A,k3B,k3C,k3D, \
k49,k4A,k4B,k4C,k4D, \
k57,k58, \
k59, \
k5C,k5B,k5A ) \
\
/* matrix positions */ \
{ \
{ k00, k10, k20, k30, k40, KC_NO }, \
{ k01, k11, k21, k31, k41, k51 }, \
{ k02, k12, k22, k32, k42, k52 }, \
{ k03, k13, k23, k33, k43, k53 }, \
{ k04, k14, k24, k34, k44, k54 }, \
{ k05, k15, k25, k35, KC_NO, k55 }, \
{ k06, k16, KC_NO, k36, KC_NO, k56 }, \
\
{ k07, k17, KC_NO, k37,KC_NO, k57 }, \
{ k08, k18, k28, k38,KC_NO, k58 }, \
{ k09, k19, k29, k39, k49, k59 }, \
{ k0A, k1A, k2A, k3A, k4A, k5A }, \
{ k0B, k1B, k2B, k3B, k4B, k5B }, \
{ k0C, k1C, k2C, k3C, k4C, k5C }, \
{ k0D, k1D, k2D, k3D, k4D, KC_NO } \
}
void * matrix_init_user(void);
void * matrix_scan_user(void);
#endif

@ -0,0 +1,178 @@
#ifndef _I2CMASTER_H
#define _I2CMASTER_H 1
/*************************************************************************
* Title: C include file for the I2C master interface
* (i2cmaster.S or twimaster.c)
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: i2cmaster.h,v 1.10 2005/03/06 22:39:57 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device
* Usage: see Doxygen manual
**************************************************************************/
#ifdef DOXYGEN
/**
@defgroup pfleury_ic2master I2C Master library
@code #include <i2cmaster.h> @endcode
@brief I2C (TWI) Master Software Library
Basic routines for communicating with I2C slave devices. This single master
implementation is limited to one bus master on the I2C bus.
This I2c library is implemented as a compact assembler software implementation of the I2C protocol
which runs on any AVR (i2cmaster.S) and as a TWI hardware interface for all AVR with built-in TWI hardware (twimaster.c).
Since the API for these two implementations is exactly the same, an application can be linked either against the
software I2C implementation or the hardware I2C implementation.
Use 4.7k pull-up resistor on the SDA and SCL pin.
Adapt the SCL and SDA port and pin definitions and eventually the delay routine in the module
i2cmaster.S to your target when using the software I2C implementation !
Adjust the CPU clock frequence F_CPU in twimaster.c or in the Makfile when using the TWI hardware implementaion.
@note
The module i2cmaster.S is based on the Atmel Application Note AVR300, corrected and adapted
to GNU assembler and AVR-GCC C call interface.
Replaced the incorrect quarter period delays found in AVR300 with
half period delays.
@author Peter Fleury pfleury@gmx.ch http://jump.to/fleury
@par API Usage Example
The following code shows typical usage of this library, see example test_i2cmaster.c
@code
#include <i2cmaster.h>
#define Dev24C02 0xA2 // device address of EEPROM 24C02, see datasheet
int main(void)
{
unsigned char ret;
i2c_init(); // initialize I2C library
// write 0x75 to EEPROM address 5 (Byte Write)
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_write(0x75); // write value 0x75 to EEPROM
i2c_stop(); // set stop conditon = release bus
// read previously written value back from EEPROM address 5
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_rep_start(Dev24C02+I2C_READ); // set device address and read mode
ret = i2c_readNak(); // read one byte from EEPROM
i2c_stop();
for(;;);
}
@endcode
*/
#endif /* DOXYGEN */
/**@{*/
#if (__GNUC__ * 100 + __GNUC_MINOR__) < 304
#error "This library requires AVR-GCC 3.4 or later, update to newer AVR-GCC compiler !"
#endif
#include <avr/io.h>
/** defines the data direction (reading from I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_READ 1
/** defines the data direction (writing to I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_WRITE 0
/**
@brief initialize the I2C master interace. Need to be called only once
@param void
@return none
*/
extern void i2c_init(void);
/**
@brief Terminates the data transfer and releases the I2C bus
@param void
@return none
*/
extern void i2c_stop(void);
/**
@brief Issues a start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_start(unsigned char addr);
/**
@brief Issues a repeated start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_rep_start(unsigned char addr);
/**
@brief Issues a start condition and sends address and transfer direction
If device is busy, use ack polling to wait until device ready
@param addr address and transfer direction of I2C device
@return none
*/
extern void i2c_start_wait(unsigned char addr);
/**
@brief Send one byte to I2C device
@param data byte to be transfered
@retval 0 write successful
@retval 1 write failed
*/
extern unsigned char i2c_write(unsigned char data);
/**
@brief read one byte from the I2C device, request more data from device
@return byte read from I2C device
*/
extern unsigned char i2c_readAck(void);
/**
@brief read one byte from the I2C device, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_readNak(void);
/**
@brief read one byte from the I2C device
Implemented as a macro, which calls either i2c_readAck or i2c_readNak
@param ack 1 send ack, request more data from device<br>
0 send nak, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
/**@}*/
#endif

@ -0,0 +1,76 @@
#include "ergodox.h"
#include "debug.h"
#define DEFAULT_LAYER 0
#define COLEMAK_LAYER 1
#define DVORAK_LAYER 2
#define LOWER_LAYER 1
#define RAISE_LAYER 4
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[DEFAULT_LAYER] = KEYMAP( // layer 0 : default
// left hand
KC_EQL, KC_1, KC_2, KC_3, KC_4, KC_5, KC_ESC,
KC_BSLS,KC_Q, KC_W, KC_E, KC_R, KC_T, KC_FN2,
KC_TAB, KC_A, KC_S, KC_D, KC_F, KC_G,
KC_LSFT,KC_Z, KC_X, KC_C, KC_V, KC_B, KC_FN1,
KC_LGUI,KC_GRV, KC_BSLS,KC_LEFT,KC_RGHT,
KC_LCTL,KC_LALT,
KC_HOME,
KC_BSPC,KC_DEL, KC_END,
// right hand
KC_FN3, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
KC_LBRC,KC_Y, KC_U, KC_I, KC_O, KC_P, KC_RBRC,
KC_H, KC_J, KC_K, KC_L, KC_SCLN,KC_QUOT,
KC_FN1, KC_N, KC_M, KC_COMM,KC_DOT, KC_SLSH,KC_RSFT,
KC_LEFT,KC_DOWN,KC_UP, KC_RGHT,KC_RGUI,
KC_RALT,KC_RCTL,
KC_PGUP,
KC_PGDN,KC_ENT, KC_SPC
),
[LOWER_LAYER] = KEYMAP( // layer 0 : default
// left hand
KC_EQL, KC_1, KC_2, KC_3, LALT(KC_TAB), KC_5, KC_ESC,
KC_BSLS,KC_Q, S(KC_W), KC_E, KC_R, KC_T, KC_FN2,
KC_TAB, KC_A, KC_S, KC_D, KC_F, KC_G,
KC_LSFT,KC_Z, KC_X, KC_C, KC_V, KC_B, KC_FN1,
KC_LGUI,KC_GRV, KC_BSLS,KC_LEFT,KC_RGHT,
KC_LCTL,KC_LALT,
KC_HOME,
KC_BSPC,KC_DEL, KC_END,
// right hand
KC_FN3, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS,
KC_LBRC,KC_Y, KC_U, KC_I, KC_O, KC_P, KC_RBRC,
KC_H, KC_J, KC_K, KC_L, KC_SCLN,KC_QUOT,
KC_FN1, KC_N, KC_M, KC_COMM,KC_DOT, KC_SLSH,KC_RSFT,
KC_LEFT,KC_DOWN,KC_UP, KC_RGHT,KC_RGUI,
KC_RALT,KC_RCTL,
KC_PGUP,
KC_PGDN,KC_ENT, KC_SPC
)
};
const uint16_t PROGMEM fn_actions[] = {
[1] = ACTION_LAYER_MOMENTARY(LOWER_LAYER), // to RAISE
[2] = ACTION_LAYER_MOMENTARY(LOWER_LAYER), // to LOWER
[3] = ACTION_DEFAULT_LAYER_SET(DEFAULT_LAYER),
[4] = ACTION_DEFAULT_LAYER_SET(COLEMAK_LAYER),
[5] = ACTION_DEFAULT_LAYER_SET(DVORAK_LAYER),
};
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
// MACRODOWN only works in this function
switch(id) {
case 0:
if (record->event.pressed) {
register_code(KC_RSFT);
} else {
unregister_code(KC_RSFT);
}
break;
}
return MACRO_NONE;
};

@ -0,0 +1,405 @@
/*
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "ergodox.h"
#include "i2cmaster.h"
#ifdef DEBUG_MATRIX_SCAN_RATE
#include "timer.h"
#endif
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows();
static void select_row(uint8_t row);
static uint8_t mcp23018_reset_loop;
#ifdef DEBUG_MATRIX_SCAN_RATE
uint32_t matrix_timer;
uint32_t matrix_scan_count;
#endif
__attribute__ ((weak))
void * matrix_init_kb(void) {
};
__attribute__ ((weak))
void * matrix_scan_kb(void) {
};
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// initialize row and col
mcp23018_status = init_mcp23018();
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_timer = timer_read32();
matrix_scan_count = 0;
#endif
if (matrix_init_kb) {
(*matrix_init_kb)();
}
}
uint8_t matrix_scan(void)
{
if (mcp23018_status) { // if there was an error
if (++mcp23018_reset_loop == 0) {
// since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
// this will be approx bit more frequent than once per second
print("trying to reset mcp23018\n");
mcp23018_status = init_mcp23018();
if (mcp23018_status) {
print("left side not responding\n");
} else {
print("left side attached\n");
ergodox_blink_all_leds();
}
}
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_scan_count++;
uint32_t timer_now = timer_read32();
if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) {
print("matrix scan frequency: ");
pdec(matrix_scan_count);
print("\n");
matrix_timer = timer_now;
matrix_scan_count = 0;
}
#endif
#ifdef KEYMAP_CUB
uint8_t layer = biton32(layer_state);
ergodox_board_led_off();
ergodox_left_led_1_off();
ergodox_left_led_2_off();
ergodox_left_led_3_off();
switch (layer) {
case 1:
// all
ergodox_left_led_1_on();
ergodox_left_led_2_on();
ergodox_left_led_3_on();
break;
case 2:
// blue
ergodox_left_led_2_on();
break;
case 8:
// blue and green
ergodox_left_led_2_on();
// break missed intentionally
case 3:
// green
ergodox_left_led_3_on();
break;
case 6:
ergodox_board_led_on();
// break missed intentionally
case 4:
case 5:
case 7:
// white
ergodox_left_led_1_on();
break;
case 9:
// white+green
ergodox_left_led_1_on();
ergodox_left_led_3_on();
break;
default:
// none
break;
}
mcp23018_status = ergodox_left_leds_update();
#endif
#ifdef KEYMAP_SIMON
uint8_t layer = biton32(layer_state);
ergodox_board_led_off();
switch (layer) {
case 0:
// none
break;
default:
ergodox_board_led_on();
break;
}
#endif
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
matrix_row_t cols = read_cols(i);
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
if (matrix_scan_kb) {
(*matrix_scan_kb)();
}
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
/* Column pin configuration
*
* Teensy
* col: 0 1 2 3 4 5
* pin: F0 F1 F4 F5 F6 F7
*
* MCP23018
* col: 0 1 2 3 4 5
* pin: B5 B4 B3 B2 B1 B0
*/
static void init_cols(void)
{
// init on mcp23018
// not needed, already done as part of init_mcp23018()
// init on teensy
// Input with pull-up(DDR:0, PORT:1)
DDRF &= ~(1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
PORTF |= (1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
}
static matrix_row_t read_cols(uint8_t row)
{
if (row < 7) {
if (mcp23018_status) { // if there was an error
return 0;
} else {
uint8_t data = 0;
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out;
mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out;
data = i2c_readNak();
data = ~data;
out:
i2c_stop();
return data;
}
} else {
_delay_us(30); // without this wait read unstable value.
// read from teensy
return
(PINF&(1<<0) ? 0 : (1<<0)) |
(PINF&(1<<1) ? 0 : (1<<1)) |
(PINF&(1<<4) ? 0 : (1<<2)) |
(PINF&(1<<5) ? 0 : (1<<3)) |
(PINF&(1<<6) ? 0 : (1<<4)) |
(PINF&(1<<7) ? 0 : (1<<5)) ;
}
}
/* Row pin configuration
*
* Teensy
* row: 7 8 9 10 11 12 13
* pin: B0 B1 B2 B3 D2 D3 C6
*
* MCP23018
* row: 0 1 2 3 4 5 6
* pin: A0 A1 A2 A3 A4 A5 A6
*/
static void unselect_rows(void)
{
// unselect on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set all rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write( 0xFF
& ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT)
); if (mcp23018_status) goto out;
out:
i2c_stop();
}
// unselect on teensy
// Hi-Z(DDR:0, PORT:0) to unselect
DDRB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3);
PORTB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3);
DDRD &= ~(1<<2 | 1<<3);
PORTD &= ~(1<<2 | 1<<3);
DDRC &= ~(1<<6);
PORTC &= ~(1<<6);
}
static void select_row(uint8_t row)
{
if (row < 7) {
// select on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set active row low : 0
// set other rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write( 0xFF & ~(1<<row)
& ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT)
); if (mcp23018_status) goto out;
out:
i2c_stop();
}
} else {
// select on teensy
// Output low(DDR:1, PORT:0) to select
switch (row) {
case 7:
DDRB |= (1<<0);
PORTB &= ~(1<<0);
break;
case 8:
DDRB |= (1<<1);
PORTB &= ~(1<<1);
break;
case 9:
DDRB |= (1<<2);
PORTB &= ~(1<<2);
break;
case 10:
DDRB |= (1<<3);
PORTB &= ~(1<<3);
break;
case 11:
DDRD |= (1<<2);
PORTD &= ~(1<<3);
break;
case 12:
DDRD |= (1<<3);
PORTD &= ~(1<<3);
break;
case 13:
DDRC |= (1<<6);
PORTC &= ~(1<<6);
break;
}
}
}

@ -0,0 +1,208 @@
/*************************************************************************
* Title: I2C master library using hardware TWI interface
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: twimaster.c,v 1.3 2005/07/02 11:14:21 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device with hardware TWI
* Usage: API compatible with I2C Software Library i2cmaster.h
**************************************************************************/
#include <inttypes.h>
#include <compat/twi.h>
#include <i2cmaster.h>
/* define CPU frequency in Mhz here if not defined in Makefile */
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
/* I2C clock in Hz */
#define SCL_CLOCK 400000L
/*************************************************************************
Initialization of the I2C bus interface. Need to be called only once
*************************************************************************/
void i2c_init(void)
{
/* initialize TWI clock
* minimal values in Bit Rate Register (TWBR) and minimal Prescaler
* bits in the TWI Status Register should give us maximal possible
* I2C bus speed - about 444 kHz
*
* for more details, see 20.5.2 in ATmega16/32 secification
*/
TWSR = 0; /* no prescaler */
TWBR = 10; /* must be >= 10 for stable operation */
}/* i2c_init */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
return 0 = device accessible, 1= failed to access device
*************************************************************************/
unsigned char i2c_start(unsigned char address)
{
uint8_t twst;
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) return 1;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed and ACK/NACK has been received
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
return 0;
}/* i2c_start */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
If device is busy, use ack polling to wait until device is ready
Input: address and transfer direction of I2C device
*************************************************************************/
void i2c_start_wait(unsigned char address)
{
uint8_t twst;
while ( 1 )
{
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) continue;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )
{
/* device busy, send stop condition to terminate write operation */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
continue;
}
//if( twst != TW_MT_SLA_ACK) return 1;
break;
}
}/* i2c_start_wait */
/*************************************************************************
Issues a repeated start condition and sends address and transfer direction
Input: address and transfer direction of I2C device
Return: 0 device accessible
1 failed to access device
*************************************************************************/
unsigned char i2c_rep_start(unsigned char address)
{
return i2c_start( address );
}/* i2c_rep_start */
/*************************************************************************
Terminates the data transfer and releases the I2C bus
*************************************************************************/
void i2c_stop(void)
{
/* send stop condition */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
}/* i2c_stop */
/*************************************************************************
Send one byte to I2C device
Input: byte to be transfered
Return: 0 write successful
1 write failed
*************************************************************************/
unsigned char i2c_write( unsigned char data )
{
uint8_t twst;
// send data to the previously addressed device
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits
twst = TW_STATUS & 0xF8;
if( twst != TW_MT_DATA_ACK) return 1;
return 0;
}/* i2c_write */
/*************************************************************************
Read one byte from the I2C device, request more data from device
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readAck(void)
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readAck */
/*************************************************************************
Read one byte from the I2C device, read is followed by a stop condition
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readNak(void)
{
TWCR = (1<<TWINT) | (1<<TWEN);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readNak */

@ -18,7 +18,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef CONFIG_H
#define CONFIG_H
#include "config_definitions.h"
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
@ -58,73 +58,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
#ifdef BLUETOOTH_ENABLE
#ifdef __AVR_ATmega32U4__
#define SERIAL_UART_BAUD 9600
#define SERIAL_UART_DATA UDR1
#define SERIAL_UART_UBRR ((F_CPU/(16UL*SERIAL_UART_BAUD))-1)
#define SERIAL_UART_RXD_VECT USART1_RX_vect
#define SERIAL_UART_TXD_READY (UCSR1A&(1<<UDRE1))
#define SERIAL_UART_INIT() do { \
UBRR1L = (uint8_t) SERIAL_UART_UBRR; /* baud rate */ \
UBRR1H = (uint8_t) (SERIAL_UART_UBRR>>8); /* baud rate */ \
UCSR1B = (1<<TXEN1); /* TX: enable */ \
UCSR1C = (0<<UPM11) | (0<<UPM10) | /* parity: none(00), even(01), odd(11) */ \
(0<<UCSZ12) | (1<<UCSZ11) | (1<<UCSZ10); /* data-8bit(011) */ \
sei(); \
} while(0)
#else
# error "USART configuration is needed."
#endif
// I'm fairly sure these aren't needed, but oh well - Jack
/*
* PS/2 Interrupt configuration
*/
#ifdef PS2_USE_INT
/* uses INT1 for clock line(ATMega32U4) */
#define PS2_CLOCK_PORT PORTD
#define PS2_CLOCK_PIN PIND
#define PS2_CLOCK_DDR DDRD
#define PS2_CLOCK_BIT 1
#define PS2_DATA_PORT PORTD
#define PS2_DATA_PIN PIND
#define PS2_DATA_DDR DDRD
#define PS2_DATA_BIT 0
#define PS2_INT_INIT() do { \
EICRA |= ((1<<ISC11) | \
(0<<ISC10)); \
} while (0)
#define PS2_INT_ON() do { \
EIMSK |= (1<<INT1); \
} while (0)
#define PS2_INT_OFF() do { \
EIMSK &= ~(1<<INT1); \
} while (0)
#define PS2_INT_VECT INT1_vect
#endif
/*
* PS/2 Busywait configuration
*/
#ifdef PS2_USE_BUSYWAIT
#define PS2_CLOCK_PORT PORTD
#define PS2_CLOCK_PIN PIND
#define PS2_CLOCK_DDR DDRD
#define PS2_CLOCK_BIT 1
#define PS2_DATA_PORT PORTD
#define PS2_DATA_PIN PIND
#define PS2_DATA_DDR DDRD
#define PS2_DATA_BIT 0
#endif
#endif
/*
* Feature disable options
* These options are also useful to firmware size reduction.

@ -1,51 +0,0 @@
#ifndef CONFIG_DEFINITIONS_H
#define CONFIG_DEFINITIONS_H
#define B0 0x20
#define B1 0x21
#define B2 0x22
#define B3 0x23
#define B4 0x24
#define B5 0x25
#define B6 0x26
#define B7 0x27
#define C0 0x30
#define C1 0x31
#define C2 0x32
#define C3 0x33
#define C4 0x34
#define C5 0x35
#define C6 0x36
#define C7 0x37
#define D0 0x40
#define D1 0x41
#define D2 0x42
#define D3 0x43
#define D4 0x44
#define D5 0x45
#define D6 0x46
#define D7 0x47
#define E0 0x50
#define E1 0x51
#define E2 0x52
#define E3 0x53
#define E4 0x54
#define E5 0x55
#define E6 0x56
#define E7 0x57
#define F0 0x60
#define F1 0x61
#define F2 0x62
#define F3 0x63
#define F4 0x64
#define F5 0x65
#define F6 0x66
#define F7 0x67
#define COL2ROW 0x0
#define ROW2COL 0x1
#endif

@ -1,14 +1,16 @@
#include "planck.h"
__attribute__ ((weak))
void * matrix_init_user(void) {
};
__attribute__ ((weak))
void * matrix_scan_user(void) {
};
void *matrix_init_kb(void) {
void * matrix_init_kb(void) {
#ifdef BACKLIGHT_ENABLE
backlight_init_ports();
#endif
@ -22,7 +24,7 @@ void *matrix_init_kb(void) {
}
};
void *matrix_scan_kb(void) {
void * matrix_scan_kb(void) {
if (matrix_scan_user) {
(*matrix_scan_user)();
}

@ -42,9 +42,12 @@ QUANTUM_DIR = $(TOP_DIR)/quantum
# # project specific files
SRC += $(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/matrix.c \
$(QUANTUM_DIR)/led.c
ifndef CUSTOM_MATRIX
SRC += $(QUANTUM_DIR)/matrix.c
endif
ifdef MIDI_ENABLE
SRC += $(QUANTUM_DIR)/keymap_midi.c \
$(QUANTUM_DIR)/beeps.c
@ -58,8 +61,6 @@ endif
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
VPATH += $(QUANTUM_DIR)
include $(TOP_DIR)/protocol/lufa.mk

@ -0,0 +1,116 @@
#ifndef CONFIG_DEFINITIONS_H
#define CONFIG_DEFINITIONS_H
#define B0 0x20
#define B1 0x21
#define B2 0x22
#define B3 0x23
#define B4 0x24
#define B5 0x25
#define B6 0x26
#define B7 0x27
#define C0 0x30
#define C1 0x31
#define C2 0x32
#define C3 0x33
#define C4 0x34
#define C5 0x35
#define C6 0x36
#define C7 0x37
#define D0 0x40
#define D1 0x41
#define D2 0x42
#define D3 0x43
#define D4 0x44
#define D5 0x45
#define D6 0x46
#define D7 0x47
#define E0 0x50
#define E1 0x51
#define E2 0x52
#define E3 0x53
#define E4 0x54
#define E5 0x55
#define E6 0x56
#define E7 0x57
#define F0 0x60
#define F1 0x61
#define F2 0x62
#define F3 0x63
#define F4 0x64
#define F5 0x65
#define F6 0x66
#define F7 0x67
#define COL2ROW 0x0
#define ROW2COL 0x1
#ifdef BLUETOOTH_ENABLE
#ifdef __AVR_ATmega32U4__
#define SERIAL_UART_BAUD 9600
#define SERIAL_UART_DATA UDR1
#define SERIAL_UART_UBRR ((F_CPU/(16UL*SERIAL_UART_BAUD))-1)
#define SERIAL_UART_RXD_VECT USART1_RX_vect
#define SERIAL_UART_TXD_READY (UCSR1A&(1<<UDRE1))
#define SERIAL_UART_INIT() do { \
UBRR1L = (uint8_t) SERIAL_UART_UBRR; /* baud rate */ \
UBRR1H = (uint8_t) (SERIAL_UART_UBRR>>8); /* baud rate */ \
UCSR1B = (1<<TXEN1); /* TX: enable */ \
UCSR1C = (0<<UPM11) | (0<<UPM10) | /* parity: none(00), even(01), odd(11) */ \
(0<<UCSZ12) | (1<<UCSZ11) | (1<<UCSZ10); /* data-8bit(011) */ \
sei(); \
} while(0)
#else
# error "USART configuration is needed."
#endif
// I'm fairly sure these aren't needed, but oh well - Jack
/*
* PS/2 Interrupt configuration
*/
#ifdef PS2_USE_INT
/* uses INT1 for clock line(ATMega32U4) */
#define PS2_CLOCK_PORT PORTD
#define PS2_CLOCK_PIN PIND
#define PS2_CLOCK_DDR DDRD
#define PS2_CLOCK_BIT 1
#define PS2_DATA_PORT PORTD
#define PS2_DATA_PIN PIND
#define PS2_DATA_DDR DDRD
#define PS2_DATA_BIT 0
#define PS2_INT_INIT() do { \
EICRA |= ((1<<ISC11) | \
(0<<ISC10)); \
} while (0)
#define PS2_INT_ON() do { \
EIMSK |= (1<<INT1); \
} while (0)
#define PS2_INT_OFF() do { \
EIMSK &= ~(1<<INT1); \
} while (0)
#define PS2_INT_VECT INT1_vect
#endif
/*
* PS/2 Busywait configuration
*/
#ifdef PS2_USE_BUSYWAIT
#define PS2_CLOCK_PORT PORTD
#define PS2_CLOCK_PIN PIND
#define PS2_CLOCK_DDR DDRD
#define PS2_CLOCK_BIT 1
#define PS2_DATA_PORT PORTD
#define PS2_DATA_PIN PIND
#define PS2_DATA_DDR DDRD
#define PS2_DATA_BIT 0
#endif
#endif
#endif

@ -37,15 +37,18 @@ action_t action_for_key(uint8_t layer, keypos_t key)
// Has a modifier
action_t action;
// Split it up
action.code = ACTION_MODS_KEY(keycode >> 8, keycode & 0xFF);
action.code = ACTION_MODS_KEY(keycode >> 8, keycode & 0xFF); // adds modifier to key
return action;
} else if (keycode >= 0x2000 && keycode < 0x3000) {
// Is a shortcut for function layer, pull last 12bits
// This means we have 4,096 FN macros at our disposal
return keymap_func_to_action(keycode & 0xFFF);
} else if (keycode >= 0x3000 && keycode < 0x4000) {
// When the code starts with 3, it's an action macro.
action_t action;
action.code = ACTION_MACRO(keycode & 0xFF);
return action;
#ifdef BACKLIGHT_ENABLE
} else if (keycode >= BL_0 & keycode <= BL_15) {
action_t action;
action.code = ACTION_BACKLIGHT_LEVEL(keycode & 0x000F);
@ -66,10 +69,12 @@ action_t action_for_key(uint8_t layer, keypos_t key)
action_t action;
action.code = ACTION_BACKLIGHT_STEP();
return action;
} else if (keycode == RESET) {
#endif
} else if (keycode == RESET) { // RESET is 0x5000, which is why this is here
bootloader_jump();
return;
} else if (keycode == DEBUG) {
} else if (keycode == DEBUG) { // DEBUG is 0x5001
// TODO: Does this actually work?
print("\nDEBUG: enabled.\n");
debug_enable = true;
return;
@ -79,15 +84,21 @@ action_t action_for_key(uint8_t layer, keypos_t key)
action_t action;
action.code = ACTION_LAYER_SET(layer, when);
return action;
#ifdef MIDI_ENABLE
} else if (keycode >= 0x6000 && keycode < 0x7000) {
action_t action;
action.code = ACTION_FUNCTION_OPT(keycode & 0xFF, (keycode & 0x0F00) >> 8);
return action;
#endif
#ifdef UNICODE_ENABLE
} else if (keycode >= 0x8000) {
action_t action;
uint16_t unicode = keycode & ~(0x8000);
action.code = ACTION_FUNCTION_OPT(unicode & 0xFF, (unicode & 0xFF00) >> 8);
return action;
#endif
} else {
}
switch (keycode) {

@ -47,6 +47,16 @@ static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak))
void * matrix_init_kb(void) {
};
__attribute__ ((weak))
void * matrix_scan_kb(void) {
};
inline
uint8_t matrix_rows(void)
{

Loading…
Cancel
Save