Merge pull request #26 from jackhumbert/midi

Midi
pull/27/head
Jack Humbert 10 years ago
commit 476e29d119

@ -49,6 +49,10 @@ ifdef NKRO_ENABLE
OPT_DEFS += -DNKRO_ENABLE
endif
ifdef MIDI_ENABLE
OPT_DEFS += -DMIDI_ENABLE
endif
ifdef USB_6KRO_ENABLE
OPT_DEFS += -DUSB_6KRO_ENABLE
endif

@ -1,9 +1,9 @@
Planck keyboard firmware
Atomic keyboard firmware
======================
DIY/Assembled compact ortholinear 40% keyboard by [Ortholinear Keyboards](http://ortholinearkeyboards.com).
DIY/Assembled ortholinear 60% keyboard by [Ortholinear Keyboards](http://ortholinearkeyboards.com).
## Extended Keymap
If you include extended_keymap_common.h instead of keymap_common.h at the top of your file, you'll have access to a bunch of goodies:
If you include extended_keymap_common.h instead of keymap_common.h at the top of your file, you'll have access to a bunch of goodies:t
- Use `LSFT()`, `LCTL()`, et. al. (listed in extended_keymap_common.h) as modifiers for keys (daisy-chain-able)
- Use `FUNC(1)` instead of `FN1` (etc.) to access the function layers beyond the 32 function layer limit

@ -0,0 +1,135 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = atomic_lufa
# Directory common source filess exist
TOP_DIR = ../..
# Directory keyboard dependent files exist
TARGET_DIR = .
# project specific files
SRC = keymap_common.c \
matrix.c \
led.c
ifdef KEYMAP
SRC := keymap_$(KEYMAP).c $(SRC)
else
SRC := keymap_vlad.c $(SRC)
endif
CONFIG_H = config.h
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = yes # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
include $(TOP_DIR)/protocol/lufa.mk
include $(TOP_DIR)/common.mk
include $(TOP_DIR)/rules.mk

@ -0,0 +1,116 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = gh60_pjrc
# Directory common source filess exist
TOP_DIR = ../..
# Directory keyboard dependent files exist
TARGET_DIR = .
# project specific files
SRC = keymap_common.c \
matrix.c \
led.c
ifdef KEYMAP
SRC := keymap_$(KEYMAP).c $(SRC)
else
SRC := keymap_poker.c $(SRC)
endif
CONFIG_H = config.h
# MCU name, you MUST set this to match the board you are using
# type "make clean" after changing this, so all files will be rebuilt
MCU = atmega32u4
#MCU = at90usb1286
# Processor frequency.
# Normally the first thing your program should do is set the clock prescaler,
# so your program will run at the correct speed. You should also set this
# variable to same clock speed. The _delay_ms() macro uses this, and many
# examples use this variable to calculate timings. Do not add a "UL" here.
F_CPU = 16000000
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Atmel DFU loader 4096
# LUFA bootloader 4096
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+5000)
EXTRAKEY_ENABLE = yes # Audio control and System control(+600)
CONSOLE_ENABLE = yes # Console for debug
COMMAND_ENABLE = yes # Commands for debug and configuration
SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover(+500)
#PS2_MOUSE_ENABLE = yes # PS/2 mouse(TrackPoint) support
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
include $(TOP_DIR)/protocol/pjrc.mk
include $(TOP_DIR)/common.mk
include $(TOP_DIR)/rules.mk
plain: OPT_DEFS += -DKEYMAP_PLAIN
plain: all
poker: OPT_DEFS += -DKEYMAP_POKER
poker: all
poker_set: OPT_DEFS += -DKEYMAP_POKER_SET
poker_set: all
poker_bit: OPT_DEFS += -DKEYMAP_POKER_BIT
poker_bit: all

@ -0,0 +1,141 @@
GH60 keyboard firmware
======================
DIY compact keyboard designed and run by komar007 and Geekhack community.
- Both Rev.A and Rev.B PCB are supported by one firmware binary(issue #64)
## GH60 Resources
- [KOMAR's project page](http://blog.komar.be/projects/gh60-programmable-keyboard/)
- [Prototyping](http://geekhack.org/index.php?topic=34959.0)
- [Rev.A PCB test](http://geekhack.org/index.php?topic=37570.0)
- [Rev.B PCB test](http://geekhack.org/index.php?topic=50685.0)
- [Group buy](http://geekhack.org/index.php?topic=41464.0)
## Build
Move to this directory then just run `make` like:
$ make
Use `make -f Makefile.pjrc` if you want to use PJRC stack but I find no reason to do so now.
## Keymap
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `keymap_<name>.c` and see keymap document(you can find in top README.md) and existent keymap files.
To build firmware binary hex file with a certain keymap just do `make` with `KEYMAP` option like:
$ make KEYMAP=[poker|poker_set|poker_bit|plain|hasu|spacefn|hhkb|<name>]
### 1 Poker
[keymap_poker.c](keymap_poker.c) emulates original Poker layers
while both [keymap_poker_bit.c](keymap_poker_bit.c) and [keymap_poker_set.c](keymap_poker_set.c) implements same layout in different way and they fix a minor issue of original Poker and enhance arrow keys.
Fn + Esc = `
Fn + {left, down, up, right} = {home, pgdown, pgup, end}
#### 1.0 Default layer
,-----------------------------------------------------------.
| `| 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| -| =|Backsp |
|-----------------------------------------------------------|
|Tab | Q| W| E| R| T| Y| U| I| O| P| [| ]| \|
|-----------------------------------------------------------|
|Caps | A| S| D| F| G| H| J| K| L| ;| '|Return |
|-----------------------------------------------------------|
|Shift | Z| X| C| V| B| N| M| ,| .| /|Shift |
|-----------------------------------------------------------|
|Ctrl|Gui |Alt | Space |Fn |Gui |App |Ctrl|
`-----------------------------------------------------------'
#### 1.1 Poker Fn layer
,-----------------------------------------------------------.
|Esc| F1| F2| F3| F4| F5| F6| F7| F8| F9|F10|F11|F12| |
|-----------------------------------------------------------|
| |FnQ| Up| | | | | | |Cal| |Hom|Ins| |
|-----------------------------------------------------------|
| |Lef|Dow|Rig| | |Psc|Slk|Pau| |Tsk|End| |
|-----------------------------------------------------------|
| |Del| |Web|Mut|VoU|VoD| |PgU|PgD|Del| Up |
|-----------------------------------------------------------|
| | | | FnS |Fn |Left|Down|Righ|
`-----------------------------------------------------------'
### 2. Plain
Without any Fn layer this will be useful if you want to use key remapping tool like AHK on host.
See [keymap_plain.c](keymap_plain.c) for detail.
#### 1.0 Plain Default layer
,-----------------------------------------------------------.
|Esc| 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| -| =|Backsp |
|-----------------------------------------------------------|
|Tab | Q| W| E| R| T| Y| U| I| O| P| [| ]| \|
|-----------------------------------------------------------|
|Caps | A| S| D| F| G| H| J| K| L| ;| '|Return |
|-----------------------------------------------------------|
|Shift | Z| X| C| V| B| N| M| ,| .| /|Shift |
|-----------------------------------------------------------|
|Ctrl|Gui |Alt | Space |Alt |Gui |App |Ctrl|
`-----------------------------------------------------------'
### 3. Hasu
This is my favorite keymap with HHKB Fn, Vi cursor and Mousekey layer. See [keymap_hasu.c](keymap_hasu.c) for detail.
### 4. SpaceFN
This layout proposed by spiceBar uses space bar to change layer with using Dual role key technique. See [keymap_spacefn.c](keymap_spacefn.c) and [SpaceFN discussion](http://geekhack.org/index.php?topic=51069.0).
#### 4.0 Default layer
,-----------------------------------------------------------.
|Esc| 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| -| =|Backsp |
|-----------------------------------------------------------|
|Tab | Q| W| E| R| T| Y| U| I| O| P| [| ]| \|
|-----------------------------------------------------------|
|Caps | A| S| D| F| G| H| J| K| L| ;| '|Return |
|-----------------------------------------------------------|
|Shift | Z| X| C| V| B| N| M| ,| .| /|Shift |
|-----------------------------------------------------------|
|Ctrl|Gui |Alt | Space/Fn |Alt |Gui |App |Ctrl|
`-----------------------------------------------------------'
#### 4.1 SpaceFN layer
,-----------------------------------------------------------.
|` | F1| F2| F3| F4| F5| F6| F7| F8| F9|F10|F11|F12|Delete |
|-----------------------------------------------------------|
| | | | | | | |Hom|Up |End|Psc|Slk|Pau|Ins |
|-----------------------------------------------------------|
| | | | | | |PgU|Lef|Dow|Rig| | | |
|-----------------------------------------------------------|
| | | | | |Spc|PgD|` |~ | | | |
|-----------------------------------------------------------|
| | | | Fn | | | | |
`-----------------------------------------------------------'
### 5. HHKB
[keymap_hhkb.c](keymap_hhkb.c) emulates original HHKB layers.
#### 5.0: Default layer
,-----------------------------------------------------------.
|Esc| 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| -| =| \| `|
|-----------------------------------------------------------|
|Tab | Q| W| E| R| T| Y| U| I| O| P| [| ]|Bspc |
|-----------------------------------------------------------|
|Ctrl | A| S| D| F| G| H| J| K| L|Fn3| '|Return |
|-----------------------------------------------------------|
|Shift | Z| X| C| V| B| N| M| ,| .| /|Shift |Fn |
|-----------------------------------------------------------|
| |Gui |Alt | Space | |Alt |Gui | |
`-----------------------------------------------------------'
#### 5.1: HHKB Fn layer
,-----------------------------------------------------------.
|Pwr| F1| F2| F3| F4| F5| F6| F7| F8| F9|F10|F11|F12|Ins|Del|
|-----------------------------------------------------------|
|Caps | | | | | | | |Psc|Slk|Pus|Up | | |
|-----------------------------------------------------------|
| |VoD|VoU|Mut|Ejc| | *| /|Hom|PgU|Lef|Rig|Enter |
|-----------------------------------------------------------|
| | | | | | | +| -|End|PgD|Dow| | |
|-----------------------------------------------------------|
| | | | | | | | |
`-----------------------------------------------------------'

@ -0,0 +1,70 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER Ortholinear Keyboards
#define PRODUCT Atomic Keyboard
#define DESCRIPTION t.m.k. keyboard firmware for Atomic
/* key matrix size */
#define MATRIX_ROWS 5
#define MATRIX_COLS 15
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
#endif

@ -0,0 +1,30 @@
/*
Copyright 2012,2013 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keymap_common.h"
/* translates key to keycode */
uint8_t keymap_key_to_keycode(uint8_t layer, keypos_t key)
{
return pgm_read_byte(&keymaps[(layer)][(key.row)][(key.col)]);
}
/* translates Fn keycode to action */
action_t keymap_fn_to_action(uint8_t keycode)
{
return (action_t){ .code = pgm_read_word(&fn_actions[FN_INDEX(keycode)]) };
}

@ -0,0 +1,87 @@
/*
Copyright 2012,2013 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KEYMAP_COMMON_H
#define KEYMAP_COMMON_H
#include <stdint.h>
#include <stdbool.h>
#include <avr/pgmspace.h>
#include "keycode.h"
#include "action.h"
#include "action_macro.h"
#include "report.h"
#include "host.h"
#include "print.h"
#include "debug.h"
#include "keymap.h"
extern const uint8_t keymaps[][MATRIX_ROWS][MATRIX_COLS];
extern const uint16_t fn_actions[];
// JCK: Semi-Standard layout
#define KEYMAP_JCK( \
K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B, K0C, K0E, \
K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B, K1C, K1D, K1E, \
K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B, K2D, K2E, \
K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3C, K3D, K3E, \
K40, K41, K43, K46, K4A, K4B, K4C, K4D, K4E \
) { \
{ KC_##K00, KC_##K01, KC_##K02, KC_##K03, KC_##K04, KC_##K05, KC_##K06, KC_##K07, KC_##K08, KC_##K09, KC_##K0A, KC_##K0B, KC_##K0C, KC_NO, KC_##K0E }, \
{ KC_##K10, KC_##K11, KC_##K12, KC_##K13, KC_##K14, KC_##K15, KC_##K16, KC_##K17, KC_##K18, KC_##K19, KC_##K1A, KC_##K1B, KC_##K1C, KC_##K1D, KC_##K1E }, \
{ KC_##K20, KC_##K21, KC_##K22, KC_##K23, KC_##K24, KC_##K25, KC_##K26, KC_##K27, KC_##K28, KC_##K29, KC_##K2A, KC_##K2B, KC_NO, KC_##K2D, KC_##K2E }, \
{ KC_##K30, KC_##K31, KC_##K32, KC_##K33, KC_##K34, KC_##K35, KC_##K36, KC_##K37, KC_##K38, KC_##K39, KC_##K3A, KC_NO, KC_##K3C, KC_##K3D, KC_##K3E }, \
{ KC_##K40, KC_##K41, KC_NO, KC_##K43, KC_NO, KC_NO, KC_##K46, KC_NO, KC_NO, KC_NO, KC_##K4A, KC_##K4B, KC_##K4C, KC_##K4D, KC_##K4E } \
}
// ASK: Short Space layout
#define KEYMAP_ASK_MESSY( \
K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B, K0C, K0E, \
K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B, K1C, K1D, K1E, \
K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B, K2D, K2E, \
K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3C, K3D, K3E, \
K40, K41, K43, K44, K46, K48, K49, K4A, K4B, K4C, K4D, K4E \
) { \
{ KC_##K00, KC_##K01, KC_##K02, KC_##K03, KC_##K04, KC_##K05, KC_##K06, KC_##K07, KC_##K08, KC_##K09, KC_##K0A, KC_##K0B, KC_##K0C, KC_NO, KC_##K0E }, \
{ KC_##K10, KC_##K11, KC_##K12, KC_##K13, KC_##K14, KC_##K15, KC_##K16, KC_##K17, KC_##K18, KC_##K19, KC_##K1A, KC_##K1B, KC_##K1C, KC_##K1D, KC_##K1E }, \
{ KC_##K20, KC_##K21, KC_##K22, KC_##K23, KC_##K24, KC_##K25, KC_##K26, KC_##K27, KC_##K28, KC_##K29, KC_##K2A, KC_##K2B, KC_NO, KC_##K2D, KC_##K2E }, \
{ KC_##K30, KC_##K31, KC_##K32, KC_##K33, KC_##K34, KC_##K35, KC_##K36, KC_##K37, KC_##K38, KC_##K39, KC_##K3A, KC_NO, KC_##K3C, KC_##K3D, KC_##K3E }, \
{ KC_##K40, KC_##K41, KC_NO, KC_##K43, KC_##K44, KC_NO, KC_##K46, KC_NO, KC_##K48, KC_##K49, KC_##K4A, KC_##K4B, KC_##K4C, KC_##K4D, KC_##K4E } \
}
#define KEYMAP_ASK( \
K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B, K0C, K0E, \
K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B, K1C, K1D, K1E, \
K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B, K2C, K2E, \
K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3B, K3D, K3E, \
K40, K41, K43, K44, K46, K47, K48, K4A, K4B, K4C, K4D, K4E \
) { \
{ KC_##K00, KC_##K01, KC_##K02, KC_##K03, KC_##K04, KC_##K05, KC_##K06, KC_##K07, KC_##K08, KC_##K09, KC_##K0A, KC_##K0B, KC_##K0C, KC_NO, KC_##K0E }, \
{ KC_##K10, KC_##K11, KC_##K12, KC_##K13, KC_##K14, KC_##K15, KC_##K16, KC_##K17, KC_##K18, KC_##K19, KC_##K1A, KC_##K1B, KC_##K1C, KC_##K1D, KC_##K1E }, \
{ KC_##K20, KC_##K21, KC_##K22, KC_##K23, KC_##K24, KC_##K25, KC_##K26, KC_##K27, KC_##K28, KC_##K29, KC_##K2A, KC_##K2B, KC_##K2C, KC_NO, KC_##K2E }, \
{ KC_##K30, KC_##K31, KC_##K32, KC_##K33, KC_##K34, KC_##K35, KC_##K36, KC_##K37, KC_##K38, KC_##K39, KC_##K3A, KC_##K3B, KC_NO, KC_##K3D, KC_##K3E }, \
{ KC_##K40, KC_##K41, KC_NO, KC_##K43, KC_##K44, KC_NO, KC_##K46, KC_##K47, KC_##K48, KC_NO, KC_##K4A, KC_##K4B, KC_##K4C, KC_##K4D, KC_##K4E } \
}
// MLO: Semi-Grid layout
// KLN: Grid layout
// PKR: Standard layout
#endif

@ -0,0 +1,46 @@
#include "keymap_common.h"
// JCK: Semi-Standard layout
const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* 0: qwerty */
[0] = KEYMAP_JCK(GRV, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, MINS, EQL, BSPC, \
TAB, Q, W, E, R, T, Y, U, I, O, P, LBRC, RBRC, BSLS, DEL, \
ESC, A, S, D, F, G, H, J, K, L, SCLN, QUOT, ENT, MPLY, \
LSFT, Z, X, C, V, B, N, M, COMM, DOT, SLSH, RSFT, VOLD, VOLU, \
LCTL, LALT, LGUI, SPC, FN1, LEFT, DOWN, UP, RGHT),
[1] = KEYMAP_JCK(GRV, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, MINS, EQL, BSPC, \
TAB, Q, W, F, P, G, J, L, U, Y, SCLN, LBRC, RBRC, BSLS, DEL, \
ESC, A, R, S, T, D, H, N, E, I, O, QUOT, ENT, MPLY, \
LSFT, Z, X, C, V, B, K, M, COMM, DOT, SLSH, RSFT, VOLD, VOLU, \
LCTL, LALT, LGUI, SPC, FN1, LEFT, DOWN, UP, RGHT),
[2] = KEYMAP_JCK(GRV, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, BSPC, \
TAB, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, LBRC, RBRC, BSLS, DEL, \
ESC, FN3, FN4, TRNS, TRNS, TRNS, TRNS, MINS, EQL, LBRC, RBRC, BSLS, ENT, MPLY, \
LSFT, FN9, X, C, V, B, N, M, COMM, DOT, SLSH, RSFT, VOLD, VOLU, \
LCTL, LALT, LGUI, SPC, TRNS, MNXT, VOLD, VOLU, MPLY),
};
const uint16_t PROGMEM fn_actions[] = {
[1] = ACTION_LAYER_MOMENTARY(2), // to Fn overlay
[3] = ACTION_DEFAULT_LAYER_SET(0),
[4] = ACTION_DEFAULT_LAYER_SET(1),
[9] = ACTION_MODS_KEY(MOD_LSFT | MOD_RSFT, KC_PAUSE),
[10] = ACTION_MODS_KEY(MOD_LSFT, KC_1),
[11] = ACTION_MODS_KEY(MOD_LSFT, KC_2),
[12] = ACTION_MODS_KEY(MOD_LSFT, KC_3),
[13] = ACTION_MODS_KEY(MOD_LSFT, KC_4),
[14] = ACTION_MODS_KEY(MOD_LSFT, KC_5),
[15] = ACTION_MODS_KEY(MOD_LSFT, KC_6),
[16] = ACTION_MODS_KEY(MOD_LSFT, KC_7),
[17] = ACTION_MODS_KEY(MOD_LSFT, KC_8),
[18] = ACTION_MODS_KEY(MOD_LSFT, KC_9),
[19] = ACTION_MODS_KEY(MOD_LSFT, KC_0),
[20] = ACTION_MODS_KEY(MOD_LSFT, KC_MINS),
[21] = ACTION_MODS_KEY(MOD_LSFT, KC_EQL),
[22] = ACTION_MODS_KEY(MOD_LSFT, KC_GRV),
[23] = ACTION_MODS_KEY(MOD_LSFT, KC_LBRC),
[24] = ACTION_MODS_KEY(MOD_LSFT, KC_RBRC),
[28] = ACTION_MODS_KEY(MOD_LSFT, KC_BSLS),
};

@ -0,0 +1,15 @@
#include "keymap_common.h"
// JCK: Semi-Standard layout
const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* 0: qwerty */
[0] = KEYMAP_JCK(GRV, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, MINS, EQL, BSPC, \
TAB, Q, W, E, R, T, Y, U, I, O, P, LBRC, RBRC, BSLS, PSCR, \
CAPS, A, S, D, F, G, H, J, K, L, SCLN, QUOT, ENT, INS, \
LSFT, Z, X, C, V, B, N, M, COMM, DOT, SLSH, RSFT, UP, DEL, \
LCTL, LGUI, LALT, SPC, RALT, RCTL, LEFT, DOWN, RGHT)
};
const uint16_t PROGMEM fn_actions[] = {
};

@ -0,0 +1,14 @@
#include "keymap_common.h"
// JCK: Semi-Standard layout
const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* 0: qwerty */
[0] = KEYMAP_ASK(GRV, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, MINS, EQL, BSPC, \
TAB, Q, W, E, R, T, Y, U, I, O, P, LBRC, RBRC, BSLS, DEL, \
CAPS, A, S, D, F, G, H, J, K, L, SCLN, QUOT, ENT, VOLU, \
LSFT, Z, X, C, V, B, N, M, COMM, DOT, SLSH, RSFT, UP, VOLD, \
LCTL, LGUI, LALT, LGUI, SPC, RGUI, RALT, RGUI, RCTL, LEFT, DOWN, RGHT)
};
const uint16_t PROGMEM fn_actions[] = {
};

@ -0,0 +1,25 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include "stdint.h"
#include "led.h"
void led_set(uint8_t usb_led)
{
}

@ -0,0 +1,211 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#ifndef DEBOUNCE
# define DEBOUNCE 10
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// initialize row and col
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
}
uint8_t matrix_scan(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
/* Column pin configuration
* col: 0 1 2 3 4 5 6 7 8 9 10 11
* pin: F0 F1 F4 F5 F6 F7 B6 B5 B4 D7 D5 D4
*/
static void init_cols(void)
{
DDRC &= ~(1<<6 | 1<<7);
PORTC |= (1<<6 | 1<<7);
DDRD &= ~(1<<4 | 1<<5 | 1<<6 | 1<<7);
PORTD |= (1<<4 | 1<<5 | 1<<6 | 1<<7);
DDRB &= ~(1<<4 | 1<<5 | 1<<6);
PORTB |= (1<<4 | 1<<5 | 1<<6);
DDRF &= ~(1<<0 | 1<<1 | 1<<4 | 1<<5 | 1<<6 | 1<<7);
PORTF |= (1<<0 | 1<<1 | 1<<4 | 1<<5 | 1<<6 | 1<<7);
}
static matrix_row_t read_cols(void)
{
return (PINC&(1<<6) ? 0 : (1<< 0)) |
(PINC&(1<<7) ? 0 : (1<< 1)) |
(PIND&(1<<5) ? 0 : (1<< 2)) |
(PIND&(1<<4) ? 0 : (1<< 3)) |
(PIND&(1<<6) ? 0 : (1<< 4)) |
(PIND&(1<<7) ? 0 : (1<< 5)) |
(PINB&(1<<4) ? 0 : (1<< 6)) |
(PINB&(1<<5) ? 0 : (1<< 7)) |
(PINB&(1<<6) ? 0 : (1<< 8)) |
(PINF&(1<<7) ? 0 : (1<< 9)) |
(PINF&(1<<6) ? 0 : (1<<10)) |
(PINF&(1<<5) ? 0 : (1<<11)) |
(PINF&(1<<4) ? 0 : (1<<12)) |
(PINF&(1<<1) ? 0 : (1<<13)) |
(PINF&(1<<0) ? 0 : (1<<14));
}
/* Row pin configuration
* row: 0 1 2 3
* pin: B0 B1 B2 B3
*/
static void unselect_rows(void)
{
// Hi-Z(DDR:0, PORT:0) to unselect
DDRB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<7);
PORTB |= (1<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<7);
}
static void select_row(uint8_t row)
{
switch (row) {
case 0:
DDRB |= (1<<0);
PORTB &= ~(1<<0);
break;
case 1:
DDRB |= (1<<1);
PORTB &= ~(1<<1);
break;
case 2:
DDRB |= (1<<2);
PORTB &= ~(1<<2);
break;
case 3:
DDRB |= (1<<3);
PORTB &= ~(1<<3);
break;
case 4:
DDRB |= (1<<7);
PORTB &= ~(1<<7);
break;
}
}

@ -0,0 +1,93 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief LUFA Library Configuration Header File
*
* This header file is used to configure LUFA's compile time options,
* as an alternative to the compile time constants supplied through
* a makefile.
*
* For information on what each token does, refer to the LUFA
* manual section "Summary of Compile Tokens".
*/
#ifndef _LUFA_CONFIG_H_
#define _LUFA_CONFIG_H_
#if (ARCH == ARCH_AVR8)
/* Non-USB Related Configuration Tokens: */
// #define DISABLE_TERMINAL_CODES
/* USB Class Driver Related Tokens: */
// #define HID_HOST_BOOT_PROTOCOL_ONLY
// #define HID_STATETABLE_STACK_DEPTH {Insert Value Here}
// #define HID_USAGE_STACK_DEPTH {Insert Value Here}
// #define HID_MAX_COLLECTIONS {Insert Value Here}
// #define HID_MAX_REPORTITEMS {Insert Value Here}
// #define HID_MAX_REPORT_IDS {Insert Value Here}
// #define NO_CLASS_DRIVER_AUTOFLUSH
/* General USB Driver Related Tokens: */
// #define ORDERED_EP_CONFIG
#define USE_STATIC_OPTIONS (USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)
#define USB_DEVICE_ONLY
// #define USB_HOST_ONLY
// #define USB_STREAM_TIMEOUT_MS {Insert Value Here}
// #define NO_LIMITED_CONTROLLER_CONNECT
// #define NO_SOF_EVENTS
/* USB Device Mode Driver Related Tokens: */
// #define USE_RAM_DESCRIPTORS
#define USE_FLASH_DESCRIPTORS
// #define USE_EEPROM_DESCRIPTORS
// #define NO_INTERNAL_SERIAL
#define FIXED_CONTROL_ENDPOINT_SIZE 8
// #define DEVICE_STATE_AS_GPIOR {Insert Value Here}
#define FIXED_NUM_CONFIGURATIONS 1
// #define CONTROL_ONLY_DEVICE
// #define INTERRUPT_CONTROL_ENDPOINT
// #define NO_DEVICE_REMOTE_WAKEUP
// #define NO_DEVICE_SELF_POWER
/* USB Host Mode Driver Related Tokens: */
// #define HOST_STATE_AS_GPIOR {Insert Value Here}
// #define USB_HOST_TIMEOUT_MS {Insert Value Here}
// #define HOST_DEVICE_SETTLE_DELAY_MS {Insert Value Here}
// #define NO_AUTO_VBUS_MANAGEMENT
// #define INVERTED_VBUS_ENABLE_LINE
#else
#error Unsupported architecture for this LUFA configuration file.
#endif
#endif

@ -60,8 +60,7 @@ ifdef COMMON
SRC = keymap_common.c \
$(MATRIX) \
led.c \
backlight.c \
beeps.c
backlight.c
ifdef KEYMAP
SRC := common_keymaps/keymap_$(KEYMAP).c $(SRC)
@ -74,8 +73,7 @@ else
SRC = extended_keymap_common.c \
$(MATRIX) \
led.c \
backlight.c \
beeps.c
backlight.c
ifdef KEYMAP
SRC := extended_keymaps/extended_keymap_$(KEYMAP).c $(SRC)

@ -18,19 +18,24 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef CONFIG_H
#define CONFIG_H
#include "config_definitions.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER Ortholinear Keyboards
#define PRODUCT Planck
#define PRODUCT The Planck Keyboard
#define DESCRIPTION A compact ortholinear keyboard
/* key matrix size */
#define MATRIX_ROWS 4
#define MATRIX_COLS 12
/* Planck PCB default pin-out */
#define COLS (int []){ F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }
#define ROWS (int []){ D0, D5, B5, B6 }
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST

@ -0,0 +1,50 @@
#ifndef CONFIG_DEFINITIONS_H
#define CONFIG_DEFINITIONS_H
#define B0 0x20
#define B1 0x21
#define B2 0x22
#define B3 0x23
#define B4 0x24
#define B5 0x25
#define B6 0x26
#define B7 0x27
#define C0 0x30
#define C1 0x31
#define C2 0x32
#define C3 0x33
#define C4 0x34
#define C5 0x35
#define C6 0x36
#define C7 0x37
#define D0 0x40
#define D1 0x41
#define D2 0x42
#define D3 0x43
#define D4 0x44
#define D5 0x45
#define D6 0x46
#define D7 0x47
#define E0 0x50
#define E1 0x51
#define E2 0x52
#define E3 0x53
#define E4 0x54
#define E5 0x55
#define E6 0x56
#define E7 0x57
#define F0 0x60
#define F1 0x61
#define F2 0x62
#define F3 0x63
#define F4 0x64
#define F5 0x65
#define F6 0x66
#define F7 0x67
#endif

@ -48,6 +48,7 @@ typedef union {
keymap_config_t keymap_config;
#endif
/* translates key to keycode */
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key);

@ -1,5 +1,7 @@
#include "extended_keymap_common.h"
#include "backlight.h"
#include "lufa.h"
#include "debug.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = { /* Qwerty */
@ -51,9 +53,11 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
case 0:
if (record->event.pressed) {
register_code(KC_RSFT);
midi_send_noteon(&midi_device, 1, 64, 127);
backlight_step();
} else {
unregister_code(KC_RSFT);
midi_send_noteoff(&midi_device, 1, 64, 127);
}
break;
}

@ -0,0 +1,235 @@
/*
Copyright 2012 Jun Wako
Generated by planckkeyboard.com (2014 Jack Humbert)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "backlight.h" // TODO fix this dependency
#ifndef DEBOUNCE
# define DEBOUNCE 10
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
backlight_init_ports();
// Turn status LED on
DDRE |= (1<<6);
PORTE |= (1<<6);
// initialize row and col
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
}
uint8_t matrix_scan(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
int col = COLS[x];
if ((col & 0xF0) == 0x20) {
B |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x30) {
C |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x40) {
D |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x50) {
E |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x60) {
F |= (1<<(col & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
int col = COLS[x];
if ((col & 0xF0) == 0x20) {
result |= (PINB&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x30) {
result |= (PINC&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x40) {
result |= (PIND&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x50) {
result |= (PINE&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x60) {
result |= (PINF&(1<<(col & 0x0F)) ? 0 : (1<<x));
}
}
return result;
}
static void unselect_rows(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
for(int x = 0; x < MATRIX_ROWS; x++) {
int row = ROWS[x];
if ((row & 0xF0) == 0x20) {
B |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x30) {
C |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x40) {
D |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x50) {
E |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x60) {
F |= (1<<(row & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static void select_row(uint8_t row)
{
int row_pin = ROWS[row];
if ((row_pin & 0xF0) == 0x20) {
DDRB |= (1<<(row_pin & 0x0F));
PORTB &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x30) {
DDRC |= (1<<(row_pin & 0x0F));
PORTC &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x40) {
DDRD |= (1<<(row_pin & 0x0F));
PORTD &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x50) {
DDRE |= (1<<(row_pin & 0x0F));
PORTE &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x60) {
DDRF |= (1<<(row_pin & 0x0F));
PORTF &= ~(1<<(row_pin & 0x0F));
}
}

@ -78,6 +78,7 @@ void matrix_init(void)
}
}
uint8_t matrix_scan(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {

@ -0,0 +1,138 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = preonic_lufa
# Directory common source filess exist
TOP_DIR = ../..
# Directory keyboard dependent files exist
TARGET_DIR = .
# # project specific files
SRC = extended_keymap_common.c \
matrix.c \
led.c \
backlight.c
ifdef KEYMAP
SRC := extended_keymaps/extended_keymap_$(KEYMAP).c $(SRC)
else
SRC := extended_keymaps/extended_keymap_default.c $(SRC)
endif
CONFIG_H = config.h
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = yes # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
MIDI_ENABLE = yes # MIDI controls
BACKLIGHT_ENABLE = yes
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
include $(TOP_DIR)/protocol/lufa.mk
include $(TOP_DIR)/common.mk
include $(TOP_DIR)/rules.mk

@ -0,0 +1,116 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = gh60_pjrc
# Directory common source filess exist
TOP_DIR = ../..
# Directory keyboard dependent files exist
TARGET_DIR = .
# project specific files
SRC = keymap_common.c \
matrix.c \
led.c
ifdef KEYMAP
SRC := keymap_$(KEYMAP).c $(SRC)
else
SRC := keymap_jack.c $(SRC)
endif
CONFIG_H = config.h
# MCU name, you MUST set this to match the board you are using
# type "make clean" after changing this, so all files will be rebuilt
MCU = atmega32u4
#MCU = at90usb1286
# Processor frequency.
# Normally the first thing your program should do is set the clock prescaler,
# so your program will run at the correct speed. You should also set this
# variable to same clock speed. The _delay_ms() macro uses this, and many
# examples use this variable to calculate timings. Do not add a "UL" here.
F_CPU = 16000000
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Atmel DFU loader 4096
# LUFA bootloader 4096
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+5000)
EXTRAKEY_ENABLE = yes # Audio control and System control(+600)
CONSOLE_ENABLE = yes # Console for debug
COMMAND_ENABLE = yes # Commands for debug and configuration
SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover(+500)
#PS2_MOUSE_ENABLE = yes # PS/2 mouse(TrackPoint) support
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TOP_DIR)
include $(TOP_DIR)/protocol/pjrc.mk
include $(TOP_DIR)/common.mk
include $(TOP_DIR)/rules.mk
plain: OPT_DEFS += -DKEYMAP_PLAIN
plain: all
poker: OPT_DEFS += -DKEYMAP_POKER
poker: all
poker_set: OPT_DEFS += -DKEYMAP_POKER_SET
poker_set: all
poker_bit: OPT_DEFS += -DKEYMAP_POKER_BIT
poker_bit: all

@ -0,0 +1,116 @@
# Planck Firmware Guide
## Setting up the environment
### Windows
1. Install [WinAVR Tools](http://sourceforge.net/projects/winavr/) for AVR GCC compiler.
2. Install [DFU-Programmer][dfu-prog] (the -win one).
3. Start DFU bootloader on the chip first time you will see 'Found New Hardware Wizard' to install driver. If you install device driver properly you can find chip name like 'ATmega32U4' under 'LibUSB-Win32 Devices' tree on 'Device Manager'. If not you will need to update its driver on 'Device Manager' to the `dfu-programmer` driver.
### Mac
1. Install [CrossPack](http://www.obdev.at/products/crosspack/index.html) or install Xcode from the App Store and install the Command Line Tools from `Xcode->Preferences->Downloads`.
2. Install [DFU-Programmer][dfu-prog].
### Linux
1. Install AVR GCC with your favorite package manager.
2. Install [DFU-Programmer][dfu-prog].
##Verify Your Installation
1. Clone the following repository: https://github.com/jackhumbert/tmk_keyboard
2. Open a Terminal and `cd` into `tmk_keyboard/keyboard/planck`
3. Run `make`. This should output a lot of information about the build process.
## Using the built-in functions
Here is a list of some of the functions available from the command line:
* `make clean`: clean the environment - may be required in-between builds
* `make`: compile the code
* `make COMMON=true`: compile with the common (non-extended) keymap
* `make MATRIX=<matrix_file>`: compile with the referenced matrix file. Default if unspecified is `matrix_pcb.c`. For handwired boards, use `matrix_handwired.c`.
* `make KEYMAP=<keymap>`: compile with the extended keymap file `extended_keymaps/extended_keymap_<keymap>.c`
* `make COMMON=true KEYMAP=<keymap>`: compile with the common keymap file `common_keymaps/keymap_<keymap>.c`
* `make dfu`: build and flash the layout to the PCB
* `make dfu-force`: build and force-flash the layout to the PCB (may be require for first flash)
Generally, the instructions to flash the PCB are as follows:
1. Make changes to the appropriate keymap file
2. Save the file
3. `make clean`
4. Press the reset button on the PCB/press the key with the `RESET` keycode
5. `make <arguments> dfu` - use the necessary `KEYMAP=<keymap>` and/or `COMMON=true` arguments here.
## Extended keymap
### Keymap
Unlike the common keymap, prefixing the keycodes with `KC_` is required. A full list of the keycodes is available [here](https://github.com/jackhumbert/tmk_keyboard/blob/master/doc/keycode.txt). For the keycodes available only in the extended keymap, see this [header file](https://github.com/jackhumbert/tmk_keyboard/blob/master/keyboard/planck/extended_keymap_common.h).
You can use modifiers with keycodes like this:
LCTL(KC_C)
Which will generate Ctrl+c. These are daisy-chainable, meaning you can do things like:
LCTL(LALT(KC_C))
That will generate Ctrl+Alt+c. The entire list of these functions is here:
* `LCTL()`: Left control
* `LSFT()` / `S()`: Left shift
* `LALT()`: Left alt/opt
* `LGUI()`: Left win/cmd
* `RCTL()`: Right control
* `RSFT()`: Right shift
* `RALT()`: Right alt/opt
* `RGUI()`: Right win/cmd
`S(KC_1)`-like entries are useful in writing keymaps for the Planck.
### Other keycodes
A number of other keycodes have been added that you may find useful:
* `CM_<key>`: the Colemak equivalent of a key (in place of `KC_<key>`), when using Colemak in software (`CM_O` generates `KC_SCLN`)
* `RESET`: jump to bootloader for flashing (same as press the reset button)
* `BL_STEP`: step through the backlight brightnesses
* `BL_<0-15>`: set backlight brightness to 0-15
* `BL_DEC`: lower the backlight brightness
* `BL_INC`: raise the backlight brightness
* `BL_TOGG`: toggle the backlight on/off
### Function layers
The extended keymap extends the number of function layers from 32 to the near-infinite value of 256. Rather than using `FN<num>` notation (still available, but limited to `FN0`-`FN31`), you can use the `FUNC(<num>)` notation. `F(<num>)` is a shortcut for this.
The function actions are unchanged, and you can see the full list of them [here](https://github.com/jackhumbert/tmk_keyboard/blob/master/common/action_code.h). They are explained in detail [here](https://github.com/jackhumbert/tmk_keyboard/blob/master/doc/keymap.md#2-action).
### Macros
Macros have been setup in the `extended_keymaps/extended_keymaps_default.c` file so that you can use `M(<num>)` to access a macro in the `action_get_macro` section on your keymap. The switch/case structure you see here is required, and is setup for `M(0)` - you'll need to copy and paste the code to look like this (e.g. to support `M(3)`):
switch(id) {
case 0:
return MACRODOWN(TYPE(KC_A), END);
break;
case 1:
return MACRODOWN(TYPE(KC_B), END);
break;
case 2:
return MACRODOWN(TYPE(KC_C), END);
break;
case 3:
return MACRODOWN(TYPE(KC_D), END);
break;
}
return MACRO_NONE;
`MACRODOWN()` is a shortcut for `(record->event.pressed ? MACRO(__VA_ARGS__) : MACRO_NONE)` which tells the macro to execute when the key is pressed. Without this, the macro will be executed on both the down and up stroke.
[cygwin]: https://www.cygwin.com/
[mingw]: http://www.mingw.org/
[mhv]: https://infernoembedded.com/products/avr-tools
[winavr]: http://winavr.sourceforge.net/
[crosspack]: http://www.obdev.at/products/crosspack/index.html
[dfu-prog]: http://dfu-programmer.sourceforge.net/

@ -0,0 +1,56 @@
Planck keyboard firmware
======================
DIY/Assembled compact ortholinear 40% keyboard by [Ortholinear Keyboards](http://ortholinearkeyboards.com).
## Extended Keymap
If you include extended_keymap_common.h instead of keymap_common.h at the top of your file, you'll have access to a bunch of goodies:
- Use `LSFT()`, `LCTL()`, et. al. (listed in extended_keymap_common.h) as modifiers for keys (daisy-chain-able)
- Use `FUNC(1)` instead of `FN1` (etc.) to access the function layers beyond the 32 function layer limit
- Use `CM_F` instead of `KC_F` to get the ColeMak equivilent for shortcuts (maps backwards)
- Use `MACRODOWN()` instead of `MACRO()` to easily make a keydown macro (`CM_*` works here too)
### Some notes on usage:
- The `KEYMAP()` macro is unable to be used due to the bitwise modifications that take place - refer to extended_keymap_jack.c to see how to set things up with the `KC_` prefix
- Keep an eye on the Makefile - this needs to include the correct files to work
- Don't forget to use `const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {` instead of the 8bit equivilent
## Build
Follow [this guide](http://deskthority.net/workshop-f7/how-to-build-your-very-own-keyboard-firmware-t7177.html) to setup your development environment before anything else. Abbreviated instructions are provide at the [bottom of this document](https://github.com/rswiernik/tmk_keyboard/tree/rswiernik_dev/keyboard/planck#environment-setup)
Download the whole firmware [here](https://github.com/jackhumbert/tmk_keyboard/archive/master.zip) and navigate to the keyboard/planck folder. Once your dev env is setup, you'll be able to type `make` to generate your .hex that you can load with the Teensy app onto your Planck (once you've hit reset/shorted GND & RST).
Depending on which keymap you would like to use, you will have to compile slightly differently.
####Default
To build with the default keymap, simply move to the tmk\_keyboard/keyboard/planck/ and run `make` as follows:
```
$ make
```
## Keymap
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `keymap_<name>.c` and see keymap document (you can find in top README.md) and existent keymap files.
####**Extended Keymaps**
To build the firmware binary hex file with an extended keymap just do `make` with `KEYMAP` option like:
```
$ make KEYMAP=[common|jack|<name>]
```
_The only applicable keymaps will work with this option._ Extended keymaps follow the format **__extended\_keymap\_\<name\>.c__**
####**Common Keymaps**
Building with a common keymap is as simple as adding the COMMON option. Note that only
```
$ make KEYMAP=[common|jack|<name>] COMMON=true
```
_The only applicable keymaps will work with this option._ Common keymaps follow the format **__keymap\_\<name\>.c__**
## Notable TMK forks (which some of the keymap files are from)
- [Shane's Fork](https://github.com/shanecelis/tmk_keyboard/tree/master/keyboard/planck)
- [Pierre's Fork](https://github.com/pcarrier/tmk_keyboard/blob/pcarrier/planck/keyboard/gh60/keymap_planck.c)
- [Nathan's Fork](https://github.com/nathanrosspowell/tmk_keyboard/tree/planck-jack/keyboard/planck)
- [Matthew's Fork](https://github.com/pepers/tmk_keyboard/tree/master/keyboard/planck_grid)

@ -0,0 +1,6 @@
define reset
SIGNAL SIGHUP
end
file planck_lufa.elf
target remote localhost:4242
break main

@ -0,0 +1,53 @@
// Simple analog to digitial conversion
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdint.h>
#include "analog.h"
static uint8_t aref = (1<<REFS0); // default to AREF = Vcc
void analogReference(uint8_t mode)
{
aref = mode & 0xC0;
}
// Arduino compatible pin input
int16_t analogRead(uint8_t pin)
{
#if defined(__AVR_ATmega32U4__)
static const uint8_t PROGMEM pin_to_mux[] = {
0x00, 0x01, 0x04, 0x05, 0x06, 0x07,
0x25, 0x24, 0x23, 0x22, 0x21, 0x20};
if (pin >= 12) return 0;
return adc_read(pgm_read_byte(pin_to_mux + pin));
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
if (pin >= 8) return 0;
return adc_read(pin);
#else
return 0;
#endif
}
// Mux input
int16_t adc_read(uint8_t mux)
{
#if defined(__AVR_AT90USB162__)
return 0;
#else
uint8_t low;
ADCSRA = (1<<ADEN) | ADC_PRESCALER; // enable ADC
ADCSRB = (1<<ADHSM) | (mux & 0x20); // high speed mode
ADMUX = aref | (mux & 0x1F); // configure mux input
ADCSRA = (1<<ADEN) | ADC_PRESCALER | (1<<ADSC); // start the conversion
while (ADCSRA & (1<<ADSC)) ; // wait for result
low = ADCL; // must read LSB first
return (ADCH << 8) | low; // must read MSB only once!
#endif
}

@ -0,0 +1,36 @@
#ifndef _analog_h_included__
#define _analog_h_included__
#include <stdint.h>
void analogReference(uint8_t mode);
int16_t analogRead(uint8_t pin);
int16_t adc_read(uint8_t mux);
#define ADC_REF_POWER (1<<REFS0)
#define ADC_REF_INTERNAL ((1<<REFS1) | (1<<REFS0))
#define ADC_REF_EXTERNAL (0)
// These prescaler values are for high speed mode, ADHSM = 1
#if F_CPU == 16000000L
#define ADC_PRESCALER ((1<<ADPS2) | (1<<ADPS1))
#elif F_CPU == 8000000L
#define ADC_PRESCALER ((1<<ADPS2) | (1<<ADPS0))
#elif F_CPU == 4000000L
#define ADC_PRESCALER ((1<<ADPS2))
#elif F_CPU == 2000000L
#define ADC_PRESCALER ((1<<ADPS1) | (1<<ADPS0))
#elif F_CPU == 1000000L
#define ADC_PRESCALER ((1<<ADPS1))
#else
#define ADC_PRESCALER ((1<<ADPS0))
#endif
// some avr-libc versions do not properly define ADHSM
#if defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#if !defined(ADHSM)
#define ADHSM (7)
#endif
#endif
#endif

@ -0,0 +1,61 @@
#include <avr/io.h>
#include "backlight.h"
#define CHANNEL OCR1C
void backlight_init_ports()
{
// Setup PB7 as output and output low.
DDRB |= (1<<7);
PORTB &= ~(1<<7);
// Use full 16-bit resolution.
ICR1 = 0xFFFF;
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
backlight_init();
}
void backlight_set(uint8_t level)
{
if ( level == 0 )
{
// Turn off PWM control on PB7, revert to output low.
TCCR1A &= ~(_BV(COM1C1));
CHANNEL = 0x0;
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
}
else if ( level == BACKLIGHT_LEVELS )
{
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF;
}
else
{
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
}
}

@ -0,0 +1,238 @@
#include "beeps.h"
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#define PI 3.14159265
#define CHANNEL OCR1C
volatile uint16_t sample;
uint16_t lastSample;
const int sounddata_length=200;
const unsigned char sounddata_data[] PROGMEM = {128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 129, 127, 129, 128, 127, 133,
117, 109, 125, 121, 116, 132, 140, 126, 114, 114, 116, 120, 114, 93, 73, 66, 76, 116, 142, 129,
128, 129, 120, 119, 118, 104, 87, 123, 181, 194, 196, 198, 189, 176, 160, 162, 172, 164, 164, 183,
197, 188, 168, 167, 170, 165, 185, 209, 206, 196, 196, 199, 185, 162, 156, 167, 176, 173, 170, 166,
151, 142, 140, 134, 130, 127, 113, 86, 67, 66, 69, 75, 73, 75, 86, 90, 91, 84, 65, 48,
41, 30, 26, 56, 91, 88, 72, 70, 73, 82, 89, 73, 57, 60, 74, 89, 92, 77, 63, 60,
53, 47, 56, 64, 63, 61, 56, 54, 52, 36, 16, 22, 51, 66, 67, 70, 76, 88, 99, 92,
77, 74, 85, 100, 106, 97, 83, 85, 96, 108, 133, 160, 164};
void delay_us(int count) {
while(count--) {
_delay_us(1);
}
}
void beeps() {
// DDRB |= (1<<7);
// PORTB &= ~(1<<7);
// // Use full 16-bit resolution.
// ICR1 = 0xFFFF;
// // I could write a wall of text here to explain... but TL;DW
// // Go read the ATmega32u4 datasheet.
// // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// // Pin PB7 = OCR1C (Timer 1, Channel C)
// // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// // (i.e. start high, go low when counter matches.)
// // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
// TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
// TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
// // Turn off PWM control on PB7, revert to output low.
// // TCCR1A &= ~(_BV(COM1C1));
// // CHANNEL = ((1 << level) - 1);
// // Turn on PWM control of PB7
// TCCR1A |= _BV(COM1C1);
// // CHANNEL = level << OFFSET | 0x0FFF;
// // CHANNEL = 0b1010101010101010;
// float x = 12;
// float y = 24;
// float length = 50;
// float scale = 1;
// // int f1 = 1000000/440;
// // int f2 = 1000000/880;
// // for (uint32_t i = 0; i < length * 1000; i++) {
// // // int frequency = 1/((sin(PI*2*i*scale*pow(2, x/12.0))*.5+1 + sin(PI*2*i*scale*pow(2, y/12.0))*.5+1) / 2);
// // ICR1 = f1; // Set max to the period
// // OCR1C = f1 >> 1; // Set compare to half the period
// // // _delay_us(10);
// // }
// int frequency = 1000000/440;
// ICR1 = frequency; // Set max to the period
// OCR1C = frequency >> 1; // Set compare to half the period
// _delay_us(500000);
// TCCR1A &= ~(_BV(COM1C1));
// CHANNEL = 0;
play_notes();
// play_note(55*pow(2, 0/12.0), 1);
// play_note(55*pow(2, 12/12.0), 1);
// play_note(55*pow(2, 24/12.0), 1);
// play_note(55*pow(2, 0/12.0), 1);
// play_note(55*pow(2, 12/12.0), 1);
// play_note(55*pow(2, 24/12.0), 1);
// play_note(0, 4);
// play_note(55*pow(2, 0/12.0), 8);
// play_note(55*pow(2, 12/12.0), 4);
// play_note(55*pow(2, 10/12.0), 4);
// play_note(55*pow(2, 12/12.0), 8);
// play_note(55*pow(2, 10/12.0), 4);
// play_note(55*pow(2, 7/12.0), 2);
// play_note(55*pow(2, 8/12.0), 2);
// play_note(55*pow(2, 7/12.0), 16);
// play_note(0, 4);
// play_note(55*pow(2, 3/12.0), 8);
// play_note(55*pow(2, 5/12.0), 4);
// play_note(55*pow(2, 7/12.0), 4);
// play_note(55*pow(2, 7/12.0), 8);
// play_note(55*pow(2, 5/12.0), 4);
// play_note(55*pow(2, 3/12.0), 4);
// play_note(55*pow(2, 2/12.0), 16);
}
void play_note(float freq, int length) {
DDRB |= (1<<7);
PORTB &= ~(1<<7);
if (freq > 0) {
int frequency = 1000000/freq;
ICR1 = frequency; // Set max to the period
OCR1C = frequency >> 1; // Set compare to half the period
TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
}
for (int i = 0; i < length; i++) {
_delay_us(50000);
}
TCCR1A &= ~(_BV(COM1C1));
}
// This is called at 8000 Hz to load the next sample.
ISR(TIMER1_COMPA_vect) {
if (sample >= sounddata_length) {
if (sample == sounddata_length + lastSample) {
TIMSK1 &= ~_BV(OCIE1A);
// Disable the per-sample timer completely.
TCCR1B &= ~_BV(CS10);
}
else {
OCR1C = sounddata_length + lastSample - sample;
}
}
else {
OCR1C = pgm_read_byte(&sounddata_data[sample]);
}
++sample;
}
void play_notes() {
// Set up Timer 2 to do pulse width modulation on the speaker
// pin.
DDRB |= (1<<7);
PORTB &= ~(1<<7);
// Use internal clock (datasheet p.160)
// ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// Set fast PWM mode (p.157)
TCCR1A |= _BV(WGM21) | _BV(WGM20);
TCCR1B &= ~_BV(WGM22);
// Do non-inverting PWM on pin OC2A (p.155)
// On the Arduino this is pin 11.
TCCR1A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
TCCR1A &= ~(_BV(COM2B1) | _BV(COM2B0));
// No prescaler (p.158)
TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
// Set initial pulse width to the first sample.
OCR1A = pgm_read_byte(&sounddata_data[0]);
cli();
// Set CTC mode (Clear Timer on Compare Match) (p.133)
// Have to set OCR1A *after*, otherwise it gets reset to 0!
TCCR2B = (TCCR2B & ~_BV(WGM13)) | _BV(WGM12);
TCCR2A = TCCR2A & ~(_BV(WGM11) | _BV(WGM10));
// No prescaler (p.134)
TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
// Set the compare register (OCR1A).
// OCR1A is a 16-bit register, so we have to do this with
// interrupts disabled to be safe.
// OCR2A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000
OCR2A = 2000;
// Enable interrupt when TCNT1 == OCR1A (p.136)
TIMSK1 |= _BV(OCIE2A);
sample = 0;
sei();
}
void note(int x, float length) {
DDRB |= (1<<1);
int t = (int)(440*pow(2,-x/12.0)); // starting note
for (int y = 0; y < length*1000/t; y++) { // note length
PORTB |= (1<<1);
delay_us(t);
PORTB &= ~(1<<1);
delay_us(t);
}
PORTB &= ~(1<<1);
}
void true_note(float x, float y, float length) {
for (uint32_t i = 0; i < length * 50; i++) {
uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8));
for (int u = 0; u < 8; u++) {
if (v & (1 << u) && !(PORTB&(1<<1)))
PORTB |= (1<<1);
else if (PORTB&(1<<1))
PORTB &= ~(1<<1);
}
}
PORTB &= ~(1<<1);
}

@ -0,0 +1,9 @@
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
void note(int x, float length);
void beeps();
void true_note(float x, float y, float length);
void play_note(float freq, int length);

@ -0,0 +1,76 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
#include "config_definitions.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER Ortholinear Keyboards
#define PRODUCT The Preonic Keyboard
#define DESCRIPTION A compact ortholinear keyboard
/* key matrix size */
#define MATRIX_ROWS 5
#define MATRIX_COLS 12
/* Planck PCB default pin-out */
#define COLS (int []){ F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }
#define ROWS (int []){ D1, D0, D5, B5, B6 }
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
#define BACKLIGHT_LEVELS 3
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
#define NO_DEBUG
/* disable print */
#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
#endif

@ -0,0 +1,50 @@
#ifndef CONFIG_DEFINITIONS_H
#define CONFIG_DEFINITIONS_H
#define B0 0x20
#define B1 0x21
#define B2 0x22
#define B3 0x23
#define B4 0x24
#define B5 0x25
#define B6 0x26
#define B7 0x27
#define C0 0x30
#define C1 0x31
#define C2 0x32
#define C3 0x33
#define C4 0x34
#define C5 0x35
#define C6 0x36
#define C7 0x37
#define D0 0x40
#define D1 0x41
#define D2 0x42
#define D3 0x43
#define D4 0x44
#define D5 0x45
#define D6 0x46
#define D7 0x47
#define E0 0x50
#define E1 0x51
#define E2 0x52
#define E3 0x53
#define E4 0x54
#define E5 0x55
#define E6 0x56
#define E7 0x57
#define F0 0x60
#define F1 0x61
#define F2 0x62
#define F3 0x63
#define F4 0x64
#define F5 0x65
#define F6 0x66
#define F7 0x67
#endif

@ -0,0 +1,210 @@
/*
Copyright 2012,2013 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "extended_keymap_common.h"
#include "report.h"
#include "keycode.h"
#include "action_layer.h"
#include "action.h"
#include "action_macro.h"
#include "debug.h"
#include "backlight.h"
static action_t keycode_to_action(uint16_t keycode);
/* converts key to action */
action_t action_for_key(uint8_t layer, keypos_t key)
{
// 16bit keycodes - important
uint16_t keycode = keymap_key_to_keycode(layer, key);
if (keycode >= 0x0100 && keycode < 0x2000) {
// Has a modifier
action_t action;
// Split it up
action.code = ACTION_MODS_KEY(keycode >> 8, keycode & 0xFF);
return action;
} else if (keycode >= 0x2000 && keycode < 0x3000) {
// Is a shortcut for function layer, pull last 12bits
return keymap_func_to_action(keycode & 0xFFF);
} else if (keycode >= 0x3000 && keycode < 0x4000) {
action_t action;
action.code = ACTION_MACRO(keycode & 0xFF);
return action;
} else if (keycode >= BL_0 & keycode <= BL_15) {
action_t action;
action.code = ACTION_BACKLIGHT_LEVEL(keycode & 0x000F);
return action;
} else if (keycode == BL_DEC) {
action_t action;
action.code = ACTION_BACKLIGHT_DECREASE();
return action;
} else if (keycode == BL_INC) {
action_t action;
action.code = ACTION_BACKLIGHT_INCREASE();
return action;
} else if (keycode == BL_TOGG) {
action_t action;
action.code = ACTION_BACKLIGHT_TOGGLE();
return action;
} else if (keycode == BL_STEP) {
action_t action;
action.code = ACTION_BACKLIGHT_STEP();
return action;
} else if (keycode == RESET) {
bootloader_jump();
return;
} else if (keycode > RESET) {
// MIDI
return;
}
switch (keycode) {
case KC_FN0 ... KC_FN31:
return keymap_fn_to_action(keycode);
#ifdef BOOTMAGIC_ENABLE
case KC_CAPSLOCK:
case KC_LOCKING_CAPS:
if (keymap_config.swap_control_capslock || keymap_config.capslock_to_control) {
return keycode_to_action(KC_LCTL);
}
return keycode_to_action(keycode);
case KC_LCTL:
if (keymap_config.swap_control_capslock) {
return keycode_to_action(KC_CAPSLOCK);
}
return keycode_to_action(KC_LCTL);
case KC_LALT:
if (keymap_config.swap_lalt_lgui) {
if (keymap_config.no_gui) {
return keycode_to_action(ACTION_NO);
}
return keycode_to_action(KC_LGUI);
}
return keycode_to_action(KC_LALT);
case KC_LGUI:
if (keymap_config.swap_lalt_lgui) {
return keycode_to_action(KC_LALT);
}
if (keymap_config.no_gui) {
return keycode_to_action(ACTION_NO);
}
return keycode_to_action(KC_LGUI);
case KC_RALT:
if (keymap_config.swap_ralt_rgui) {
if (keymap_config.no_gui) {
return keycode_to_action(ACTION_NO);
}
return keycode_to_action(KC_RGUI);
}
return keycode_to_action(KC_RALT);
case KC_RGUI:
if (keymap_config.swap_ralt_rgui) {
return keycode_to_action(KC_RALT);
}
if (keymap_config.no_gui) {
return keycode_to_action(ACTION_NO);
}
return keycode_to_action(KC_RGUI);
case KC_GRAVE:
if (keymap_config.swap_grave_esc) {
return keycode_to_action(KC_ESC);
}
return keycode_to_action(KC_GRAVE);
case KC_ESC:
if (keymap_config.swap_grave_esc) {
return keycode_to_action(KC_GRAVE);
}
return keycode_to_action(KC_ESC);
case KC_BSLASH:
if (keymap_config.swap_backslash_backspace) {
return keycode_to_action(KC_BSPACE);
}
return keycode_to_action(KC_BSLASH);
case KC_BSPACE:
if (keymap_config.swap_backslash_backspace) {
return keycode_to_action(KC_BSLASH);
}
return keycode_to_action(KC_BSPACE);
#endif
default:
return keycode_to_action(keycode);
}
}
/* Macro */
__attribute__ ((weak))
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
return MACRO_NONE;
}
/* Function */
__attribute__ ((weak))
void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)
{
}
/* translates keycode to action */
static action_t keycode_to_action(uint16_t keycode)
{
action_t action;
switch (keycode) {
case KC_A ... KC_EXSEL:
case KC_LCTRL ... KC_RGUI:
action.code = ACTION_KEY(keycode);
break;
case KC_SYSTEM_POWER ... KC_SYSTEM_WAKE:
action.code = ACTION_USAGE_SYSTEM(KEYCODE2SYSTEM(keycode));
break;
case KC_AUDIO_MUTE ... KC_WWW_FAVORITES:
action.code = ACTION_USAGE_CONSUMER(KEYCODE2CONSUMER(keycode));
break;
case KC_MS_UP ... KC_MS_ACCEL2:
action.code = ACTION_MOUSEKEY(keycode);
break;
case KC_TRNS:
action.code = ACTION_TRANSPARENT;
break;
default:
action.code = ACTION_NO;
break;
}
return action;
}
/* translates key to keycode */
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key)
{
// Read entire word (16bits)
return pgm_read_word(&keymaps[(layer)][(key.row)][(key.col)]);
}
/* translates Fn keycode to action */
action_t keymap_fn_to_action(uint16_t keycode)
{
return (action_t){ .code = pgm_read_word(&fn_actions[FN_INDEX(keycode)]) };
}
action_t keymap_func_to_action(uint16_t keycode)
{
// For FUNC without 8bit limit
return (action_t){ .code = pgm_read_word(&fn_actions[(int)keycode]) };
}

@ -0,0 +1,180 @@
/*
Copyright 2012,2013 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KEYMAP_H
#define KEYMAP_H
#include <stdint.h>
#include <stdbool.h>
#include "action.h"
#include <avr/pgmspace.h>
#include "keycode.h"
#include "keymap.h"
#include "action_macro.h"
#include "report.h"
#include "host.h"
// #include "print.h"
#include "debug.h"
#ifdef BOOTMAGIC_ENABLE
/* NOTE: Not portable. Bit field order depends on implementation */
typedef union {
uint16_t raw;
struct {
bool swap_control_capslock:1;
bool capslock_to_control:1;
bool swap_lalt_lgui:1;
bool swap_ralt_rgui:1;
bool no_gui:1;
bool swap_grave_esc:1;
bool swap_backslash_backspace:1;
bool nkro:1;
};
} keymap_config_t;
keymap_config_t keymap_config;
#endif
/* translates key to keycode */
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key);
/* translates Fn keycode to action */
action_t keymap_fn_to_action(uint16_t keycode);
/* translates Fn keycode to action */
action_t keymap_func_to_action(uint16_t keycode);
extern const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS];
extern const uint16_t fn_actions[];
// Ability to use mods in layouts
#define LCTL(kc) kc | 0x0100
#define LSFT(kc) kc | 0x0200
#define LALT(kc) kc | 0x0400
#define LGUI(kc) kc | 0x0800
#define RCTL(kc) kc | 0x1100
#define RSFT(kc) kc | 0x1200
#define RALT(kc) kc | 0x1400
#define RGUI(kc) kc | 0x1800
// Alias for function layers than expand past FN31
#define FUNC(kc) kc | 0x2000
// Aliases
#define S(kc) LSFT(kc)
#define F(kc) FUNC(kc)
// For software implementation of colemak
#define CM_Q KC_Q
#define CM_W KC_W
#define CM_F KC_E
#define CM_P KC_R
#define CM_G KC_T
#define CM_J KC_Y
#define CM_L KC_U
#define CM_U KC_I
#define CM_Y KC_O
#define CM_SCLN KC_P
#define CM_A KC_A
#define CM_R KC_S
#define CM_S KC_D
#define CM_T KC_F
#define CM_D KC_G
#define CM_H KC_H
#define CM_N KC_J
#define CM_E KC_K
#define CM_I KC_L
#define CM_O KC_SCLN
#define CM_Z KC_Z
#define CM_X KC_X
#define CM_C KC_C
#define CM_V KC_V
#define CM_B KC_B
#define CM_K KC_N
#define CM_M KC_M
#define CM_COMM KC_COMM
#define CM_DOT KC_DOT
#define CM_SLSH KC_SLSH
// Make it easy to support these in macros
#define KC_CM_Q CM_Q
#define KC_CM_W CM_W
#define KC_CM_F CM_F
#define KC_CM_P CM_P
#define KC_CM_G CM_G
#define KC_CM_J CM_J
#define KC_CM_L CM_L
#define KC_CM_U CM_U
#define KC_CM_Y CM_Y
#define KC_CM_SCLN CM_SCLN
#define KC_CM_A CM_A
#define KC_CM_R CM_R
#define KC_CM_S CM_S
#define KC_CM_T CM_T
#define KC_CM_D CM_D
#define KC_CM_H CM_H
#define KC_CM_N CM_N
#define KC_CM_E CM_E
#define KC_CM_I CM_I
#define KC_CM_O CM_O
#define KC_CM_Z CM_Z
#define KC_CM_X CM_X
#define KC_CM_C CM_C
#define KC_CM_V CM_V
#define KC_CM_B CM_B
#define KC_CM_K CM_K
#define KC_CM_M CM_M
#define KC_CM_COMM CM_COMM
#define KC_CM_DOT CM_DOT
#define KC_CM_SLSH CM_SLSH
#define M(kc) kc | 0x3000
#define MACRODOWN(...) (record->event.pressed ? MACRO(__VA_ARGS__) : MACRO_NONE)
#define BL_ON 0x4009
#define BL_OFF 0x4000
#define BL_0 0x4000
#define BL_1 0x4001
#define BL_2 0x4002
#define BL_3 0x4003
#define BL_4 0x4004
#define BL_5 0x4005
#define BL_6 0x4006
#define BL_7 0x4007
#define BL_8 0x4008
#define BL_9 0x4009
#define BL_10 0x400A
#define BL_11 0x400B
#define BL_12 0x400C
#define BL_13 0x400D
#define BL_14 0x400E
#define BL_15 0x400F
#define BL_DEC 0x4010
#define BL_INC 0x4011
#define BL_TOGG 0x4012
#define BL_STEP 0x4013
#define RESET 0x5000
#define MIDI(n) n | 0x6000
#endif

@ -0,0 +1,65 @@
#include "extended_keymap_common.h"
#include "backlight.h"
#include "lufa.h"
#include "debug.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = { /* Qwerty */
{KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSPC},
{KC_ESC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT},
{M(0), KC_LCTL, KC_LALT, KC_LGUI, FUNC(2), KC_SPC, KC_SPC, FUNC(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
// Space is repeated to accommadate for both spacebar wiring positions
},
[1] = { /* Colemak */
{KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC},
{KC_ESC, KC_A, KC_R, KC_S, KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT},
{KC_FN3, KC_LCTL, KC_LALT, KC_LGUI, FUNC(2), KC_SPC, KC_SPC, FUNC(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
},
[2] = { /* RAISE */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC},
{KC_TRNS, FUNC(3), FUNC(4), RESET, KC_TRNS, KC_TRNS, KC_TRNS, KC_MINS, KC_EQL, KC_LBRC, KC_RBRC, KC_BSLS},
{KC_TRNS, KC_F11, KC_F12, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS},
{KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, FUNC(1), KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
},
[3] = { /* LOWER */
{S(KC_GRV), S(KC_1), S(KC_2), S(KC_3), S(KC_4), S(KC_5), S(KC_6), S(KC_7), S(KC_8), S(KC_9), S(KC_0), KC_BSPC},
{KC_TRNS, FUNC(3), FUNC(4), RESET, KC_TRNS, KC_TRNS, KC_TRNS, S(KC_MINS), S(KC_EQL), S(KC_LBRC), S(KC_RBRC), S(KC_BSLS)},
{KC_TRNS, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_TRNS},
{KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, FUNC(2), KC_TRNS, KC_TRNS, KC_TRNS, KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
},
[4] = { /* TENKEY */
{KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_KP_7, KC_KP_8, KC_KP_9, KC_P, KC_BSPC},
{KC_ESC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_KP_4, KC_KP_5, KC_KP_6, KC_SCLN, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_KP_1, KC_KP_2, KC_KP_3, KC_SLSH, KC_ENT},
{KC_TRNS, KC_LCTL, KC_LALT, KC_LGUI, KC_TRNS, KC_SPC, KC_SPC, KC_KP_0, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
}
};
const uint16_t PROGMEM fn_actions[] = {
[1] = ACTION_LAYER_MOMENTARY(2), // to RAISE
[2] = ACTION_LAYER_MOMENTARY(3), // to LOWER
[3] = ACTION_DEFAULT_LAYER_SET(0),
[4] = ACTION_DEFAULT_LAYER_SET(1),
};
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
// MACRODOWN only works in this function
switch(id) {
case 0:
if (record->event.pressed) {
register_code(KC_RSFT);
midi_send_noteon(&midi_device, 1, 64, 127);
backlight_step();
} else {
unregister_code(KC_RSFT);
midi_send_noteoff(&midi_device, 1, 64, 127);
}
break;
}
return MACRO_NONE;
};

@ -0,0 +1,73 @@
#include "extended_keymap_common.h"
#include "backlight.h"
#include "action_layer.h"
#include "lufa.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = { /* Qwerty */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL},
{KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSPC},
{KC_ESC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT},
{M(0), KC_LCTL, KC_LALT, KC_LGUI, FUNC(2), KC_SPC, KC_SPC, FUNC(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
// Space is repeated to accommadate for both spacebar wiring positions
},
[1] = { /* Colemak */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL},
{KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC},
{KC_ESC, KC_A, KC_R, KC_S, KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT},
{KC_FN3, KC_LCTL, KC_LALT, KC_LGUI, FUNC(2), KC_SPC, KC_SPC, FUNC(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
},
[2] = { /* RAISE */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL},
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC},
{KC_TRNS, FUNC(3), FUNC(4), RESET, KC_TRNS, KC_TRNS, KC_TRNS, KC_MINS, KC_EQL, KC_LBRC, KC_RBRC, KC_BSLS},
{KC_TRNS, KC_F11, KC_F12, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS},
{KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, FUNC(1), KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
},
[3] = { /* LOWER */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL},
{S(KC_GRV), S(KC_1), S(KC_2), S(KC_3), S(KC_4), S(KC_5), S(KC_6), S(KC_7), S(KC_8), S(KC_9), S(KC_0), KC_BSPC},
{KC_TRNS, FUNC(3), FUNC(4), RESET, KC_TRNS, KC_TRNS, KC_TRNS, S(KC_MINS), S(KC_EQL), S(KC_LBRC), S(KC_RBRC), S(KC_BSLS)},
{KC_TRNS, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_TRNS},
{KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, FUNC(2), KC_TRNS, KC_TRNS, KC_TRNS, KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
},
[4] = { /* TENKEY */
{KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL},
{KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_KP_7, KC_KP_8, KC_KP_9, KC_P, KC_BSPC},
{KC_ESC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_KP_4, KC_KP_5, KC_KP_6, KC_SCLN, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_KP_1, KC_KP_2, KC_KP_3, KC_SLSH, KC_ENT},
{KC_TRNS, KC_LCTL, KC_LALT, KC_LGUI, KC_TRNS, KC_SPC, KC_SPC, KC_KP_0, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
}
};
const uint16_t PROGMEM fn_actions[] = {
[1] = ACTION_LAYER_MOMENTARY(2), // to RAISE
[2] = ACTION_LAYER_MOMENTARY(3), // to LOWER
[3] = ACTION_DEFAULT_LAYER_SET(0),
[4] = ACTION_DEFAULT_LAYER_SET(1),
};
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
// MACRODOWN only works in this function
switch(id) {
case 0:
if (record->event.pressed) {
// register_code(KC_RSFT);
backlight_set(BACKLIGHT_LEVELS);
midi_send_noteon(&midi_device, 1, 64, 127);
layer_on(4);
} else {
// unregister_code(KC_RSFT);
backlight_set(0);
midi_send_noteoff(&midi_device, 1, 64, 127);
layer_clear();
}
break;
}
return MACRO_NONE;
};

@ -0,0 +1,38 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include "stdint.h"
#include "led.h"
void led_set(uint8_t usb_led)
{
// // Using PE6 Caps Lock LED
// if (usb_led & (1<<USB_LED_CAPS_LOCK))
// {
// // Output high.
// DDRE |= (1<<6);
// PORTE |= (1<<6);
// }
// else
// {
// // Output low.
// DDRE &= ~(1<<6);
// PORTE &= ~(1<<6);
// }
}

@ -0,0 +1,234 @@
/*
Copyright 2012 Jun Wako
Generated by planckkeyboard.com (2014 Jack Humbert)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#ifndef DEBOUNCE
# define DEBOUNCE 10
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
backlight_init_ports();
// Turn status LED on
DDRE |= (1<<6);
PORTE |= (1<<6);
// initialize row and col
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
}
uint8_t matrix_scan(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
int col = COLS[x];
if ((col & 0xF0) == 0x20) {
B |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x30) {
C |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x40) {
D |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x50) {
E |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x60) {
F |= (1<<(col & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
int col = COLS[x];
if ((col & 0xF0) == 0x20) {
result |= (PINB&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x30) {
result |= (PINC&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x40) {
result |= (PIND&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x50) {
result |= (PINE&(1<<(col & 0x0F)) ? 0 : (1<<x));
} else if ((col & 0xF0) == 0x60) {
result |= (PINF&(1<<(col & 0x0F)) ? 0 : (1<<x));
}
}
return result;
}
static void unselect_rows(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
for(int x = 0; x < MATRIX_ROWS; x++) {
int row = ROWS[x];
if ((row & 0xF0) == 0x20) {
B |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x30) {
C |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x40) {
D |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x50) {
E |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x60) {
F |= (1<<(row & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static void select_row(uint8_t row)
{
int row_pin = ROWS[row];
if ((row_pin & 0xF0) == 0x20) {
DDRB |= (1<<(row_pin & 0x0F));
PORTB &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x30) {
DDRC |= (1<<(row_pin & 0x0F));
PORTC &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x40) {
DDRD |= (1<<(row_pin & 0x0F));
PORTD &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x50) {
DDRE |= (1<<(row_pin & 0x0F));
PORTE &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x60) {
DDRF |= (1<<(row_pin & 0x0F));
PORTF &= ~(1<<(row_pin & 0x0F));
}
}

@ -19,7 +19,12 @@ endif
LUFA_SRC = $(LUFA_DIR)/lufa.c \
$(LUFA_DIR)/descriptor.c \
$(LUFA_SRC_USB)
$(LUFA_SRC_USB) \
$(LUFA_DIR)/midi/midi.c \
$(LUFA_DIR)/midi/midi_device.c \
$(LUFA_DIR)/midi/bytequeue/bytequeue.c \
$(LUFA_DIR)/midi/bytequeue/interrupt_setting.c \
$(LUFA_DIR)/LUFA-git/LUFA/Drivers/USB/Class/Device/MIDIClassDevice.c
SRC += $(LUFA_SRC)

@ -486,6 +486,165 @@ const USB_Descriptor_Configuration_t PROGMEM ConfigurationDescriptor =
.PollingIntervalMS = 0x01
},
#endif
#ifdef MIDI_ENABLE
.Audio_ControlInterface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = MIDI_INTERFACE,
.AlternateSetting = 0,
.TotalEndpoints = 0,
.Class = AUDIO_CSCP_AudioClass,
.SubClass = AUDIO_CSCP_ControlSubclass,
.Protocol = AUDIO_CSCP_ControlProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.Audio_ControlInterface_SPC =
{
.Header = {.Size = sizeof(USB_Audio_Descriptor_Interface_AC_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_Header,
.ACSpecification = VERSION_BCD(1,0,0),
.TotalLength = sizeof(USB_Audio_Descriptor_Interface_AC_t),
.InCollection = 1,
.InterfaceNumber = MIDI2_INTERFACE,
},
.Audio_StreamInterface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = MIDI2_INTERFACE,
.AlternateSetting = 0,
.TotalEndpoints = 2,
.Class = AUDIO_CSCP_AudioClass,
.SubClass = AUDIO_CSCP_MIDIStreamingSubclass,
.Protocol = AUDIO_CSCP_StreamingProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.Audio_StreamInterface_SPC =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_AudioInterface_AS_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_General,
.AudioSpecification = VERSION_BCD(1,0,0),
.TotalLength = (sizeof(USB_Descriptor_Configuration_t) -
offsetof(USB_Descriptor_Configuration_t, Audio_StreamInterface_SPC))
},
.MIDI_In_Jack_Emb =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_InputJack_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_InputTerminal,
.JackType = MIDI_JACKTYPE_Embedded,
.JackID = 0x01,
.JackStrIndex = NO_DESCRIPTOR
},
.MIDI_In_Jack_Ext =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_InputJack_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_InputTerminal,
.JackType = MIDI_JACKTYPE_External,
.JackID = 0x02,
.JackStrIndex = NO_DESCRIPTOR
},
.MIDI_Out_Jack_Emb =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_OutputJack_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_OutputTerminal,
.JackType = MIDI_JACKTYPE_Embedded,
.JackID = 0x03,
.NumberOfPins = 1,
.SourceJackID = {0x02},
.SourcePinID = {0x01},
.JackStrIndex = NO_DESCRIPTOR
},
.MIDI_Out_Jack_Ext =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_OutputJack_t), .Type = DTYPE_CSInterface},
.Subtype = AUDIO_DSUBTYPE_CSInterface_OutputTerminal,
.JackType = MIDI_JACKTYPE_External,
.JackID = 0x04,
.NumberOfPins = 1,
.SourceJackID = {0x01},
.SourcePinID = {0x01},
.JackStrIndex = NO_DESCRIPTOR
},
.MIDI_In_Jack_Endpoint =
{
.Endpoint =
{
.Header = {.Size = sizeof(USB_Audio_Descriptor_StreamEndpoint_Std_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_IN | MIDI_STREAM_IN_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = MIDI_STREAM_EPSIZE,
.PollingIntervalMS = 0x05
},
.Refresh = 0,
.SyncEndpointNumber = 0
},
.MIDI_In_Jack_Endpoint_SPC =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_Jack_Endpoint_t), .Type = DTYPE_CSEndpoint},
.Subtype = AUDIO_DSUBTYPE_CSEndpoint_General,
.TotalEmbeddedJacks = 0x01,
.AssociatedJackID = {0x01}
},
.MIDI_Out_Jack_Endpoint =
{
.Endpoint =
{
.Header = {.Size = sizeof(USB_Audio_Descriptor_StreamEndpoint_Std_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_OUT | MIDI_STREAM_OUT_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = MIDI_STREAM_EPSIZE,
.PollingIntervalMS = 0x05
},
.Refresh = 0,
.SyncEndpointNumber = 0
},
.MIDI_Out_Jack_Endpoint_SPC =
{
.Header = {.Size = sizeof(USB_MIDI_Descriptor_Jack_Endpoint_t), .Type = DTYPE_CSEndpoint},
.Subtype = AUDIO_DSUBTYPE_CSEndpoint_General,
.TotalEmbeddedJacks = 0x01,
.AssociatedJackID = {0x03}
}
#endif
};

@ -85,6 +85,25 @@ typedef struct
USB_HID_Descriptor_HID_t NKRO_HID;
USB_Descriptor_Endpoint_t NKRO_INEndpoint;
#endif
#ifdef MIDI_ENABLE
// MIDI Audio Control Interface
USB_Descriptor_Interface_t Audio_ControlInterface;
USB_Audio_Descriptor_Interface_AC_t Audio_ControlInterface_SPC;
// MIDI Audio Streaming Interface
USB_Descriptor_Interface_t Audio_StreamInterface;
USB_MIDI_Descriptor_AudioInterface_AS_t Audio_StreamInterface_SPC;
USB_MIDI_Descriptor_InputJack_t MIDI_In_Jack_Emb;
USB_MIDI_Descriptor_InputJack_t MIDI_In_Jack_Ext;
USB_MIDI_Descriptor_OutputJack_t MIDI_Out_Jack_Emb;
USB_MIDI_Descriptor_OutputJack_t MIDI_Out_Jack_Ext;
USB_Audio_Descriptor_StreamEndpoint_Std_t MIDI_In_Jack_Endpoint;
USB_MIDI_Descriptor_Jack_Endpoint_t MIDI_In_Jack_Endpoint_SPC;
USB_Audio_Descriptor_StreamEndpoint_Std_t MIDI_Out_Jack_Endpoint;
USB_MIDI_Descriptor_Jack_Endpoint_t MIDI_Out_Jack_Endpoint_SPC;
#endif
} USB_Descriptor_Configuration_t;
@ -115,9 +134,15 @@ typedef struct
# define NKRO_INTERFACE CONSOLE_INTERFACE
#endif
#ifdef MIDI_ENABLE
# define MIDI_INTERFACE (NKRO_INTERFACE + 1)
# define MIDI2_INTERFACE (NKRO_INTERFACE + 2)
#else
# define MIDI2_INTERFACE NKRO_INTERFACE
#endif
/* nubmer of interfaces */
#define TOTAL_INTERFACES (NKRO_INTERFACE + 1)
#define TOTAL_INTERFACES MIDI2_INTERFACE + 1
// Endopoint number and size
@ -150,12 +175,21 @@ typedef struct
# endif
#endif
#ifdef MIDI_ENABLE
# define MIDI_STREAM_IN_EPNUM (NKRO_IN_EPNUM + 1)
# define MIDI_STREAM_OUT_EPNUM (NKRO_IN_EPNUM + 1)
#else
# define MIDI_STREAM_IN_EPNUM NKRO_IN_EPNUM
# define MIDI_STREAM_OUT_EPNUM NKRO_IN_EPNUM
#endif
#define KEYBOARD_EPSIZE 8
#define MOUSE_EPSIZE 8
#define EXTRAKEY_EPSIZE 8
#define CONSOLE_EPSIZE 32
#define NKRO_EPSIZE 16
#define MIDI_STREAM_EPSIZE 64
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,

@ -52,6 +52,7 @@
#include "descriptor.h"
#include "lufa.h"
uint8_t keyboard_idle = 0;
uint8_t keyboard_protocol = 1;
static uint8_t keyboard_led_stats = 0;
@ -65,14 +66,60 @@ static void send_keyboard(report_keyboard_t *report);
static void send_mouse(report_mouse_t *report);
static void send_system(uint16_t data);
static void send_consumer(uint16_t data);
#ifdef MIDI_ENABLE
void usb_send_func(MidiDevice * device, uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2);
void usb_get_midi(MidiDevice * device);
void midi_usb_init(MidiDevice * device);
#endif
host_driver_t lufa_driver = {
keyboard_leds,
send_keyboard,
send_mouse,
send_system,
send_consumer
send_consumer,
#ifdef MIDI_ENABLE
usb_send_func,
usb_get_midi,
midi_usb_init,
#endif
};
void SetupHardware(void);
USB_ClassInfo_MIDI_Device_t USB_MIDI_Interface =
{
.Config =
{
.StreamingInterfaceNumber = MIDI2_INTERFACE,
.DataINEndpoint =
{
.Address = (ENDPOINT_DIR_IN | MIDI_STREAM_IN_EPNUM),
.Size = MIDI_STREAM_EPSIZE,
.Banks = 1,
},
.DataOUTEndpoint =
{
.Address = (ENDPOINT_DIR_OUT | MIDI_STREAM_OUT_EPNUM),
.Size = MIDI_STREAM_EPSIZE,
.Banks = 1,
},
},
};
#define SYSEX_START_OR_CONT 0x40
#define SYSEX_ENDS_IN_1 0x50
#define SYSEX_ENDS_IN_2 0x60
#define SYSEX_ENDS_IN_3 0x70
#define SYS_COMMON_1 0x50
#define SYS_COMMON_2 0x20
#define SYS_COMMON_3 0x30
/*******************************************************************************
* Console
@ -240,8 +287,20 @@ void EVENT_USB_Device_ConfigurationChanged(void)
ConfigSuccess &= ENDPOINT_CONFIG(NKRO_IN_EPNUM, EP_TYPE_INTERRUPT, ENDPOINT_DIR_IN,
NKRO_EPSIZE, ENDPOINT_BANK_SINGLE);
#endif
#ifdef MIDI_ENABLE
ConfigSuccess &= MIDI_Device_ConfigureEndpoints(&USB_MIDI_Interface);
// ConfigSuccess &= ENDPOINT_CONFIG(MIDI_STREAM_IN_EPNUM, EP_TYPE_BULK, ENDPOINT_DIR_IN,
// MIDI_STREAM_EPSIZE, ENDPOINT_BANK_SINGLE);
// ConfigSuccess &= ENDPOINT_CONFIG(MIDI_STREAM_OUT_EPNUM, EP_TYPE_BULK, ENDPOINT_DIR_OUT,
// MIDI_STREAM_EPSIZE, ENDPOINT_BANK_SINGLE);
#endif
}
/*
Appendix G: HID Request Support Requirements
@ -263,6 +322,8 @@ void EVENT_USB_Device_ControlRequest(void)
uint8_t* ReportData = NULL;
uint8_t ReportSize = 0;
MIDI_Device_ProcessControlRequest(&USB_MIDI_Interface);
/* Handle HID Class specific requests */
switch (USB_ControlRequest.bRequest)
{
@ -541,10 +602,117 @@ int8_t sendchar(uint8_t c)
#endif
#ifdef MIDI_ENABLE
void usb_send_func(MidiDevice * device, uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2) {
MIDI_EventPacket_t event;
event.Data1 = byte0;
event.Data2 = byte1;
event.Data3 = byte2;
uint8_t cable = 0;
// Endpoint_SelectEndpoint(MIDI_STREAM_IN_EPNUM);
//if the length is undefined we assume it is a SYSEX message
if (midi_packet_length(byte0) == UNDEFINED) {
switch(cnt) {
case 3:
if (byte2 == SYSEX_END)
event.Event = MIDI_EVENT(cable, SYSEX_ENDS_IN_3);
else
event.Event = MIDI_EVENT(cable, SYSEX_START_OR_CONT);
break;
case 2:
if (byte1 == SYSEX_END)
event.Event = MIDI_EVENT(cable, SYSEX_ENDS_IN_2);
else
event.Event = MIDI_EVENT(cable, SYSEX_START_OR_CONT);
break;
case 1:
if (byte0 == SYSEX_END)
event.Event = MIDI_EVENT(cable, SYSEX_ENDS_IN_1);
else
event.Event = MIDI_EVENT(cable, SYSEX_START_OR_CONT);
break;
default:
return; //invalid cnt
}
} else {
//deal with 'system common' messages
//TODO are there any more?
switch(byte0 & 0xF0){
case MIDI_SONGPOSITION:
event.Event = MIDI_EVENT(cable, SYS_COMMON_3);
break;
case MIDI_SONGSELECT:
case MIDI_TC_QUARTERFRAME:
event.Event = MIDI_EVENT(cable, SYS_COMMON_2);
break;
default:
event.Event = MIDI_EVENT(cable, byte0);
break;
}
}
// Endpoint_Write_Stream_LE(&event, sizeof(event), NULL);
// Endpoint_ClearIN();
MIDI_Device_SendEventPacket(&USB_MIDI_Interface, &event);
MIDI_Device_Flush(&USB_MIDI_Interface);
MIDI_Device_USBTask(&USB_MIDI_Interface);
USB_USBTask();
}
void usb_get_midi(MidiDevice * device) {
MIDI_EventPacket_t event;
while (MIDI_Device_ReceiveEventPacket(&USB_MIDI_Interface, &event)) {
midi_packet_length_t length = midi_packet_length(event.Data1);
uint8_t input[3];
input[0] = event.Data1;
input[1] = event.Data2;
input[2] = event.Data3;
if (length == UNDEFINED) {
//sysex
if (event.Event == MIDI_EVENT(0, SYSEX_START_OR_CONT) || event.Event == MIDI_EVENT(0, SYSEX_ENDS_IN_3)) {
length = 3;
} else if (event.Event == MIDI_EVENT(0, SYSEX_ENDS_IN_2)) {
length = 2;
} else if(event.Event == MIDI_EVENT(0, SYSEX_ENDS_IN_1)) {
length = 1;
} else {
//XXX what to do?
}
}
//pass the data to the device input function
if (length != UNDEFINED)
midi_device_input(device, length, input);
}
MIDI_Device_USBTask(&USB_MIDI_Interface);
USB_USBTask();
}
void midi_usb_init(MidiDevice * device){
midi_device_init(device);
midi_device_set_send_func(device, usb_send_func);
midi_device_set_pre_input_process_func(device, usb_get_midi);
SetupHardware();
sei();
}
#endif
/*******************************************************************************
* main
******************************************************************************/
static void SetupHardware(void)
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
@ -563,12 +731,41 @@ static void SetupHardware(void)
print_set_sendchar(sendchar);
}
#ifdef MIDI_ENABLE
void fallthrough_callback(MidiDevice * device,
uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2);
void cc_callback(MidiDevice * device,
uint8_t chan, uint8_t num, uint8_t val);
void sysex_callback(MidiDevice * device,
uint16_t start, uint8_t length, uint8_t * data);
#endif
int main(void) __attribute__ ((weak));
int main(void)
{
//setup the device
#ifdef MIDI_ENABLE
midi_device_init(&midi_device);
midi_device_set_send_func(&midi_device, usb_send_func);
midi_device_set_pre_input_process_func(&midi_device, usb_get_midi);
#endif
SetupHardware();
sei();
#ifdef MIDI_ENABLE
midi_register_fallthrough_callback(&midi_device, fallthrough_callback);
midi_register_cc_callback(&midi_device, cc_callback);
midi_register_sysex_callback(&midi_device, sysex_callback);
midi_send_cc(&midi_device, 0, 1, 2);
midi_send_cc(&midi_device, 15, 1, 0);
midi_send_noteon(&midi_device, 0, 64, 127);
midi_send_noteoff(&midi_device, 0, 64, 127);
#endif
/* wait for USB startup & debug output */
while (USB_DeviceState != DEVICE_STATE_Configured) {
#if defined(INTERRUPT_CONTROL_ENDPOINT)
@ -598,8 +795,33 @@ int main(void)
keyboard_task();
#ifdef MIDI_ENABLE
midi_device_process(&midi_device);
#endif
#if !defined(INTERRUPT_CONTROL_ENDPOINT)
USB_USBTask();
#endif
}
}
#ifdef MIDI_ENABLE
//echo data back
void fallthrough_callback(MidiDevice * device,
uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2){
//pass the data back to the device, using the general purpose send data
//function, any bytes after cnt are ignored
}
void cc_callback(MidiDevice * device,
uint8_t chan, uint8_t num, uint8_t val) {
//sending it back on the next channel
midi_send_cc(device, (chan + 1) % 16, num, val);
}
void sysex_callback(MidiDevice * device,
uint16_t start, uint8_t length, uint8_t * data) {
for (int i = 0; i < length; i++)
midi_send_cc(device, 15, 0x7F & data[i], 0x7F & (start + i));
}
#endif

@ -48,7 +48,7 @@
#include <LUFA/Version.h>
#include <LUFA/Drivers/USB/USB.h>
#include "host.h"
#include "midi/midi.h"
#ifdef __cplusplus
extern "C" {
@ -66,6 +66,7 @@ typedef struct {
uint16_t usage;
} __attribute__ ((packed)) report_extra_t;
MidiDevice midi_device;
#if LUFA_VERSION_INTEGER < 0x120730
/* old API 120219 */

@ -0,0 +1,93 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief LUFA Library Configuration Header File
*
* This header file is used to configure LUFA's compile time options,
* as an alternative to the compile time constants supplied through
* a makefile.
*
* For information on what each token does, refer to the LUFA
* manual section "Summary of Compile Tokens".
*/
#ifndef _LUFA_CONFIG_H_
#define _LUFA_CONFIG_H_
#if (ARCH == ARCH_AVR8)
/* Non-USB Related Configuration Tokens: */
// #define DISABLE_TERMINAL_CODES
/* USB Class Driver Related Tokens: */
// #define HID_HOST_BOOT_PROTOCOL_ONLY
// #define HID_STATETABLE_STACK_DEPTH {Insert Value Here}
// #define HID_USAGE_STACK_DEPTH {Insert Value Here}
// #define HID_MAX_COLLECTIONS {Insert Value Here}
// #define HID_MAX_REPORTITEMS {Insert Value Here}
// #define HID_MAX_REPORT_IDS {Insert Value Here}
// #define NO_CLASS_DRIVER_AUTOFLUSH
/* General USB Driver Related Tokens: */
// #define ORDERED_EP_CONFIG
#define USE_STATIC_OPTIONS (USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)
#define USB_DEVICE_ONLY
// #define USB_HOST_ONLY
// #define USB_STREAM_TIMEOUT_MS {Insert Value Here}
// #define NO_LIMITED_CONTROLLER_CONNECT
// #define NO_SOF_EVENTS
/* USB Device Mode Driver Related Tokens: */
// #define USE_RAM_DESCRIPTORS
#define USE_FLASH_DESCRIPTORS
// #define USE_EEPROM_DESCRIPTORS
// #define NO_INTERNAL_SERIAL
#define FIXED_CONTROL_ENDPOINT_SIZE 8
// #define DEVICE_STATE_AS_GPIOR {Insert Value Here}
#define FIXED_NUM_CONFIGURATIONS 1
// #define CONTROL_ONLY_DEVICE
// #define INTERRUPT_CONTROL_ENDPOINT
// #define NO_DEVICE_REMOTE_WAKEUP
// #define NO_DEVICE_SELF_POWER
/* USB Host Mode Driver Related Tokens: */
// #define HOST_STATE_AS_GPIOR {Insert Value Here}
// #define USB_HOST_TIMEOUT_MS {Insert Value Here}
// #define HOST_DEVICE_SETTLE_DELAY_MS {Insert Value Here}
// #define NO_AUTO_VBUS_MANAGEMENT
// #define INVERTED_VBUS_ENABLE_LINE
#else
#error Unsupported architecture for this LUFA configuration file.
#endif
#endif

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

@ -0,0 +1,65 @@
//this is a single reader [maybe multiple writer?] byte queue
//Copyright 2008 Alex Norman
//writen by Alex Norman
//
//This file is part of avr-bytequeue.
//
//avr-bytequeue is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-bytequeue is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-bytequeue. If not, see <http://www.gnu.org/licenses/>.
#include "bytequeue.h"
#include "interrupt_setting.h"
void bytequeue_init(byteQueue_t * queue, uint8_t * dataArray, byteQueueIndex_t arrayLen){
queue->length = arrayLen;
queue->data = dataArray;
queue->start = queue->end = 0;
}
bool bytequeue_enqueue(byteQueue_t * queue, uint8_t item){
interrupt_setting_t setting = store_and_clear_interrupt();
//full
if(((queue->end + 1) % queue->length) == queue->start){
restore_interrupt_setting(setting);
return false;
} else {
queue->data[queue->end] = item;
queue->end = (queue->end + 1) % queue->length;
restore_interrupt_setting(setting);
return true;
}
}
byteQueueIndex_t bytequeue_length(byteQueue_t * queue){
byteQueueIndex_t len;
interrupt_setting_t setting = store_and_clear_interrupt();
if(queue->end >= queue->start)
len = queue->end - queue->start;
else
len = (queue->length - queue->start) + queue->end;
restore_interrupt_setting(setting);
return len;
}
//we don't need to avoid interrupts if there is only one reader
uint8_t bytequeue_get(byteQueue_t * queue, byteQueueIndex_t index){
return queue->data[(queue->start + index) % queue->length];
}
//we just update the start index to remove elements
void bytequeue_remove(byteQueue_t * queue, byteQueueIndex_t numToRemove){
interrupt_setting_t setting = store_and_clear_interrupt();
queue->start = (queue->start + numToRemove) % queue->length;
restore_interrupt_setting(setting);
}

@ -0,0 +1,59 @@
//this is a single reader [maybe multiple writer?] byte queue
//Copyright 2008 Alex Norman
//writen by Alex Norman
//
//This file is part of avr-bytequeue.
//
//avr-bytequeue is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-bytequeue is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-bytequeue. If not, see <http://www.gnu.org/licenses/>.
#ifndef BYTEQUEUE_H
#define BYTEQUEUE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <inttypes.h>
#include <stdbool.h>
typedef uint8_t byteQueueIndex_t;
typedef struct {
byteQueueIndex_t start;
byteQueueIndex_t end;
byteQueueIndex_t length;
uint8_t * data;
} byteQueue_t;
//you must have a queue, an array of data which the queue will use, and the length of that array
void bytequeue_init(byteQueue_t * queue, uint8_t * dataArray, byteQueueIndex_t arrayLen);
//add an item to the queue, returns false if the queue is full
bool bytequeue_enqueue(byteQueue_t * queue, uint8_t item);
//get the length of the queue
byteQueueIndex_t bytequeue_length(byteQueue_t * queue);
//this grabs data at the index given [starting at queue->start]
uint8_t bytequeue_get(byteQueue_t * queue, byteQueueIndex_t index);
//update the index in the queue to reflect data that has been dealt with
void bytequeue_remove(byteQueue_t * queue, byteQueueIndex_t numToRemove);
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,36 @@
//Copyright 20010 Alex Norman
//writen by Alex Norman
//
//This file is part of avr-bytequeue.
//
//avr-bytequeue is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-bytequeue is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-bytequeue. If not, see <http://www.gnu.org/licenses/>.
//AVR specific code
//should be able to port to other systems by simply providing chip specific
//implementations of the typedef and these functions
#include "interrupt_setting.h"
#include <avr/interrupt.h>
interrupt_setting_t store_and_clear_interrupt(void) {
uint8_t sreg = SREG;
cli();
return sreg;
}
void restore_interrupt_setting(interrupt_setting_t setting) {
SREG = setting;
}

@ -0,0 +1,39 @@
//Copyright 20010 Alex Norman
//writen by Alex Norman
//
//This file is part of avr-bytequeue.
//
//avr-bytequeue is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-bytequeue is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-bytequeue. If not, see <http://www.gnu.org/licenses/>.
#ifndef INTERRUPT_SETTING_H
#define INTERRUPT_SETTING_H
#ifdef __cplusplus
extern "C" {
#endif
#include <inttypes.h>
//AVR specific typedef
typedef uint8_t interrupt_setting_t;
interrupt_setting_t store_and_clear_interrupt(void);
void restore_interrupt_setting(interrupt_setting_t setting);
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,277 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
#include "midi.h"
#include <string.h> //for memcpy
#define MIN(x,y) (((x) < (y)) ? (x) : (y))
#ifndef NULL
#define NULL 0
#endif
bool midi_is_statusbyte(uint8_t theByte){
return (bool)(theByte & MIDI_STATUSMASK);
}
bool midi_is_realtime(uint8_t theByte){
return (theByte >= MIDI_CLOCK);
}
midi_packet_length_t midi_packet_length(uint8_t status){
switch(status & 0xF0){
case MIDI_CC:
case MIDI_NOTEON:
case MIDI_NOTEOFF:
case MIDI_AFTERTOUCH:
case MIDI_PITCHBEND:
return THREE;
case MIDI_PROGCHANGE:
case MIDI_CHANPRESSURE:
case MIDI_SONGSELECT:
return TWO;
case 0xF0:
switch(status) {
case MIDI_CLOCK:
case MIDI_TICK:
case MIDI_START:
case MIDI_CONTINUE:
case MIDI_STOP:
case MIDI_ACTIVESENSE:
case MIDI_RESET:
case MIDI_TUNEREQUEST:
return ONE;
case MIDI_SONGPOSITION:
return THREE;
case MIDI_TC_QUARTERFRAME:
case MIDI_SONGSELECT:
return TWO;
case SYSEX_END:
case SYSEX_BEGIN:
default:
return UNDEFINED;
}
default:
return UNDEFINED;
}
}
void midi_send_cc(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t val){
//CC Status: 0xB0 to 0xBF where the low nibble is the MIDI channel.
//CC Data: Controller Num, Controller Val
device->send_func(device, 3,
MIDI_CC | (chan & MIDI_CHANMASK),
num & 0x7F,
val & 0x7F);
}
void midi_send_noteon(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t vel){
//Note Data: Note Num, Note Velocity
device->send_func(device, 3,
MIDI_NOTEON | (chan & MIDI_CHANMASK),
num & 0x7F,
vel & 0x7F);
}
void midi_send_noteoff(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t vel){
//Note Data: Note Num, Note Velocity
device->send_func(device, 3,
MIDI_NOTEOFF | (chan & MIDI_CHANMASK),
num & 0x7F,
vel & 0x7F);
}
void midi_send_aftertouch(MidiDevice * device, uint8_t chan, uint8_t note_num, uint8_t amt){
device->send_func(device, 3,
MIDI_AFTERTOUCH | (chan & MIDI_CHANMASK),
note_num & 0x7F,
amt & 0x7F);
}
//XXX does this work right?
//amt in range -0x2000, 0x1fff
//uAmt should be in range..
//0x0000 to 0x3FFF
void midi_send_pitchbend(MidiDevice * device, uint8_t chan, int16_t amt){
uint16_t uAmt;
//check range
if(amt > 0x1fff){
uAmt = 0x3FFF;
} else if(amt < -0x2000){
uAmt = 0;
} else {
uAmt = amt + 0x2000;
}
device->send_func(device, 3,
MIDI_PITCHBEND | (chan & MIDI_CHANMASK),
uAmt & 0x7F,
(uAmt >> 7) & 0x7F);
}
void midi_send_programchange(MidiDevice * device, uint8_t chan, uint8_t num){
device->send_func(device, 2,
MIDI_PROGCHANGE | (chan & MIDI_CHANMASK),
num & 0x7F,
0);
}
void midi_send_channelpressure(MidiDevice * device, uint8_t chan, uint8_t amt){
device->send_func(device, 2,
MIDI_CHANPRESSURE | (chan & MIDI_CHANMASK),
amt & 0x7F,
0);
}
void midi_send_clock(MidiDevice * device){
device->send_func(device, 1, MIDI_CLOCK, 0, 0);
}
void midi_send_tick(MidiDevice * device){
device->send_func(device, 1, MIDI_TICK, 0, 0);
}
void midi_send_start(MidiDevice * device){
device->send_func(device, 1, MIDI_START, 0, 0);
}
void midi_send_continue(MidiDevice * device){
device->send_func(device, 1, MIDI_CONTINUE, 0, 0);
}
void midi_send_stop(MidiDevice * device){
device->send_func(device, 1, MIDI_STOP, 0, 0);
}
void midi_send_activesense(MidiDevice * device){
device->send_func(device, 1, MIDI_ACTIVESENSE, 0, 0);
}
void midi_send_reset(MidiDevice * device){
device->send_func(device, 1, MIDI_RESET, 0, 0);
}
void midi_send_tcquarterframe(MidiDevice * device, uint8_t time){
device->send_func(device, 2,
MIDI_TC_QUARTERFRAME,
time & 0x7F,
0);
}
//XXX is this right?
void midi_send_songposition(MidiDevice * device, uint16_t pos){
device->send_func(device, 3,
MIDI_SONGPOSITION,
pos & 0x7F,
(pos >> 7) & 0x7F);
}
void midi_send_songselect(MidiDevice * device, uint8_t song){
device->send_func(device, 2,
MIDI_SONGSELECT,
song & 0x7F,
0);
}
void midi_send_tunerequest(MidiDevice * device){
device->send_func(device, 1, MIDI_TUNEREQUEST, 0, 0);
}
void midi_send_byte(MidiDevice * device, uint8_t b){
device->send_func(device, 1, b, 0, 0);
}
void midi_send_data(MidiDevice * device, uint16_t count, uint8_t byte0, uint8_t byte1, uint8_t byte2){
//ensure that the count passed along is always 3 or lower
if (count > 3) {
//TODO how to do this correctly?
}
device->send_func(device, count, byte0, byte1, byte2);
}
void midi_send_array(MidiDevice * device, uint16_t count, uint8_t * array) {
uint16_t i;
for (i = 0; i < count; i += 3) {
uint8_t b[3] = { 0, 0, 0 };
uint16_t to_send = count - i;
to_send = (to_send > 3) ? 3 : to_send;
memcpy(b, array + i, to_send);
midi_send_data(device, to_send, b[0], b[1], b[2]);
}
}
void midi_register_cc_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_cc_callback = func;
}
void midi_register_noteon_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_noteon_callback = func;
}
void midi_register_noteoff_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_noteoff_callback = func;
}
void midi_register_aftertouch_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_aftertouch_callback = func;
}
void midi_register_pitchbend_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_pitchbend_callback = func;
}
void midi_register_songposition_callback(MidiDevice * device, midi_three_byte_func_t func){
device->input_songposition_callback = func;
}
void midi_register_progchange_callback(MidiDevice * device, midi_two_byte_func_t func) {
device->input_progchange_callback = func;
}
void midi_register_chanpressure_callback(MidiDevice * device, midi_two_byte_func_t func) {
device->input_chanpressure_callback = func;
}
void midi_register_songselect_callback(MidiDevice * device, midi_two_byte_func_t func) {
device->input_songselect_callback = func;
}
void midi_register_tc_quarterframe_callback(MidiDevice * device, midi_two_byte_func_t func) {
device->input_tc_quarterframe_callback = func;
}
void midi_register_realtime_callback(MidiDevice * device, midi_one_byte_func_t func){
device->input_realtime_callback = func;
}
void midi_register_tunerequest_callback(MidiDevice * device, midi_one_byte_func_t func){
device->input_tunerequest_callback = func;
}
void midi_register_sysex_callback(MidiDevice * device, midi_sysex_func_t func) {
device->input_sysex_callback = func;
}
void midi_register_fallthrough_callback(MidiDevice * device, midi_var_byte_func_t func){
device->input_fallthrough_callback = func;
}
void midi_register_catchall_callback(MidiDevice * device, midi_var_byte_func_t func){
device->input_catchall_callback = func;
}

@ -0,0 +1,498 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
/**
* @file
* @brief The main midi functions
*
* This file includes all of the functions you need to set up and process a
* midi device, send midi, and register midi callbacks.
*
*/
#ifndef XNOR_MIDI_H
#define XNOR_MIDI_H
#ifdef __cplusplus
extern "C" {
#endif
#include "midi_device.h"
#include "midi_function_types.h"
/**
* @defgroup midi_device_setup_process Device initialization and processing
* @brief These are method that you must use to initialize and run a device
*
* @{
*/
/**
* @brief Initialize a device
*
* You must call this before using the device in question.
*
* @param device the device to initialize
*/
void midi_device_init(MidiDevice * device); // [implementation in midi_device.c]
/**
* @brief Process input data
*
* This method drives the input processing, you must call this method frequently
* if you expect to have your input callbacks called.
*
* @param device the device to process
*/
void midi_device_process(MidiDevice * device); // [implementation in midi_device.c]
/**@}*/
/**
* @defgroup send_functions Midi send functions
* @brief These are the functions you use to send midi data through a device.
* @{
*/
/**
* @brief Send a control change message (cc) via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param num the cc num
* @param val the value of that cc num
*/
void midi_send_cc(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t val);
/**
* @brief Send a note on message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param num the note number
* @param vel the note velocity
*/
void midi_send_noteon(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t vel);
/**
* @brief Send a note off message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param num the note number
* @param vel the note velocity
*/
void midi_send_noteoff(MidiDevice * device, uint8_t chan, uint8_t num, uint8_t vel);
/**
* @brief Send an after touch message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param note_num the note number
* @param amt the after touch amount
*/
void midi_send_aftertouch(MidiDevice * device, uint8_t chan, uint8_t note_num, uint8_t amt);
/**
* @brief Send a pitch bend message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param amt the bend amount range: -8192..8191, 0 means no bend
*/
void midi_send_pitchbend(MidiDevice * device, uint8_t chan, int16_t amt); //range -8192, 8191
/**
* @brief Send a program change message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param num the program to change to
*/
void midi_send_programchange(MidiDevice * device, uint8_t chan, uint8_t num);
/**
* @brief Send a channel pressure message via the given device.
*
* @param device the device to use for sending
* @param chan the channel to send on, 0-15
* @param amt the amount of channel pressure
*/
void midi_send_channelpressure(MidiDevice * device, uint8_t chan, uint8_t amt);
/**
* @brief Send a clock message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_clock(MidiDevice * device);
/**
* @brief Send a tick message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_tick(MidiDevice * device);
/**
* @brief Send a start message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_start(MidiDevice * device);
/**
* @brief Send a continue message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_continue(MidiDevice * device);
/**
* @brief Send a stop message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_stop(MidiDevice * device);
/**
* @brief Send an active sense message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_activesense(MidiDevice * device);
/**
* @brief Send a reset message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_reset(MidiDevice * device);
/**
* @brief Send a tc quarter frame message via the given device.
*
* @param device the device to use for sending
* @param time the time of this quarter frame, range 0..16383
*/
void midi_send_tcquarterframe(MidiDevice * device, uint8_t time);
/**
* @brief Send a song position message via the given device.
*
* @param device the device to use for sending
* @param pos the song position
*/
void midi_send_songposition(MidiDevice * device, uint16_t pos);
/**
* @brief Send a song select message via the given device.
*
* @param device the device to use for sending
* @param song the song to select
*/
void midi_send_songselect(MidiDevice * device, uint8_t song);
/**
* @brief Send a tune request message via the given device.
*
* @param device the device to use for sending
*/
void midi_send_tunerequest(MidiDevice * device);
/**
* @brief Send a byte via the given device.
*
* This is a generic method for sending data via the given midi device.
* This would be useful for sending sysex data or messages that are not
* implemented in this API, if there are any. Please contact the author
* if you find some so we can add them.
*
* @param device the device to use for sending
* @param b the byte to send
*/
void midi_send_byte(MidiDevice * device, uint8_t b);
/**
* @brief Send up to 3 bytes of data
*
* % 4 is applied to count so that you can use this to pass sysex through
*
* @param device the device to use for sending
* @param count the count of bytes to send, %4 is applied
* @param byte0 the first byte
* @param byte1 the second byte, ignored if cnt % 4 != 2
* @param byte2 the third byte, ignored if cnt % 4 != 3
*/
void midi_send_data(MidiDevice * device, uint16_t count, uint8_t byte0, uint8_t byte1, uint8_t byte2);
/**
* @brief Send an array of formatted midi data.
*
* Can be used for sysex.
*
* @param device the device to use for sending
* @param count the count of bytes to send
* @param array the array of bytes
*/
void midi_send_array(MidiDevice * device, uint16_t count, uint8_t * array);
/**@}*/
/**
* @defgroup input_callback_reg Input callback registration functions
*
* @brief These are the functions you use to register your input callbacks.
*
* The functions are called when the appropriate midi message is matched on the
* associated device's input.
*
* @{
*/
//three byte funcs
/**
* @brief Register a control change message (cc) callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_cc_callback(MidiDevice * device, midi_three_byte_func_t func);
/**
* @brief Register a note on callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_noteon_callback(MidiDevice * device, midi_three_byte_func_t func);
/**
* @brief Register a note off callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_noteoff_callback(MidiDevice * device, midi_three_byte_func_t func);
/**
* @brief Register an after touch callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_aftertouch_callback(MidiDevice * device, midi_three_byte_func_t func);
/**
* @brief Register a pitch bend callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_pitchbend_callback(MidiDevice * device, midi_three_byte_func_t func);
/**
* @brief Register a song position callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_songposition_callback(MidiDevice * device, midi_three_byte_func_t func);
//two byte funcs
/**
* @brief Register a program change callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_progchange_callback(MidiDevice * device, midi_two_byte_func_t func);
/**
* @brief Register a channel pressure callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_chanpressure_callback(MidiDevice * device, midi_two_byte_func_t func);
/**
* @brief Register a song select callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_songselect_callback(MidiDevice * device, midi_two_byte_func_t func);
/**
* @brief Register a tc quarter frame callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_tc_quarterframe_callback(MidiDevice * device, midi_two_byte_func_t func);
//one byte funcs
/**
* @brief Register a realtime callback.
*
* The callback will be called for all of the real time message types.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_realtime_callback(MidiDevice * device, midi_one_byte_func_t func);
/**
* @brief Register a tune request callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_tunerequest_callback(MidiDevice * device, midi_one_byte_func_t func);
/**
* @brief Register a sysex callback.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_sysex_callback(MidiDevice * device, midi_sysex_func_t func);
/**
* @brief Register fall through callback.
*
* This is only called if a more specific callback is not matched and called.
* For instance, if you don't register a note on callback but you get a note on message
* the fall through callback will be called, if it is registered.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_fallthrough_callback(MidiDevice * device, midi_var_byte_func_t func);
/**
* @brief Register a catch all callback.
*
* If registered, the catch all callback is called for every message that is
* matched, even if a more specific or the fallthrough callback is registered.
*
* @param device the device associate with
* @param func the callback function to register
*/
void midi_register_catchall_callback(MidiDevice * device, midi_var_byte_func_t func);
/**@}*/
/**
* @defgroup midi_util Device independent utility functions.
* @{
*/
/**
* \enum midi_packet_length_t
*
* An enumeration of the possible packet length values.
*/
typedef enum {
UNDEFINED = 0,
ONE = 1,
TWO = 2,
THREE = 3} midi_packet_length_t;
/**
* @brief Test to see if the byte given is a status byte
* @param theByte the byte to test
* @return true if the byte given is a midi status byte
*/
bool midi_is_statusbyte(uint8_t theByte);
/**
* @brief Test to see if the byte given is a realtime message
* @param theByte the byte to test
* @return true if it is a realtime message, false otherwise
*/
bool midi_is_realtime(uint8_t theByte);
/**
* @brief Find the length of the packet associated with the status byte given
* @param status the status byte
* @return the length of the packet, will return UNDEFINED if the byte is not
* a status byte or if it is a sysex status byte
*/
midi_packet_length_t midi_packet_length(uint8_t status);
/**@}*/
/**
* @defgroup defines Midi status and miscellaneous utility #defines
*
* @{
*/
#define SYSEX_BEGIN 0xF0
#define SYSEX_END 0xF7
//if you and this with a byte and you get anything non-zero
//it is a status message
#define MIDI_STATUSMASK 0x80
//if you and this with a status message that contains channel info,
//you'll get the channel
#define MIDI_CHANMASK 0x0F
#define MIDI_CC 0xB0
#define MIDI_NOTEON 0x90
#define MIDI_NOTEOFF 0x80
#define MIDI_AFTERTOUCH 0xA0
#define MIDI_PITCHBEND 0xE0
#define MIDI_PROGCHANGE 0xC0
#define MIDI_CHANPRESSURE 0xD0
//midi realtime
#define MIDI_CLOCK 0xF8
#define MIDI_TICK 0xF9
#define MIDI_START 0xFA
#define MIDI_CONTINUE 0xFB
#define MIDI_STOP 0xFC
#define MIDI_ACTIVESENSE 0xFE
#define MIDI_RESET 0xFF
#define MIDI_TC_QUARTERFRAME 0xF1
#define MIDI_SONGPOSITION 0xF2
#define MIDI_SONGSELECT 0xF3
#define MIDI_TUNEREQUEST 0xF6
//This ID is for educational or development use only
#define SYSEX_EDUMANUFID 0x7D
/**@}*/
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,291 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
#include "midi_device.h"
#include "midi.h"
#ifndef NULL
#define NULL 0
#endif
//forward declarations, internally used to call the callbacks
void midi_input_callbacks(MidiDevice * device, uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2);
void midi_process_byte(MidiDevice * device, uint8_t input);
void midi_device_init(MidiDevice * device){
device->input_state = IDLE;
device->input_count = 0;
bytequeue_init(&device->input_queue, device->input_queue_data, MIDI_INPUT_QUEUE_LENGTH);
//three byte funcs
device->input_cc_callback = NULL;
device->input_noteon_callback = NULL;
device->input_noteoff_callback = NULL;
device->input_aftertouch_callback = NULL;
device->input_pitchbend_callback = NULL;
device->input_songposition_callback = NULL;
//two byte funcs
device->input_progchange_callback = NULL;
device->input_chanpressure_callback = NULL;
device->input_songselect_callback = NULL;
device->input_tc_quarterframe_callback = NULL;
//one byte funcs
device->input_realtime_callback = NULL;
device->input_tunerequest_callback = NULL;
//var byte functions
device->input_sysex_callback = NULL;
device->input_fallthrough_callback = NULL;
device->input_catchall_callback = NULL;
device->pre_input_process_callback = NULL;
}
void midi_device_input(MidiDevice * device, uint8_t cnt, uint8_t * input) {
uint8_t i;
for (i = 0; i < cnt; i++)
bytequeue_enqueue(&device->input_queue, input[i]);
}
void midi_device_set_send_func(MidiDevice * device, midi_var_byte_func_t send_func){
device->send_func = send_func;
}
void midi_device_set_pre_input_process_func(MidiDevice * device, midi_no_byte_func_t pre_process_func){
device->pre_input_process_callback = pre_process_func;
}
void midi_device_process(MidiDevice * device) {
//call the pre_input_process_callback if there is one
if(device->pre_input_process_callback)
device->pre_input_process_callback(device);
//pull stuff off the queue and process
byteQueueIndex_t len = bytequeue_length(&device->input_queue);
uint16_t i;
//TODO limit number of bytes processed?
for(i = 0; i < len; i++) {
uint8_t val = bytequeue_get(&device->input_queue, 0);
midi_process_byte(device, val);
bytequeue_remove(&device->input_queue, 1);
}
}
void midi_process_byte(MidiDevice * device, uint8_t input) {
if (midi_is_realtime(input)) {
//call callback, store and restore state
input_state_t state = device->input_state;
device->input_state = ONE_BYTE_MESSAGE;
midi_input_callbacks(device, 1, input, 0, 0);
device->input_state = state;
} else if (midi_is_statusbyte(input)) {
//store the byte
if (device->input_state != SYSEX_MESSAGE) {
device->input_buffer[0] = input;
device->input_count = 1;
}
switch (midi_packet_length(input)) {
case ONE:
device->input_state = ONE_BYTE_MESSAGE;;
midi_input_callbacks(device, 1, input, 0, 0);
device->input_state = IDLE;
break;
case TWO:
device->input_state = TWO_BYTE_MESSAGE;
break;
case THREE:
device->input_state = THREE_BYTE_MESSAGE;
break;
case UNDEFINED:
switch(input) {
case SYSEX_BEGIN:
device->input_state = SYSEX_MESSAGE;
device->input_buffer[0] = input;
device->input_count = 1;
break;
case SYSEX_END:
//send what is left in the input buffer, set idle
device->input_buffer[device->input_count % 3] = input;
device->input_count += 1;
//call the callback
midi_input_callbacks(device, device->input_count,
device->input_buffer[0], device->input_buffer[1], device->input_buffer[2]);
device->input_state = IDLE;
break;
default:
device->input_state = IDLE;
device->input_count = 0;
}
break;
default:
device->input_state = IDLE;
device->input_count = 0;
break;
}
} else {
if (device->input_state != IDLE) {
//store the byte
device->input_buffer[device->input_count % 3] = input;
//increment count
uint16_t prev = device->input_count;
device->input_count += 1;
switch(prev % 3) {
case 2:
//call callback
midi_input_callbacks(device, device->input_count,
device->input_buffer[0], device->input_buffer[1], device->input_buffer[2]);
if (device->input_state != SYSEX_MESSAGE) {
//set to 1, keeping status byte, allowing for running status
device->input_count = 1;
}
break;
case 1:
if (device->input_state == TWO_BYTE_MESSAGE) {
//call callback
midi_input_callbacks(device, device->input_count,
device->input_buffer[0], device->input_buffer[1], 0);
if (device->input_state != SYSEX_MESSAGE) {
//set to 1, keeping status byte, allowing for running status
device->input_count = 1;
}
}
break;
case 0:
default:
//one byte messages are dealt with directly
break;
}
}
}
}
void midi_input_callbacks(MidiDevice * device, uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2) {
//did we end up calling a callback?
bool called = false;
if (device->input_state == SYSEX_MESSAGE) {
if (device->input_sysex_callback) {
const uint16_t start = ((cnt - 1) / 3) * 3;
const uint8_t length = (cnt - start);
uint8_t data[3];
data[0] = byte0;
data[1] = byte1;
data[2] = byte2;
device->input_sysex_callback(device, start, length, data);
called = true;
}
} else {
switch (cnt) {
case 3:
{
midi_three_byte_func_t func = NULL;
switch (byte0 & 0xF0) {
case MIDI_CC:
func = device->input_cc_callback;
break;
case MIDI_NOTEON:
func = device->input_noteon_callback;
break;
case MIDI_NOTEOFF:
func = device->input_noteoff_callback;
break;
case MIDI_AFTERTOUCH:
func = device->input_aftertouch_callback;
break;
case MIDI_PITCHBEND:
func = device->input_pitchbend_callback;
break;
case 0xF0:
if (byte0 == MIDI_SONGPOSITION)
func = device->input_songposition_callback;
break;
default:
break;
}
if(func) {
//mask off the channel for non song position functions
if (byte0 == MIDI_SONGPOSITION)
func(device, byte0, byte1, byte2);
else
func(device, byte0 & 0x0F, byte1, byte2);
called = true;
}
}
break;
case 2:
{
midi_two_byte_func_t func = NULL;
switch (byte0 & 0xF0) {
case MIDI_PROGCHANGE:
func = device->input_progchange_callback;
break;
case MIDI_CHANPRESSURE:
func = device->input_chanpressure_callback;
break;
case 0xF0:
if (byte0 == MIDI_SONGSELECT)
func = device->input_songselect_callback;
else if (byte0 == MIDI_TC_QUARTERFRAME)
func = device->input_tc_quarterframe_callback;
break;
default:
break;
}
if(func) {
//mask off the channel
if (byte0 == MIDI_SONGSELECT || byte0 == MIDI_TC_QUARTERFRAME)
func(device, byte0, byte1);
else
func(device, byte0 & 0x0F, byte1);
called = true;
}
}
break;
case 1:
{
midi_one_byte_func_t func = NULL;
if (midi_is_realtime(byte0))
func = device->input_realtime_callback;
else if (byte0 == MIDI_TUNEREQUEST)
func = device->input_tunerequest_callback;
if (func) {
func(device, byte0);
called = true;
}
}
break;
default:
//just in case
if (cnt > 3)
cnt = 0;
break;
}
}
//if there is fallthrough default callback and we haven't called a more specific one,
//call the fallthrough
if (!called && device->input_fallthrough_callback)
device->input_fallthrough_callback(device, cnt, byte0, byte1, byte2);
//always call the catch all if it exists
if (device->input_catchall_callback)
device->input_catchall_callback(device, cnt, byte0, byte1, byte2);
}

@ -0,0 +1,156 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
/**
* @file
* @brief Device implementation functions
*/
#ifndef MIDI_DEVICE_H
#define MIDI_DEVICE_H
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup midi_device Functions used when implementing your own midi device.
*
* You use the functions when you are implementing your own midi device.
*
* You set a send function to actually send bytes via your device, this method
* is called when you call a send function with this device, for instance
* midi_send_cc
*
* You use the midi_device_input to process input data from the device and pass
* it through the device's associated callbacks.
*
* You use the midi_device_set_pre_input_process_func if you want to have a
* function called at the beginning of the device's process function, generally
* to poll for input and pass that into midi_device_input
*
* @{
*/
#include "midi_function_types.h"
#include "bytequeue/bytequeue.h"
#define MIDI_INPUT_QUEUE_LENGTH 192
typedef enum {
IDLE,
ONE_BYTE_MESSAGE = 1,
TWO_BYTE_MESSAGE = 2,
THREE_BYTE_MESSAGE = 3,
SYSEX_MESSAGE} input_state_t;
typedef void (* midi_no_byte_func_t)(MidiDevice * device);
/**
* \struct _midi_device
*
* @brief This structure represents the input and output functions and
* processing data for a midi device.
*
* A device can represent an actual physical device [serial port, usb port] or
* something virtual.
* You should not need to modify this structure directly.
*/
struct _midi_device {
//output send function
midi_var_byte_func_t send_func;
//********input callbacks
//three byte funcs
midi_three_byte_func_t input_cc_callback;
midi_three_byte_func_t input_noteon_callback;
midi_three_byte_func_t input_noteoff_callback;
midi_three_byte_func_t input_aftertouch_callback;
midi_three_byte_func_t input_pitchbend_callback;
midi_three_byte_func_t input_songposition_callback;
//two byte funcs
midi_two_byte_func_t input_progchange_callback;
midi_two_byte_func_t input_chanpressure_callback;
midi_two_byte_func_t input_songselect_callback;
midi_two_byte_func_t input_tc_quarterframe_callback;
//one byte funcs
midi_one_byte_func_t input_realtime_callback;
midi_one_byte_func_t input_tunerequest_callback;
//sysex
midi_sysex_func_t input_sysex_callback;
//only called if more specific callback is not matched
midi_var_byte_func_t input_fallthrough_callback;
//called if registered, independent of other callbacks
midi_var_byte_func_t input_catchall_callback;
//pre input processing function
midi_no_byte_func_t pre_input_process_callback;
//for internal input processing
uint8_t input_buffer[3];
input_state_t input_state;
uint16_t input_count;
//for queueing data between the input and the processing functions
uint8_t input_queue_data[MIDI_INPUT_QUEUE_LENGTH];
byteQueue_t input_queue;
};
/**
* @brief Process input bytes. This function parses bytes and calls the
* appropriate callbacks associated with the given device. You use this
* function if you are creating a custom device and you want to have midi
* input.
*
* @param device the midi device to associate the input with
* @param cnt the number of bytes you are processing
* @param input the bytes to process
*/
void midi_device_input(MidiDevice * device, uint8_t cnt, uint8_t * input);
/**
* @brief Set the callback function that will be used for sending output
* data bytes. This is only used if you're creating a custom device.
* You'll most likely want the callback function to disable interrupts so
* that you can call the various midi send functions without worrying about
* locking.
*
* \param device the midi device to associate this callback with
* \param send_func the callback function that will do the sending
*/
void midi_device_set_send_func(MidiDevice * device, midi_var_byte_func_t send_func);
/**
* @brief Set a callback which is called at the beginning of the
* midi_device_process call. This can be used to poll for input
* data and send the data through the midi_device_input function.
* You'll probably only use this if you're creating a custom device.
*
* \param device the midi device to associate this callback with
* \param midi_no_byte_func_t the actual callback function
*/
void midi_device_set_pre_input_process_func(MidiDevice * device, midi_no_byte_func_t pre_process_func);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,50 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
/**
* @file
* @brief Function signature definitions
*/
#ifndef MIDI_FUNCTION_TYPES_H
#define MIDI_FUNCTION_TYPES_H
#ifdef __cplusplus
extern "C" {
#endif
#include <inttypes.h>
#include <stdbool.h>
//forward declaration
typedef struct _midi_device MidiDevice;
typedef void (* midi_one_byte_func_t)(MidiDevice * device, uint8_t byte);
typedef void (* midi_two_byte_func_t)(MidiDevice * device, uint8_t byte0, uint8_t byte1);
typedef void (* midi_three_byte_func_t)(MidiDevice * device, uint8_t byte0, uint8_t byte1, uint8_t byte2);
//all bytes after count bytes should be ignored
typedef void (* midi_var_byte_func_t)(MidiDevice * device, uint16_t count, uint8_t byte0, uint8_t byte1, uint8_t byte2);
//the start byte tells you how far into the sysex message you are, the data_length tells you how many bytes data is
typedef void (* midi_sysex_func_t)(MidiDevice * device, uint16_t start_byte, uint8_t data_length, uint8_t *data);
#ifdef __cplusplus
}
#endif
#endif

@ -0,0 +1,99 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
#include "sysex_tools.h"
uint16_t sysex_encoded_length(uint16_t decoded_length){
uint8_t remainder = decoded_length % 7;
if (remainder)
return (decoded_length / 7) * 8 + remainder + 1;
else
return (decoded_length / 7) * 8;
}
uint16_t sysex_decoded_length(uint16_t encoded_length){
uint8_t remainder = encoded_length % 8;
if (remainder)
return (encoded_length / 8) * 7 + remainder - 1;
else
return (encoded_length / 8) * 7;
}
uint16_t sysex_encode(uint8_t *encoded, const uint8_t *source, const uint16_t length){
uint16_t encoded_full = length / 7; //number of full 8 byte sections from 7 bytes of input
uint16_t i,j;
//fill out the fully encoded sections
for(i = 0; i < encoded_full; i++) {
uint16_t encoded_msb_idx = i * 8;
uint16_t input_start_idx = i * 7;
encoded[encoded_msb_idx] = 0;
for(j = 0; j < 7; j++){
uint8_t current = source[input_start_idx + j];
encoded[encoded_msb_idx] |= (0x80 & current) >> (1 + j);
encoded[encoded_msb_idx + 1 + j] = 0x7F & current;
}
}
//fill out the rest if there is any more
uint8_t remainder = length % 7;
if (remainder) {
uint16_t encoded_msb_idx = encoded_full * 8;
uint16_t input_start_idx = encoded_full * 7;
encoded[encoded_msb_idx] = 0;
for(j = 0; j < remainder; j++){
uint8_t current = source[input_start_idx + j];
encoded[encoded_msb_idx] |= (0x80 & current) >> (1 + j);
encoded[encoded_msb_idx + 1 + j] = 0x7F & current;
}
return encoded_msb_idx + remainder + 1;
} else {
return encoded_full * 8;
}
}
uint16_t sysex_decode(uint8_t *decoded, const uint8_t *source, const uint16_t length){
uint16_t decoded_full = length / 8;
uint16_t i,j;
if (length < 2)
return 0;
//fill out the fully encoded sections
for(i = 0; i < decoded_full; i++) {
uint16_t encoded_msb_idx = i * 8;
uint16_t output_start_index = i * 7;
for(j = 0; j < 7; j++){
decoded[output_start_index + j] = 0x7F & source[encoded_msb_idx + j + 1];
decoded[output_start_index + j] |= (0x80 & (source[encoded_msb_idx] << (1 + j)));
}
}
uint8_t remainder = length % 8;
if (remainder) {
uint16_t encoded_msb_idx = decoded_full * 8;
uint16_t output_start_index = decoded_full * 7;
for(j = 0; j < (remainder - 1); j++) {
decoded[output_start_index + j] = 0x7F & source[encoded_msb_idx + j + 1];
decoded[output_start_index + j] |= (0x80 & (source[encoded_msb_idx] << (1 + j)));
}
return decoded_full * 7 + remainder - 1;
} else {
return decoded_full * 7;
}
}

@ -0,0 +1,95 @@
//midi for embedded chips,
//Copyright 2010 Alex Norman
//
//This file is part of avr-midi.
//
//avr-midi is free software: you can redistribute it and/or modify
//it under the terms of the GNU General Public License as published by
//the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.
//
//avr-midi is distributed in the hope that it will be useful,
//but WITHOUT ANY WARRANTY; without even the implied warranty of
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
//GNU General Public License for more details.
//
//You should have received a copy of the GNU General Public License
//along with avr-midi. If not, see <http://www.gnu.org/licenses/>.
#ifndef SYSEX_TOOLS_H
#define SYSEX_TOOLS_H
#ifdef __cplusplus
extern "C" {
#endif
#include <inttypes.h>
/**
* @file
* @brief Sysex utility functions
*
* These functions are for converting data to and from a "midi-safe" format,
* which can be use to send data with sysex messages. Sysex messages may only
* contain data where the to bit is not set.
*
* An "encoded" midi message is one that contains all of the data from its
* original state, but does not have any of the top bits set.
*
* Every 7 bytes of decoded data is converted into 8 bytes of encoded data and
* visa-versa. If you'd like to operate on small segments, make sure that you
* encode in 7 byte increments and decode in 8 byte increments.
*
*/
/** @defgroup sysex_tools Sysex utility functions
* @{
*/
/**
* @brief Compute the length of a message after it is encoded.
*
* @param decoded_length The length, in bytes, of the message to encode.
*
* @return The length, in bytes, of the message after encodeing.
*/
uint16_t sysex_encoded_length(uint16_t decoded_length);
/**
* @brief Compute the length of a message after it is decoded.
*
* @param encoded_length The length, in bytes, of the encoded message.
*
* @return The length, in bytes, of the message after it is decoded.
*/
uint16_t sysex_decoded_length(uint16_t encoded_length);
/**
* @brief Encode data so that it can be transmitted safely in a sysex message.
*
* @param encoded The output data buffer, must be at least sysex_encoded_length(length) bytes long.
* @param source The input buffer of data to be encoded.
* @param length The number of bytes from the input buffer to encode.
*
* @return number of bytes encoded.
*/
uint16_t sysex_encode(uint8_t *encoded, const uint8_t *source, uint16_t length);
/**
* @brief Decode encoded data.
*
* @param decoded The output data buffer, must be at least sysex_decoded_length(length) bytes long.
* @param source The input buffer of data to be decoded.
* @param length The number of bytes from the input buffer to decode.
*
* @return number of bytes decoded.
*/
uint16_t sysex_decode(uint8_t *decoded, const uint8_t *source, uint16_t length);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif
Loading…
Cancel
Save