refactor, non-working

pull/3229/head
Jack Humbert 7 years ago
parent 76e0d23887
commit 6380f83190

@ -19,7 +19,7 @@ void i2c_init(void)
//TWBR = 10; //TWBR = 10;
} }
i2c_status_t i2c_start(uint8_t address, uint8_t timeout) i2c_status_t i2c_start(uint8_t address, uint16_t timeout)
{ {
// reset TWI control register // reset TWI control register
TWCR = 0; TWCR = 0;
@ -28,13 +28,13 @@ i2c_status_t i2c_start(uint8_t address, uint8_t timeout)
uint16_t timeout_timer = timer_read(); uint16_t timeout_timer = timer_read();
while( !(TWCR & (1<<TWINT)) ) { while( !(TWCR & (1<<TWINT)) ) {
if (timeout && (timer_read() - timeout_timer) > timeout) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
// check if the start condition was successfully transmitted // check if the start condition was successfully transmitted
if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return 1; } if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return I2C_STATUS_ERROR; }
// load slave address into data register // load slave address into data register
TWDR = address; TWDR = address;
@ -43,19 +43,19 @@ i2c_status_t i2c_start(uint8_t address, uint8_t timeout)
timeout_timer = timer_read(); timeout_timer = timer_read();
while( !(TWCR & (1<<TWINT)) ) { while( !(TWCR & (1<<TWINT)) ) {
if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
// check if the device has acknowledged the READ / WRITE mode // check if the device has acknowledged the READ / WRITE mode
uint8_t twst = TW_STATUS & 0xF8; uint8_t twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1; if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return I2C_STATUS_ERROR;
return 0; return I2C_STATUS_SUCCESS;
} }
i2c_status_t i2c_write(uint8_t data, uint8_t timeout) i2c_status_t i2c_write(uint8_t data, uint16_t timeout)
{ {
// load data into data register // load data into data register
TWDR = data; TWDR = data;
@ -64,17 +64,17 @@ i2c_status_t i2c_write(uint8_t data, uint8_t timeout)
uint16_t timeout_timer = timer_read(); uint16_t timeout_timer = timer_read();
while( !(TWCR & (1<<TWINT)) ) { while( !(TWCR & (1<<TWINT)) ) {
if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return 1; } if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return I2C_STATUS_ERROR; }
return 0; return I2C_STATUS_SUCCESS;
} }
i2c_status_t i2c_read_ack(uint8_t timeout) int16_t i2c_read_ack(uint16_t timeout)
{ {
// start TWI module and acknowledge data after reception // start TWI module and acknowledge data after reception
@ -82,7 +82,7 @@ i2c_status_t i2c_read_ack(uint8_t timeout)
uint16_t timeout_timer = timer_read(); uint16_t timeout_timer = timer_read();
while( !(TWCR & (1<<TWINT)) ) { while( !(TWCR & (1<<TWINT)) ) {
if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
@ -91,7 +91,7 @@ i2c_status_t i2c_read_ack(uint8_t timeout)
return TWDR; return TWDR;
} }
i2c_status_t i2c_read_nack(uint8_t timeout) int16_t i2c_read_nack(uint16_t timeout)
{ {
// start receiving without acknowledging reception // start receiving without acknowledging reception
@ -99,7 +99,7 @@ i2c_status_t i2c_read_nack(uint8_t timeout)
uint16_t timeout_timer = timer_read(); uint16_t timeout_timer = timer_read();
while( !(TWCR & (1<<TWINT)) ) { while( !(TWCR & (1<<TWINT)) ) {
if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
@ -108,81 +108,112 @@ i2c_status_t i2c_read_nack(uint8_t timeout)
return TWDR; return TWDR;
} }
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length) i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{ {
if (i2c_start(address | I2C_WRITE)) return 1; i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
if (status) return status;
for (uint16_t i = 0; i < length; i++) for (uint16_t i = 0; i < length; i++) {
{ status = i2c_write(data[i], timeout);
if (i2c_write(data[i])) return 1; if (status) return status;
} }
i2c_stop(); status = i2c_stop(timeout);
if (status) return status;
return 0; return I2C_STATUS_SUCCESS;
} }
uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length) i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{ {
if (i2c_start(address | I2C_READ)) return 1; i2c_status_t status = i2c_start(address | I2C_READ, timeout);
if (status) return status;
for (uint16_t i = 0; i < (length-1); i++) for (uint16_t i = 0; i < (length-1); i++) {
{ status = i2c_read_ack(timeout);
data[i] = i2c_read_ack(); if (status >= 0) {
data[i] = status;
} else {
return status;
}
}
status = i2c_read_nack(timeout);
if (status >= 0 ) {
data[(length-1)] = status;
} else {
return status;
} }
data[(length-1)] = i2c_read_nack();
i2c_stop(); status = i2c_stop(timeout);
if (status) return status;
return 0; return I2C_STATUS_SUCCESS;
} }
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length) i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{ {
if (i2c_start(devaddr | 0x00)) return 1; i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
if (status) return status;
i2c_write(regaddr); status = i2c_write(regaddr, timeout);
if (status) return status;
for (uint16_t i = 0; i < length; i++) for (uint16_t i = 0; i < length; i++) {
{ status = i2c_write(data[i], timeout);
if (i2c_write(data[i])) return 1; if (status) return status;
} }
i2c_stop(); status = i2c_stop(timeout);
if (status) return status;
return 0; return I2C_STATUS_SUCCESS;
} }
uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length) i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{ {
if (i2c_start(devaddr)) return 1; i2c_status_t status = i2c_start(devaddr, timeout);
if (status) return status;
i2c_write(regaddr); status = i2c_write(regaddr, timeout);
if (status) return status;
if (i2c_start(devaddr | 0x01)) return 1; status = i2c_start(devaddr | 0x01, timeout);
if (status) return status;
for (uint16_t i = 0; i < (length-1); i++) {
status = i2c_read_ack(timeout);
if (status >= 0) {
data[i] = status;
} else {
return status;
}
}
for (uint16_t i = 0; i < (length-1); i++) status = i2c_read_nack(timeout);
{ if (status >= 0 ) {
data[i] = i2c_read_ack(); data[(length-1)] = status;
} else {
return status;
} }
data[(length-1)] = i2c_read_nack();
i2c_stop(); status = i2c_stop(timeout);
if (status) return status;
return 0; return I2C_STATUS_SUCCESS;
} }
i2c_status_t i2c_stop(uint8_t timeout) i2c_status_t i2c_stop(uint16_t timeout)
{ {
// transmit STOP condition // transmit STOP condition
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO); TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t timeout_timer = timer_read(); uint16_t timeout_timer = timer_read();
while(TWCR & (1<<TWSTO)) { while(TWCR & (1<<TWSTO)) {
if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) { if (timeout && ((timer_read() - timeout_timer) > timeout)) {
return I2C_STATUS_TIMEOUT; return I2C_STATUS_TIMEOUT;
} }
} }
return 0; return I2C_STATUS_SUCCESS;
} }

@ -8,20 +8,21 @@
#define I2C_READ 0x01 #define I2C_READ 0x01
#define I2C_WRITE 0x00 #define I2C_WRITE 0x00
typedef i2c_status_t int16_t typedef int16_t i2c_status_t;
#define I2C_STATUS_TIMEOUT (-1)
#define I2C_NO_TIMEOUT 0 #define I2C_STATUS_SUCCESS (0)
#define I2C_STATUS_ERROR (-1)
#define I2C_STATUS_TIMEOUT (-2)
void i2c_init(void); void i2c_init(void);
i2c_status_t i2c_start(uint8_t address, uint8_t timeout); i2c_status_t i2c_start(uint8_t address, uint16_t timeout);
i2c_status_t i2c_write(uint8_t data, uint8_t timeout); i2c_status_t i2c_write(uint8_t data, uint16_t timeout);
i2c_status_t i2c_read_ack(uint8_t timeout); int16_t i2c_read_ack(uint16_t timeout);
i2c_status_t i2c_read_nack(uint8_t timeout); int16_t i2c_read_nack(uint16_t timeout);
uint8_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length); i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length); i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length); i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length); i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_stop(uint8_t timeout); i2c_status_t i2c_stop(uint16_t timeout);
#endif // I2C_MASTER_H #endif // I2C_MASTER_H

@ -49,6 +49,14 @@
#define ISSI_COMMANDREGISTER 0xFD #define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine' #define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine'
#ifndef ISSI_TIMEOUT
#define ISSI_TIMEOUT 100
#endif
#ifndef ISSI_PERSISTENCE
#define ISSI_PERSISTENCE 0
#endif
// Transfer buffer for TWITransmitData() // Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20]; uint8_t g_twi_transfer_buffer[20];
@ -78,100 +86,104 @@ bool g_led_control_registers_update_required = false;
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09 // 0x10 - R16,R15,R14,R13,R12,R11,R10,R09
uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data ) void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{ {
g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[0] = reg;
g_twi_transfer_buffer[1] = data; g_twi_transfer_buffer[1] = data;
//Transmit data until succesful #if ISSI_PERSISTENCE > 0
//while(i2c_transmit(addr << 1, g_twi_transfer_buffer,2) != 0); for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
return i2c_transmit(addr << 1, g_twi_transfer_buffer,2); if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0)
break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT);
#endif
} }
uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer ) void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{ {
uint8_t ret = 0;
// assumes bank is already selected // assumes bank is already selected
// transmit PWM registers in 9 transfers of 16 bytes // transmit PWM registers in 9 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes // g_twi_transfer_buffer[] is 20 bytes
// iterate over the pwm_buffer contents at 16 byte intervals // iterate over the pwm_buffer contents at 16 byte intervals
for ( int i = 0; i < 144; i += 16 ) for ( int i = 0; i < 144; i += 16 ) {
{
// set the first register, e.g. 0x24, 0x34, 0x44, etc. // set the first register, e.g. 0x24, 0x34, 0x44, etc.
g_twi_transfer_buffer[0] = 0x24 + i; g_twi_transfer_buffer[0] = 0x24 + i;
// copy the data from i to i+15 // copy the data from i to i+15
// device will auto-increment register for data after the first byte // device will auto-increment register for data after the first byte
// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer // thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
for ( int j = 0; j < 16; j++ ) for ( int j = 0; j < 16; j++ ) {
{
g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
} }
//Transmit buffer until succesful #if ISSI_PERSISTENCE > 0
//while(i2c_transmit(addr << 1, g_twi_transfer_buffer,17) != 0); for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
ret |= i2c_transmit(addr << 1, g_twi_transfer_buffer, 17); if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0)
break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT);
#endif
} }
return ret;
} }
uint8_t IS31FL3731_init( uint8_t addr ) void IS31FL3731_init( uint8_t addr )
{ {
uint8_t ret = 0;
// In order to avoid the LEDs being driven with garbage data // In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, first enable software shutdown, // in the LED driver's PWM registers, first enable software shutdown,
// then set up the mode and other settings, clear the PWM registers, // then set up the mode and other settings, clear the PWM registers,
// then disable software shutdown. // then disable software shutdown.
// select "function register" bank // select "function register" bank
ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG ); IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// enable software shutdown // enable software shutdown
ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 ); IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
// this delay was copied from other drivers, might not be needed // this delay was copied from other drivers, might not be needed
_delay_ms( 10 ); _delay_ms( 10 );
// picture mode // picture mode
ret |= IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE ); IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
// display frame 0 // display frame 0
ret |= IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 ); IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
// audio sync off // audio sync off
ret |= IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 ); IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
// select bank 0 // select bank 0
ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 ); IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
// turn off all LEDs in the LED control register // turn off all LEDs in the LED control register
for ( int i = 0x00; i <= 0x11; i++ ) for ( int i = 0x00; i <= 0x11; i++ )
{ {
ret |= IS31FL3731_write_register( addr, i, 0x00 ); IS31FL3731_write_register( addr, i, 0x00 );
} }
// turn off all LEDs in the blink control register (not really needed) // turn off all LEDs in the blink control register (not really needed)
for ( int i = 0x12; i <= 0x23; i++ ) for ( int i = 0x12; i <= 0x23; i++ )
{ {
ret |= IS31FL3731_write_register( addr, i, 0x00 ); IS31FL3731_write_register( addr, i, 0x00 );
} }
// set PWM on all LEDs to 0 // set PWM on all LEDs to 0
for ( int i = 0x24; i <= 0xB3; i++ ) for ( int i = 0x24; i <= 0xB3; i++ )
{ {
ret |= IS31FL3731_write_register( addr, i, 0x00 ); IS31FL3731_write_register( addr, i, 0x00 );
} }
// select "function register" bank // select "function register" bank
ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG ); IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// disable software shutdown // disable software shutdown
ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 ); IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
// select bank 0 and leave it selected. // select bank 0 and leave it selected.
// most usage after initialization is just writing PWM buffers in bank 0 // most usage after initialization is just writing PWM buffers in bank 0
// as there's not much point in double-buffering // as there's not much point in double-buffering
ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 ); IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
return ret;
} }
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
@ -224,32 +236,27 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b
g_led_control_registers_update_required = true; g_led_control_registers_update_required = true;
} }
uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 ) void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{ {
uint8_t ret = 0;
if ( g_pwm_buffer_update_required ) if ( g_pwm_buffer_update_required )
{ {
ret |= IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] ); IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
ret |= IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] ); IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
} }
g_pwm_buffer_update_required = false; g_pwm_buffer_update_required = false;
return ret;
} }
uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 ) void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{ {
uint8_t ret = 0;
if ( g_led_control_registers_update_required ) if ( g_led_control_registers_update_required )
{ {
for ( int i=0; i<18; i++ ) for ( int i=0; i<18; i++ )
{ {
ret |= IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] ); IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
ret |= IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] ); IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
} }
} }
return ret;
} }

@ -31,9 +31,9 @@ typedef struct is31_led {
extern const is31_led g_is31_leds[DRIVER_LED_TOTAL]; extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];
uint8_t IS31FL3731_init( uint8_t addr ); void IS31FL3731_init( uint8_t addr );
uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data ); void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer ); void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ); void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue ); void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );
@ -44,8 +44,8 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b
// (eg. from a timer interrupt). // (eg. from a timer interrupt).
// Call this while idle (in between matrix scans). // Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer. // If the buffer is dirty, it will update the driver with the buffer.
uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 ); void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 ); void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );
#define C1_1 0x24 #define C1_1 0x24
#define C1_2 0x25 #define C1_2 0x25

@ -138,6 +138,4 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define NO_ACTION_FUNCTION //#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE //#define DEBUG_MATRIX_SCAN_RATE
#define I2C_TIMEOUT 1000
#endif #endif

@ -24,7 +24,7 @@ extern inline void ergodox_led_all_set(uint8_t n);
bool i2c_initialized = 0; bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20; i2c_status_t mcp23018_status = 0x20;
void matrix_init_kb(void) { void matrix_init_kb(void) {
// keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md") // keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md")
@ -125,23 +125,23 @@ uint8_t init_mcp23018(void) {
// - unused : input : 1 // - unused : input : 1
// - input : input : 1 // - input : input : 1
// - driving : output : 0 // - driving : output : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(IODIRA); if (mcp23018_status) goto out; mcp23018_status = i2c_write(IODIRA, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0b00000000, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0b00111111, 0); if (mcp23018_status) goto out;
i2c_stop(); i2c_stop(0);
// set pull-up // set pull-up
// - unused : on : 1 // - unused : on : 1
// - input : on : 1 // - input : on : 1
// - driving : off : 0 // - driving : off : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPPUA); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPPUA, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0b00000000, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0b00111111, 0); if (mcp23018_status) goto out;
out: out:
i2c_stop(); i2c_stop(0);
#ifdef LEFT_LEDS #ifdef LEFT_LEDS
if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update(); if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update();
@ -165,22 +165,22 @@ uint8_t ergodox_left_leds_update(void) {
// - unused : hi-Z : 1 // - unused : hi-Z : 1
// - input : hi-Z : 1 // - input : hi-Z : 1
// - driving : hi-Z : 1 // - driving : hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);
if (mcp23018_status) goto out; if (mcp23018_status) goto out;
mcp23018_status = i2c_write(OLATA); mcp23018_status = i2c_write(OLATA, 0);
if (mcp23018_status) goto out; if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b11111111 mcp23018_status = i2c_write(0b11111111
& ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT) & ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT),
); 0);
if (mcp23018_status) goto out; if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b11111111 mcp23018_status = i2c_write(0b11111111
& ~(ergodox_left_led_2<<LEFT_LED_2_SHIFT) & ~(ergodox_left_led_2<<LEFT_LED_2_SHIFT)
& ~(ergodox_left_led_1<<LEFT_LED_1_SHIFT) & ~(ergodox_left_led_1<<LEFT_LED_1_SHIFT),
); 0);
if (mcp23018_status) goto out; if (mcp23018_status) goto out;
out: out:
i2c_stop(); i2c_stop(0);
return mcp23018_status; return mcp23018_status;
} }
#endif #endif

@ -23,7 +23,7 @@
#define OLATA 0x14 // output latch register #define OLATA 0x14 // output latch register
#define OLATB 0x15 #define OLATB 0x15
extern uint8_t mcp23018_status; extern i2c_status_t mcp23018_status;
void init_ergodox(void); void init_ergodox(void);
void ergodox_blink_all_leds(void); void ergodox_blink_all_leds(void);

@ -295,13 +295,13 @@ static matrix_row_t read_cols(uint8_t row)
return 0; return 0;
} else { } else {
uint8_t data = 0; uint8_t data = 0;
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOB, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_READ, 0); if (mcp23018_status) goto out;
data = i2c_read_nack(); mcp23018_status = i2c_read_nack(0); if (mcp23018_status < 0) goto out;
data = ~data; data = ~((uint8_t)mcp23018_status);
out: out:
i2c_stop(); i2c_stop(0);
return data; return data;
} }
} else { } else {
@ -350,11 +350,11 @@ static void select_row(uint8_t row)
} else { } else {
// set active row low : 0 // set active row low : 0
// set other rows hi-Z : 1 // set other rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOA, 0); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0xFF & ~(1<<row)); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0xFF & ~(1<<row), 0); if (mcp23018_status) goto out;
out: out:
i2c_stop(); i2c_stop(0);
} }
} else { } else {
// select on teensy // select on teensy

@ -102,13 +102,8 @@ void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t
} }
void rgb_matrix_update_pwm_buffers(void) { void rgb_matrix_update_pwm_buffers(void) {
uint8_t ret = IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 ); IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
ret |= IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 ); IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
if (ret == 2) {
wait_ms(1000);
i2c_stop();
rgb_matrix_setup_drivers();
}
} }
void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) { void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {

Loading…
Cancel
Save