Breakout of animations to separate files Integration of optimized int based math lib Overhaul of rgb_matrix.c and animations for performancepull/5372/head
							parent
							
								
									23086808a7
								
							
						
					
					
						commit
						8073da5dea
					
				@ -0,0 +1,20 @@
 | 
				
			||||
The MIT License (MIT)
 | 
				
			||||
 | 
				
			||||
Copyright (c) 2013 FastLED
 | 
				
			||||
 | 
				
			||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
 | 
				
			||||
this software and associated documentation files (the "Software"), to deal in
 | 
				
			||||
the Software without restriction, including without limitation the rights to
 | 
				
			||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 | 
				
			||||
the Software, and to permit persons to whom the Software is furnished to do so,
 | 
				
			||||
subject to the following conditions:
 | 
				
			||||
 | 
				
			||||
The above copyright notice and this permission notice shall be included in all
 | 
				
			||||
copies or substantial portions of the Software.
 | 
				
			||||
 | 
				
			||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
				
			||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 | 
				
			||||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 | 
				
			||||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 | 
				
			||||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
				
			||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | 
				
			||||
@ -0,0 +1,242 @@
 | 
				
			||||
#define FASTLED_INTERNAL
 | 
				
			||||
#include <stdint.h>
 | 
				
			||||
 | 
				
			||||
#define RAND16_SEED  1337
 | 
				
			||||
uint16_t rand16seed = RAND16_SEED;
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
// memset8, memcpy8, memmove8:
 | 
				
			||||
//  optimized avr replacements for the standard "C" library
 | 
				
			||||
//  routines memset, memcpy, and memmove.
 | 
				
			||||
//
 | 
				
			||||
//  There are two techniques that make these routines
 | 
				
			||||
//  faster than the standard avr-libc routines.
 | 
				
			||||
//  First, the loops are unrolled 2X, meaning that
 | 
				
			||||
//  the average loop overhead is cut in half.
 | 
				
			||||
//  And second, the compare-and-branch at the bottom
 | 
				
			||||
//  of each loop decrements the low byte of the
 | 
				
			||||
//  counter, and if the carry is clear, it branches
 | 
				
			||||
//  back up immediately.  Only if the low byte math
 | 
				
			||||
//  causes carry do we bother to decrement the high
 | 
				
			||||
//  byte and check that result for carry as well.
 | 
				
			||||
//  Results for a 100-byte buffer are 20-40% faster
 | 
				
			||||
//  than standard avr-libc, at a cost of a few extra
 | 
				
			||||
//  bytes of code.
 | 
				
			||||
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
//__attribute__ ((noinline))
 | 
				
			||||
void * memset8 ( void * ptr, uint8_t val, uint16_t num )
 | 
				
			||||
{
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         "  movw r26, %[ptr]        \n\t"
 | 
				
			||||
         "  sbrs %A[num], 0         \n\t"
 | 
				
			||||
         "  rjmp Lseteven_%=        \n\t"
 | 
				
			||||
         "  rjmp Lsetodd_%=         \n\t"
 | 
				
			||||
         "Lsetloop_%=:              \n\t"
 | 
				
			||||
         "  st X+, %[val]           \n\t"
 | 
				
			||||
         "Lsetodd_%=:               \n\t"
 | 
				
			||||
         "  st X+, %[val]           \n\t"
 | 
				
			||||
         "Lseteven_%=:              \n\t"
 | 
				
			||||
         "  subi %A[num], 2         \n\t"
 | 
				
			||||
         "  brcc Lsetloop_%=        \n\t"
 | 
				
			||||
         "  sbci %B[num], 0         \n\t"
 | 
				
			||||
         "  brcc Lsetloop_%=        \n\t"
 | 
				
			||||
         : [num] "+r" (num)
 | 
				
			||||
         : [ptr]  "r" (ptr),
 | 
				
			||||
           [val]  "r" (val)
 | 
				
			||||
         : "memory"
 | 
				
			||||
         );
 | 
				
			||||
    return ptr;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
//__attribute__ ((noinline))
 | 
				
			||||
void * memcpy8 ( void * dst, const void* src, uint16_t num )
 | 
				
			||||
{
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         "  movw r30, %[src]        \n\t"
 | 
				
			||||
         "  movw r26, %[dst]        \n\t"
 | 
				
			||||
         "  sbrs %A[num], 0         \n\t"
 | 
				
			||||
         "  rjmp Lcpyeven_%=        \n\t"
 | 
				
			||||
         "  rjmp Lcpyodd_%=         \n\t"
 | 
				
			||||
         "Lcpyloop_%=:              \n\t"
 | 
				
			||||
         "  ld __tmp_reg__, Z+      \n\t"
 | 
				
			||||
         "  st X+, __tmp_reg__      \n\t"
 | 
				
			||||
         "Lcpyodd_%=:               \n\t"
 | 
				
			||||
         "  ld __tmp_reg__, Z+      \n\t"
 | 
				
			||||
         "  st X+, __tmp_reg__      \n\t"
 | 
				
			||||
         "Lcpyeven_%=:              \n\t"
 | 
				
			||||
         "  subi %A[num], 2         \n\t"
 | 
				
			||||
         "  brcc Lcpyloop_%=        \n\t"
 | 
				
			||||
         "  sbci %B[num], 0         \n\t"
 | 
				
			||||
         "  brcc Lcpyloop_%=        \n\t"
 | 
				
			||||
         : [num] "+r" (num)
 | 
				
			||||
         : [src] "r" (src),
 | 
				
			||||
           [dst] "r" (dst)
 | 
				
			||||
         : "memory"
 | 
				
			||||
         );
 | 
				
			||||
    return dst;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
//__attribute__ ((noinline))
 | 
				
			||||
void * memmove8 ( void * dst, const void* src, uint16_t num )
 | 
				
			||||
{
 | 
				
			||||
    if( src > dst) {
 | 
				
			||||
        // if src > dst then we can use the forward-stepping memcpy8
 | 
				
			||||
        return memcpy8( dst, src, num);
 | 
				
			||||
    } else {
 | 
				
			||||
        // if src < dst then we have to step backward:
 | 
				
			||||
        dst = (char*)dst + num;
 | 
				
			||||
        src = (char*)src + num;
 | 
				
			||||
        asm volatile(
 | 
				
			||||
             "  movw r30, %[src]        \n\t"
 | 
				
			||||
             "  movw r26, %[dst]        \n\t"
 | 
				
			||||
             "  sbrs %A[num], 0         \n\t"
 | 
				
			||||
             "  rjmp Lmoveven_%=        \n\t"
 | 
				
			||||
             "  rjmp Lmovodd_%=         \n\t"
 | 
				
			||||
             "Lmovloop_%=:              \n\t"
 | 
				
			||||
             "  ld __tmp_reg__, -Z      \n\t"
 | 
				
			||||
             "  st -X, __tmp_reg__      \n\t"
 | 
				
			||||
             "Lmovodd_%=:               \n\t"
 | 
				
			||||
             "  ld __tmp_reg__, -Z      \n\t"
 | 
				
			||||
             "  st -X, __tmp_reg__      \n\t"
 | 
				
			||||
             "Lmoveven_%=:              \n\t"
 | 
				
			||||
             "  subi %A[num], 2         \n\t"
 | 
				
			||||
             "  brcc Lmovloop_%=        \n\t"
 | 
				
			||||
             "  sbci %B[num], 0         \n\t"
 | 
				
			||||
             "  brcc Lmovloop_%=        \n\t"
 | 
				
			||||
             : [num] "+r" (num)
 | 
				
			||||
             : [src] "r" (src),
 | 
				
			||||
               [dst] "r" (dst)
 | 
				
			||||
             : "memory"
 | 
				
			||||
             );
 | 
				
			||||
        return dst;
 | 
				
			||||
    }
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif /* AVR */
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#if 0
 | 
				
			||||
// TEST / VERIFICATION CODE ONLY BELOW THIS POINT
 | 
				
			||||
#include <Arduino.h>
 | 
				
			||||
#include "lib8tion.h"
 | 
				
			||||
 | 
				
			||||
void test1abs( int8_t i)
 | 
				
			||||
{
 | 
				
			||||
    Serial.print("abs("); Serial.print(i); Serial.print(") = ");
 | 
				
			||||
    int8_t j = abs8(i);
 | 
				
			||||
    Serial.print(j); Serial.println(" ");
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
void testabs()
 | 
				
			||||
{
 | 
				
			||||
    delay(5000);
 | 
				
			||||
    for( int8_t q = -128; q != 127; q++) {
 | 
				
			||||
        test1abs(q);
 | 
				
			||||
    }
 | 
				
			||||
    for(;;){};
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
void testmul8()
 | 
				
			||||
{
 | 
				
			||||
    delay(5000);
 | 
				
			||||
    byte r, c;
 | 
				
			||||
 | 
				
			||||
    Serial.println("mul8:");
 | 
				
			||||
    for( r = 0; r <= 20; r += 1) {
 | 
				
			||||
        Serial.print(r); Serial.print(" : ");
 | 
				
			||||
        for( c = 0; c <= 20; c += 1) {
 | 
				
			||||
            byte t;
 | 
				
			||||
            t = mul8( r, c);
 | 
				
			||||
            Serial.print(t); Serial.print(' ');
 | 
				
			||||
        }
 | 
				
			||||
        Serial.println(' ');
 | 
				
			||||
    }
 | 
				
			||||
    Serial.println("done.");
 | 
				
			||||
    for(;;){};
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
void testscale8()
 | 
				
			||||
{
 | 
				
			||||
    delay(5000);
 | 
				
			||||
    byte r, c;
 | 
				
			||||
 | 
				
			||||
    Serial.println("scale8:");
 | 
				
			||||
    for( r = 0; r <= 240; r += 10) {
 | 
				
			||||
        Serial.print(r); Serial.print(" : ");
 | 
				
			||||
        for( c = 0; c <= 240; c += 10) {
 | 
				
			||||
            byte t;
 | 
				
			||||
            t = scale8( r, c);
 | 
				
			||||
            Serial.print(t); Serial.print(' ');
 | 
				
			||||
        }
 | 
				
			||||
        Serial.println(' ');
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    Serial.println(' ');
 | 
				
			||||
    Serial.println("scale8_video:");
 | 
				
			||||
 | 
				
			||||
    for( r = 0; r <= 100; r += 4) {
 | 
				
			||||
        Serial.print(r); Serial.print(" : ");
 | 
				
			||||
        for( c = 0; c <= 100; c += 4) {
 | 
				
			||||
            byte t;
 | 
				
			||||
            t = scale8_video( r, c);
 | 
				
			||||
            Serial.print(t); Serial.print(' ');
 | 
				
			||||
        }
 | 
				
			||||
        Serial.println(' ');
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    Serial.println("done.");
 | 
				
			||||
    for(;;){};
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
void testqadd8()
 | 
				
			||||
{
 | 
				
			||||
    delay(5000);
 | 
				
			||||
    byte r, c;
 | 
				
			||||
    for( r = 0; r <= 240; r += 10) {
 | 
				
			||||
        Serial.print(r); Serial.print(" : ");
 | 
				
			||||
        for( c = 0; c <= 240; c += 10) {
 | 
				
			||||
            byte t;
 | 
				
			||||
            t = qadd8( r, c);
 | 
				
			||||
            Serial.print(t); Serial.print(' ');
 | 
				
			||||
        }
 | 
				
			||||
        Serial.println(' ');
 | 
				
			||||
    }
 | 
				
			||||
    Serial.println("done.");
 | 
				
			||||
    for(;;){};
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
void testnscale8x3()
 | 
				
			||||
{
 | 
				
			||||
    delay(5000);
 | 
				
			||||
    byte r, g, b, sc;
 | 
				
			||||
    for( byte z = 0; z < 10; z++) {
 | 
				
			||||
        r = random8(); g = random8(); b = random8(); sc = random8();
 | 
				
			||||
 | 
				
			||||
        Serial.print("nscale8x3_video( ");
 | 
				
			||||
        Serial.print(r); Serial.print(", ");
 | 
				
			||||
        Serial.print(g); Serial.print(", ");
 | 
				
			||||
        Serial.print(b); Serial.print(", ");
 | 
				
			||||
        Serial.print(sc); Serial.print(") = [ ");
 | 
				
			||||
 | 
				
			||||
        nscale8x3_video( r, g, b, sc);
 | 
				
			||||
 | 
				
			||||
        Serial.print(r); Serial.print(", ");
 | 
				
			||||
        Serial.print(g); Serial.print(", ");
 | 
				
			||||
        Serial.print(b); Serial.print("]");
 | 
				
			||||
 | 
				
			||||
        Serial.println(' ');
 | 
				
			||||
    }
 | 
				
			||||
    Serial.println("done.");
 | 
				
			||||
    for(;;){};
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,934 @@
 | 
				
			||||
#ifndef __INC_LIB8TION_H
 | 
				
			||||
#define __INC_LIB8TION_H
 | 
				
			||||
 | 
				
			||||
/*
 | 
				
			||||
 | 
				
			||||
 Fast, efficient 8-bit math functions specifically
 | 
				
			||||
 designed for high-performance LED programming.
 | 
				
			||||
 | 
				
			||||
 Because of the AVR(Arduino) and ARM assembly language
 | 
				
			||||
 implementations provided, using these functions often
 | 
				
			||||
 results in smaller and faster code than the equivalent
 | 
				
			||||
 program using plain "C" arithmetic and logic.
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 Included are:
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Saturating unsigned 8-bit add and subtract.
 | 
				
			||||
   Instead of wrapping around if an overflow occurs,
 | 
				
			||||
   these routines just 'clamp' the output at a maxumum
 | 
				
			||||
   of 255, or a minimum of 0.  Useful for adding pixel
 | 
				
			||||
   values.  E.g., qadd8( 200, 100) = 255.
 | 
				
			||||
 | 
				
			||||
     qadd8( i, j) == MIN( (i + j), 0xFF )
 | 
				
			||||
     qsub8( i, j) == MAX( (i - j), 0 )
 | 
				
			||||
 | 
				
			||||
 - Saturating signed 8-bit ("7-bit") add.
 | 
				
			||||
     qadd7( i, j) == MIN( (i + j), 0x7F)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Scaling (down) of unsigned 8- and 16- bit values.
 | 
				
			||||
   Scaledown value is specified in 1/256ths.
 | 
				
			||||
     scale8( i, sc) == (i * sc) / 256
 | 
				
			||||
     scale16by8( i, sc) == (i * sc) / 256
 | 
				
			||||
 | 
				
			||||
   Example: scaling a 0-255 value down into a
 | 
				
			||||
   range from 0-99:
 | 
				
			||||
     downscaled = scale8( originalnumber, 100);
 | 
				
			||||
 | 
				
			||||
   A special version of scale8 is provided for scaling
 | 
				
			||||
   LED brightness values, to make sure that they don't
 | 
				
			||||
   accidentally scale down to total black at low
 | 
				
			||||
   dimming levels, since that would look wrong:
 | 
				
			||||
     scale8_video( i, sc) = ((i * sc) / 256) +? 1
 | 
				
			||||
 | 
				
			||||
   Example: reducing an LED brightness by a
 | 
				
			||||
   dimming factor:
 | 
				
			||||
     new_bright = scale8_video( orig_bright, dimming);
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Fast 8- and 16- bit unsigned random numbers.
 | 
				
			||||
   Significantly faster than Arduino random(), but
 | 
				
			||||
   also somewhat less random.  You can add entropy.
 | 
				
			||||
     random8()       == random from 0..255
 | 
				
			||||
     random8( n)     == random from 0..(N-1)
 | 
				
			||||
     random8( n, m)  == random from N..(M-1)
 | 
				
			||||
 | 
				
			||||
     random16()      == random from 0..65535
 | 
				
			||||
     random16( n)    == random from 0..(N-1)
 | 
				
			||||
     random16( n, m) == random from N..(M-1)
 | 
				
			||||
 | 
				
			||||
     random16_set_seed( k)    ==  seed = k
 | 
				
			||||
     random16_add_entropy( k) ==  seed += k
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Absolute value of a signed 8-bit value.
 | 
				
			||||
     abs8( i)     == abs( i)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - 8-bit math operations which return 8-bit values.
 | 
				
			||||
   These are provided mostly for completeness,
 | 
				
			||||
   not particularly for performance.
 | 
				
			||||
     mul8( i, j)  == (i * j) & 0xFF
 | 
				
			||||
     add8( i, j)  == (i + j) & 0xFF
 | 
				
			||||
     sub8( i, j)  == (i - j) & 0xFF
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Fast 16-bit approximations of sin and cos.
 | 
				
			||||
   Input angle is a uint16_t from 0-65535.
 | 
				
			||||
   Output is a signed int16_t from -32767 to 32767.
 | 
				
			||||
      sin16( x)  == sin( (x/32768.0) * pi) * 32767
 | 
				
			||||
      cos16( x)  == cos( (x/32768.0) * pi) * 32767
 | 
				
			||||
   Accurate to more than 99% in all cases.
 | 
				
			||||
 | 
				
			||||
 - Fast 8-bit approximations of sin and cos.
 | 
				
			||||
   Input angle is a uint8_t from 0-255.
 | 
				
			||||
   Output is an UNsigned uint8_t from 0 to 255.
 | 
				
			||||
       sin8( x)  == (sin( (x/128.0) * pi) * 128) + 128
 | 
				
			||||
       cos8( x)  == (cos( (x/128.0) * pi) * 128) + 128
 | 
				
			||||
   Accurate to within about 2%.
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Fast 8-bit "easing in/out" function.
 | 
				
			||||
     ease8InOutCubic(x) == 3(x^i) - 2(x^3)
 | 
				
			||||
     ease8InOutApprox(x) ==
 | 
				
			||||
       faster, rougher, approximation of cubic easing
 | 
				
			||||
     ease8InOutQuad(x) == quadratic (vs cubic) easing
 | 
				
			||||
 | 
				
			||||
 - Cubic, Quadratic, and Triangle wave functions.
 | 
				
			||||
   Input is a uint8_t representing phase withing the wave,
 | 
				
			||||
     similar to how sin8 takes an angle 'theta'.
 | 
				
			||||
   Output is a uint8_t representing the amplitude of
 | 
				
			||||
     the wave at that point.
 | 
				
			||||
       cubicwave8( x)
 | 
				
			||||
       quadwave8( x)
 | 
				
			||||
       triwave8( x)
 | 
				
			||||
 | 
				
			||||
 - Square root for 16-bit integers.  About three times
 | 
				
			||||
   faster and five times smaller than Arduino's built-in
 | 
				
			||||
   generic 32-bit sqrt routine.
 | 
				
			||||
     sqrt16( uint16_t x ) == sqrt( x)
 | 
				
			||||
 | 
				
			||||
 - Dimming and brightening functions for 8-bit
 | 
				
			||||
   light values.
 | 
				
			||||
     dim8_video( x)  == scale8_video( x, x)
 | 
				
			||||
     dim8_raw( x)    == scale8( x, x)
 | 
				
			||||
     dim8_lin( x)    == (x<128) ? ((x+1)/2) : scale8(x,x)
 | 
				
			||||
     brighten8_video( x) == 255 - dim8_video( 255 - x)
 | 
				
			||||
     brighten8_raw( x) == 255 - dim8_raw( 255 - x)
 | 
				
			||||
     brighten8_lin( x) == 255 - dim8_lin( 255 - x)
 | 
				
			||||
   The dimming functions in particular are suitable
 | 
				
			||||
   for making LED light output appear more 'linear'.
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 - Linear interpolation between two values, with the
 | 
				
			||||
   fraction between them expressed as an 8- or 16-bit
 | 
				
			||||
   fixed point fraction (fract8 or fract16).
 | 
				
			||||
     lerp8by8(   fromU8, toU8, fract8 )
 | 
				
			||||
     lerp16by8(  fromU16, toU16, fract8 )
 | 
				
			||||
     lerp15by8(  fromS16, toS16, fract8 )
 | 
				
			||||
       == from + (( to - from ) * fract8) / 256)
 | 
				
			||||
     lerp16by16( fromU16, toU16, fract16 )
 | 
				
			||||
       == from + (( to - from ) * fract16) / 65536)
 | 
				
			||||
     map8( in, rangeStart, rangeEnd)
 | 
				
			||||
       == map( in, 0, 255, rangeStart, rangeEnd);
 | 
				
			||||
 | 
				
			||||
 - Optimized memmove, memcpy, and memset, that are
 | 
				
			||||
   faster than standard avr-libc 1.8.
 | 
				
			||||
      memmove8( dest, src,  bytecount)
 | 
				
			||||
      memcpy8(  dest, src,  bytecount)
 | 
				
			||||
      memset8(  buf, value, bytecount)
 | 
				
			||||
 | 
				
			||||
 - Beat generators which return sine or sawtooth
 | 
				
			||||
   waves in a specified number of Beats Per Minute.
 | 
				
			||||
   Sine wave beat generators can specify a low and
 | 
				
			||||
   high range for the output.  Sawtooth wave beat
 | 
				
			||||
   generators always range 0-255 or 0-65535.
 | 
				
			||||
     beatsin8( BPM, low8, high8)
 | 
				
			||||
         = (sine(beatphase) * (high8-low8)) + low8
 | 
				
			||||
     beatsin16( BPM, low16, high16)
 | 
				
			||||
         = (sine(beatphase) * (high16-low16)) + low16
 | 
				
			||||
     beatsin88( BPM88, low16, high16)
 | 
				
			||||
         = (sine(beatphase) * (high16-low16)) + low16
 | 
				
			||||
     beat8( BPM)  = 8-bit repeating sawtooth wave
 | 
				
			||||
     beat16( BPM) = 16-bit repeating sawtooth wave
 | 
				
			||||
     beat88( BPM88) = 16-bit repeating sawtooth wave
 | 
				
			||||
   BPM is beats per minute in either simple form
 | 
				
			||||
   e.g. 120, or Q8.8 fixed-point form.
 | 
				
			||||
   BPM88 is beats per minute in ONLY Q8.8 fixed-point
 | 
				
			||||
   form.
 | 
				
			||||
 | 
				
			||||
Lib8tion is pronounced like 'libation': lie-BAY-shun
 | 
				
			||||
 | 
				
			||||
*/
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#include <stdint.h>
 | 
				
			||||
 | 
				
			||||
#define LIB8STATIC __attribute__ ((unused)) static inline
 | 
				
			||||
#define LIB8STATIC_ALWAYS_INLINE __attribute__ ((always_inline)) static inline
 | 
				
			||||
 | 
				
			||||
#if !defined(__AVR__)
 | 
				
			||||
#include <string.h>
 | 
				
			||||
// for memmove, memcpy, and memset if not defined here
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
#if defined(__arm__)
 | 
				
			||||
 | 
				
			||||
#if defined(FASTLED_TEENSY3)
 | 
				
			||||
// Can use Cortex M4 DSP instructions
 | 
				
			||||
#define QADD8_C 0
 | 
				
			||||
#define QADD7_C 0
 | 
				
			||||
#define QADD8_ARM_DSP_ASM 1
 | 
				
			||||
#define QADD7_ARM_DSP_ASM 1
 | 
				
			||||
#else
 | 
				
			||||
// Generic ARM
 | 
				
			||||
#define QADD8_C 1
 | 
				
			||||
#define QADD7_C 1
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
#define QSUB8_C 1
 | 
				
			||||
#define SCALE8_C 1
 | 
				
			||||
#define SCALE16BY8_C 1
 | 
				
			||||
#define SCALE16_C 1
 | 
				
			||||
#define ABS8_C 1
 | 
				
			||||
#define MUL8_C 1
 | 
				
			||||
#define QMUL8_C 1
 | 
				
			||||
#define ADD8_C 1
 | 
				
			||||
#define SUB8_C 1
 | 
				
			||||
#define EASE8_C 1
 | 
				
			||||
#define AVG8_C 1
 | 
				
			||||
#define AVG7_C 1
 | 
				
			||||
#define AVG16_C 1
 | 
				
			||||
#define AVG15_C 1
 | 
				
			||||
#define BLEND8_C 1
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#elif defined(__AVR__)
 | 
				
			||||
 | 
				
			||||
// AVR ATmega and friends Arduino
 | 
				
			||||
 | 
				
			||||
#define QADD8_C 0
 | 
				
			||||
#define QADD7_C 0
 | 
				
			||||
#define QSUB8_C 0
 | 
				
			||||
#define ABS8_C 0
 | 
				
			||||
#define ADD8_C 0
 | 
				
			||||
#define SUB8_C 0
 | 
				
			||||
#define AVG8_C 0
 | 
				
			||||
#define AVG7_C 0
 | 
				
			||||
#define AVG16_C 0
 | 
				
			||||
#define AVG15_C 0
 | 
				
			||||
 | 
				
			||||
#define QADD8_AVRASM 1
 | 
				
			||||
#define QADD7_AVRASM 1
 | 
				
			||||
#define QSUB8_AVRASM 1
 | 
				
			||||
#define ABS8_AVRASM 1
 | 
				
			||||
#define ADD8_AVRASM 1
 | 
				
			||||
#define SUB8_AVRASM 1
 | 
				
			||||
#define AVG8_AVRASM 1
 | 
				
			||||
#define AVG7_AVRASM 1
 | 
				
			||||
#define AVG16_AVRASM 1
 | 
				
			||||
#define AVG15_AVRASM 1
 | 
				
			||||
 | 
				
			||||
// Note: these require hardware MUL instruction
 | 
				
			||||
//       -- sorry, ATtiny!
 | 
				
			||||
#if !defined(LIB8_ATTINY)
 | 
				
			||||
#define SCALE8_C 0
 | 
				
			||||
#define SCALE16BY8_C 0
 | 
				
			||||
#define SCALE16_C 0
 | 
				
			||||
#define MUL8_C 0
 | 
				
			||||
#define QMUL8_C 0
 | 
				
			||||
#define EASE8_C 0
 | 
				
			||||
#define BLEND8_C 0
 | 
				
			||||
#define SCALE8_AVRASM 1
 | 
				
			||||
#define SCALE16BY8_AVRASM 1
 | 
				
			||||
#define SCALE16_AVRASM 1
 | 
				
			||||
#define MUL8_AVRASM 1
 | 
				
			||||
#define QMUL8_AVRASM 1
 | 
				
			||||
#define EASE8_AVRASM 1
 | 
				
			||||
#define CLEANUP_R1_AVRASM 1
 | 
				
			||||
#define BLEND8_AVRASM 1
 | 
				
			||||
#else
 | 
				
			||||
// On ATtiny, we just use C implementations
 | 
				
			||||
#define SCALE8_C 1
 | 
				
			||||
#define SCALE16BY8_C 1
 | 
				
			||||
#define SCALE16_C 1
 | 
				
			||||
#define MUL8_C 1
 | 
				
			||||
#define QMUL8_C 1
 | 
				
			||||
#define EASE8_C 1
 | 
				
			||||
#define BLEND8_C 1
 | 
				
			||||
#define SCALE8_AVRASM 0
 | 
				
			||||
#define SCALE16BY8_AVRASM 0
 | 
				
			||||
#define SCALE16_AVRASM 0
 | 
				
			||||
#define MUL8_AVRASM 0
 | 
				
			||||
#define QMUL8_AVRASM 0
 | 
				
			||||
#define EASE8_AVRASM 0
 | 
				
			||||
#define BLEND8_AVRASM 0
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
#else
 | 
				
			||||
 | 
				
			||||
// unspecified architecture, so
 | 
				
			||||
// no ASM, everything in C
 | 
				
			||||
#define QADD8_C 1
 | 
				
			||||
#define QADD7_C 1
 | 
				
			||||
#define QSUB8_C 1
 | 
				
			||||
#define SCALE8_C 1
 | 
				
			||||
#define SCALE16BY8_C 1
 | 
				
			||||
#define SCALE16_C 1
 | 
				
			||||
#define ABS8_C 1
 | 
				
			||||
#define MUL8_C 1
 | 
				
			||||
#define QMUL8_C 1
 | 
				
			||||
#define ADD8_C 1
 | 
				
			||||
#define SUB8_C 1
 | 
				
			||||
#define EASE8_C 1
 | 
				
			||||
#define AVG8_C 1
 | 
				
			||||
#define AVG7_C 1
 | 
				
			||||
#define AVG16_C 1
 | 
				
			||||
#define AVG15_C 1
 | 
				
			||||
#define BLEND8_C 1
 | 
				
			||||
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
///@defgroup lib8tion Fast math functions
 | 
				
			||||
///A variety of functions for working with numbers.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
//
 | 
				
			||||
// typdefs for fixed-point fractional types.
 | 
				
			||||
//
 | 
				
			||||
// sfract7 should be interpreted as signed 128ths.
 | 
				
			||||
// fract8 should be interpreted as unsigned 256ths.
 | 
				
			||||
// sfract15 should be interpreted as signed 32768ths.
 | 
				
			||||
// fract16 should be interpreted as unsigned 65536ths.
 | 
				
			||||
//
 | 
				
			||||
// Example: if a fract8 has the value "64", that should be interpreted
 | 
				
			||||
//          as 64/256ths, or one-quarter.
 | 
				
			||||
//
 | 
				
			||||
//
 | 
				
			||||
//  fract8   range is 0 to 0.99609375
 | 
				
			||||
//                 in steps of 0.00390625
 | 
				
			||||
//
 | 
				
			||||
//  sfract7  range is -0.9921875 to 0.9921875
 | 
				
			||||
//                 in steps of 0.0078125
 | 
				
			||||
//
 | 
				
			||||
//  fract16  range is 0 to 0.99998474121
 | 
				
			||||
//                 in steps of 0.00001525878
 | 
				
			||||
//
 | 
				
			||||
//  sfract15 range is -0.99996948242 to 0.99996948242
 | 
				
			||||
//                 in steps of 0.00003051757
 | 
				
			||||
//
 | 
				
			||||
 | 
				
			||||
/// ANSI unsigned short _Fract.  range is 0 to 0.99609375
 | 
				
			||||
///                 in steps of 0.00390625
 | 
				
			||||
typedef uint8_t   fract8;   ///< ANSI: unsigned short _Fract
 | 
				
			||||
 | 
				
			||||
///  ANSI: signed short _Fract.  range is -0.9921875 to 0.9921875
 | 
				
			||||
///                 in steps of 0.0078125
 | 
				
			||||
typedef int8_t    sfract7;  ///< ANSI: signed   short _Fract
 | 
				
			||||
 | 
				
			||||
///  ANSI: unsigned _Fract.  range is 0 to 0.99998474121
 | 
				
			||||
///                 in steps of 0.00001525878
 | 
				
			||||
typedef uint16_t  fract16;  ///< ANSI: unsigned       _Fract
 | 
				
			||||
 | 
				
			||||
///  ANSI: signed _Fract.  range is -0.99996948242 to 0.99996948242
 | 
				
			||||
///                 in steps of 0.00003051757
 | 
				
			||||
typedef int16_t   sfract15; ///< ANSI: signed         _Fract
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
// accumXY types should be interpreted as X bits of integer,
 | 
				
			||||
//         and Y bits of fraction.
 | 
				
			||||
//         E.g., accum88 has 8 bits of int, 8 bits of fraction
 | 
				
			||||
 | 
				
			||||
typedef uint16_t  accum88;  ///< ANSI: unsigned short _Accum.  8 bits int, 8 bits fraction
 | 
				
			||||
typedef int16_t   saccum78; ///< ANSI: signed   short _Accum.  7 bits int, 8 bits fraction
 | 
				
			||||
typedef uint32_t  accum1616;///< ANSI: signed         _Accum. 16 bits int, 16 bits fraction
 | 
				
			||||
typedef int32_t   saccum1516;///< ANSI: signed         _Accum. 15 bits int, 16 bits fraction
 | 
				
			||||
typedef uint16_t  accum124; ///< no direct ANSI counterpart. 12 bits int, 4 bits fraction
 | 
				
			||||
typedef int32_t   saccum114;///< no direct ANSI counterpart. 1 bit int, 14 bits fraction
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#include "math8.h"
 | 
				
			||||
#include "scale8.h"
 | 
				
			||||
#include "random8.h"
 | 
				
			||||
#include "trig8.h"
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
//
 | 
				
			||||
// float-to-fixed and fixed-to-float conversions
 | 
				
			||||
//
 | 
				
			||||
// Note that anything involving a 'float' on AVR will be slower.
 | 
				
			||||
 | 
				
			||||
/// sfract15ToFloat: conversion from sfract15 fixed point to
 | 
				
			||||
///                  IEEE754 32-bit float.
 | 
				
			||||
LIB8STATIC float sfract15ToFloat( sfract15 y)
 | 
				
			||||
{
 | 
				
			||||
    return y / 32768.0;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// conversion from IEEE754 float in the range (-1,1)
 | 
				
			||||
///                  to 16-bit fixed point.  Note that the extremes of
 | 
				
			||||
///                  one and negative one are NOT representable.  The
 | 
				
			||||
///                  representable range is basically
 | 
				
			||||
LIB8STATIC sfract15 floatToSfract15( float f)
 | 
				
			||||
{
 | 
				
			||||
    return f * 32768.0;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
//
 | 
				
			||||
// memmove8, memcpy8, and memset8:
 | 
				
			||||
//   alternatives to memmove, memcpy, and memset that are
 | 
				
			||||
//   faster on AVR than standard avr-libc 1.8
 | 
				
			||||
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
void * memmove8( void * dst, const void * src, uint16_t num );
 | 
				
			||||
void * memcpy8 ( void * dst, const void * src, uint16_t num )  __attribute__ ((noinline));
 | 
				
			||||
void * memset8 ( void * ptr, uint8_t value, uint16_t num ) __attribute__ ((noinline)) ;
 | 
				
			||||
#else
 | 
				
			||||
// on non-AVR platforms, these names just call standard libc.
 | 
				
			||||
#define memmove8 memmove
 | 
				
			||||
#define memcpy8 memcpy
 | 
				
			||||
#define memset8 memset
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
//
 | 
				
			||||
// linear interpolation, such as could be used for Perlin noise, etc.
 | 
				
			||||
//
 | 
				
			||||
 | 
				
			||||
// A note on the structure of the lerp functions:
 | 
				
			||||
// The cases for b>a and b<=a are handled separately for
 | 
				
			||||
// speed: without knowing the relative order of a and b,
 | 
				
			||||
// the value (a-b) might be overflow the width of a or b,
 | 
				
			||||
// and have to be promoted to a wider, slower type.
 | 
				
			||||
// To avoid that, we separate the two cases, and are able
 | 
				
			||||
// to do all the math in the same width as the arguments,
 | 
				
			||||
// which is much faster and smaller on AVR.
 | 
				
			||||
 | 
				
			||||
/// linear interpolation between two unsigned 8-bit values,
 | 
				
			||||
/// with 8-bit fraction
 | 
				
			||||
LIB8STATIC uint8_t lerp8by8( uint8_t a, uint8_t b, fract8 frac)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t result;
 | 
				
			||||
    if( b > a) {
 | 
				
			||||
        uint8_t delta = b - a;
 | 
				
			||||
        uint8_t scaled = scale8( delta, frac);
 | 
				
			||||
        result = a + scaled;
 | 
				
			||||
    } else {
 | 
				
			||||
        uint8_t delta = a - b;
 | 
				
			||||
        uint8_t scaled = scale8( delta, frac);
 | 
				
			||||
        result = a - scaled;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// linear interpolation between two unsigned 16-bit values,
 | 
				
			||||
/// with 16-bit fraction
 | 
				
			||||
LIB8STATIC uint16_t lerp16by16( uint16_t a, uint16_t b, fract16 frac)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t result;
 | 
				
			||||
    if( b > a ) {
 | 
				
			||||
        uint16_t delta = b - a;
 | 
				
			||||
        uint16_t scaled = scale16(delta, frac);
 | 
				
			||||
        result = a + scaled;
 | 
				
			||||
    } else {
 | 
				
			||||
        uint16_t delta = a - b;
 | 
				
			||||
        uint16_t scaled = scale16( delta, frac);
 | 
				
			||||
        result = a - scaled;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// linear interpolation between two unsigned 16-bit values,
 | 
				
			||||
/// with 8-bit fraction
 | 
				
			||||
LIB8STATIC uint16_t lerp16by8( uint16_t a, uint16_t b, fract8 frac)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t result;
 | 
				
			||||
    if( b > a) {
 | 
				
			||||
        uint16_t delta = b - a;
 | 
				
			||||
        uint16_t scaled = scale16by8( delta, frac);
 | 
				
			||||
        result = a + scaled;
 | 
				
			||||
    } else {
 | 
				
			||||
        uint16_t delta = a - b;
 | 
				
			||||
        uint16_t scaled = scale16by8( delta, frac);
 | 
				
			||||
        result = a - scaled;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// linear interpolation between two signed 15-bit values,
 | 
				
			||||
/// with 8-bit fraction
 | 
				
			||||
LIB8STATIC int16_t lerp15by8( int16_t a, int16_t b, fract8 frac)
 | 
				
			||||
{
 | 
				
			||||
    int16_t result;
 | 
				
			||||
    if( b > a) {
 | 
				
			||||
        uint16_t delta = b - a;
 | 
				
			||||
        uint16_t scaled = scale16by8( delta, frac);
 | 
				
			||||
        result = a + scaled;
 | 
				
			||||
    } else {
 | 
				
			||||
        uint16_t delta = a - b;
 | 
				
			||||
        uint16_t scaled = scale16by8( delta, frac);
 | 
				
			||||
        result = a - scaled;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// linear interpolation between two signed 15-bit values,
 | 
				
			||||
/// with 8-bit fraction
 | 
				
			||||
LIB8STATIC int16_t lerp15by16( int16_t a, int16_t b, fract16 frac)
 | 
				
			||||
{
 | 
				
			||||
    int16_t result;
 | 
				
			||||
    if( b > a) {
 | 
				
			||||
        uint16_t delta = b - a;
 | 
				
			||||
        uint16_t scaled = scale16( delta, frac);
 | 
				
			||||
        result = a + scaled;
 | 
				
			||||
    } else {
 | 
				
			||||
        uint16_t delta = a - b;
 | 
				
			||||
        uint16_t scaled = scale16( delta, frac);
 | 
				
			||||
        result = a - scaled;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///  map8: map from one full-range 8-bit value into a narrower
 | 
				
			||||
/// range of 8-bit values, possibly a range of hues.
 | 
				
			||||
///
 | 
				
			||||
/// E.g. map myValue into a hue in the range blue..purple..pink..red
 | 
				
			||||
/// hue = map8( myValue, HUE_BLUE, HUE_RED);
 | 
				
			||||
///
 | 
				
			||||
/// Combines nicely with the waveform functions (like sin8, etc)
 | 
				
			||||
/// to produce continuous hue gradients back and forth:
 | 
				
			||||
///
 | 
				
			||||
///          hue = map8( sin8( myValue), HUE_BLUE, HUE_RED);
 | 
				
			||||
///
 | 
				
			||||
/// Mathematically simiar to lerp8by8, but arguments are more
 | 
				
			||||
/// like Arduino's "map"; this function is similar to
 | 
				
			||||
///
 | 
				
			||||
///          map( in, 0, 255, rangeStart, rangeEnd)
 | 
				
			||||
///
 | 
				
			||||
/// but faster and specifically designed for 8-bit values.
 | 
				
			||||
LIB8STATIC uint8_t map8( uint8_t in, uint8_t rangeStart, uint8_t rangeEnd)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t rangeWidth = rangeEnd - rangeStart;
 | 
				
			||||
    uint8_t out = scale8( in, rangeWidth);
 | 
				
			||||
    out += rangeStart;
 | 
				
			||||
    return out;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
//
 | 
				
			||||
// easing functions; see http://easings.net
 | 
				
			||||
//
 | 
				
			||||
 | 
				
			||||
/// ease8InOutQuad: 8-bit quadratic ease-in / ease-out function
 | 
				
			||||
///                Takes around 13 cycles on AVR
 | 
				
			||||
#if EASE8_C == 1
 | 
				
			||||
LIB8STATIC uint8_t ease8InOutQuad( uint8_t i)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t j = i;
 | 
				
			||||
    if( j & 0x80 ) {
 | 
				
			||||
        j = 255 - j;
 | 
				
			||||
    }
 | 
				
			||||
    uint8_t jj  = scale8(  j, j);
 | 
				
			||||
    uint8_t jj2 = jj << 1;
 | 
				
			||||
    if( i & 0x80 ) {
 | 
				
			||||
        jj2 = 255 - jj2;
 | 
				
			||||
    }
 | 
				
			||||
    return jj2;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#elif EASE8_AVRASM == 1
 | 
				
			||||
// This AVR asm version of ease8InOutQuad preserves one more
 | 
				
			||||
// low-bit of precision than the C version, and is also slightly
 | 
				
			||||
// smaller and faster.
 | 
				
			||||
LIB8STATIC uint8_t ease8InOutQuad(uint8_t val) {
 | 
				
			||||
    uint8_t j=val;
 | 
				
			||||
    asm volatile (
 | 
				
			||||
      "sbrc %[val], 7 \n"
 | 
				
			||||
      "com %[j]       \n"
 | 
				
			||||
      "mul %[j], %[j] \n"
 | 
				
			||||
      "add r0, %[j]   \n"
 | 
				
			||||
      "ldi %[j], 0    \n"
 | 
				
			||||
      "adc %[j], r1   \n"
 | 
				
			||||
      "lsl r0         \n" // carry = high bit of low byte of mul product
 | 
				
			||||
      "rol %[j]       \n" // j = (j * 2) + carry // preserve add'l bit of precision
 | 
				
			||||
      "sbrc %[val], 7 \n"
 | 
				
			||||
      "com %[j]       \n"
 | 
				
			||||
      "clr __zero_reg__   \n"
 | 
				
			||||
      : [j] "+&a" (j)
 | 
				
			||||
      : [val] "a" (val)
 | 
				
			||||
      : "r0", "r1"
 | 
				
			||||
      );
 | 
				
			||||
    return j;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for ease8InOutQuad available."
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
/// ease16InOutQuad: 16-bit quadratic ease-in / ease-out function
 | 
				
			||||
// C implementation at this point
 | 
				
			||||
LIB8STATIC uint16_t ease16InOutQuad( uint16_t i)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t j = i;
 | 
				
			||||
    if( j & 0x8000 ) {
 | 
				
			||||
        j = 65535 - j;
 | 
				
			||||
    }
 | 
				
			||||
    uint16_t jj  = scale16( j, j);
 | 
				
			||||
    uint16_t jj2 = jj << 1;
 | 
				
			||||
    if( i & 0x8000 ) {
 | 
				
			||||
        jj2 = 65535 - jj2;
 | 
				
			||||
    }
 | 
				
			||||
    return jj2;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// ease8InOutCubic: 8-bit cubic ease-in / ease-out function
 | 
				
			||||
///                 Takes around 18 cycles on AVR
 | 
				
			||||
LIB8STATIC fract8 ease8InOutCubic( fract8 i)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t ii  = scale8_LEAVING_R1_DIRTY(  i, i);
 | 
				
			||||
    uint8_t iii = scale8_LEAVING_R1_DIRTY( ii, i);
 | 
				
			||||
 | 
				
			||||
    uint16_t r1 = (3 * (uint16_t)(ii)) - ( 2 * (uint16_t)(iii));
 | 
				
			||||
 | 
				
			||||
    /* the code generated for the above *'s automatically
 | 
				
			||||
       cleans up R1, so there's no need to explicitily call
 | 
				
			||||
       cleanup_R1(); */
 | 
				
			||||
 | 
				
			||||
    uint8_t result = r1;
 | 
				
			||||
 | 
				
			||||
    // if we got "256", return 255:
 | 
				
			||||
    if( r1 & 0x100 ) {
 | 
				
			||||
        result = 255;
 | 
				
			||||
    }
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// ease8InOutApprox: fast, rough 8-bit ease-in/ease-out function
 | 
				
			||||
///                   shaped approximately like 'ease8InOutCubic',
 | 
				
			||||
///                   it's never off by more than a couple of percent
 | 
				
			||||
///                   from the actual cubic S-curve, and it executes
 | 
				
			||||
///                   more than twice as fast.  Use when the cycles
 | 
				
			||||
///                   are more important than visual smoothness.
 | 
				
			||||
///                   Asm version takes around 7 cycles on AVR.
 | 
				
			||||
 | 
				
			||||
#if EASE8_C == 1
 | 
				
			||||
LIB8STATIC fract8 ease8InOutApprox( fract8 i)
 | 
				
			||||
{
 | 
				
			||||
    if( i < 64) {
 | 
				
			||||
        // start with slope 0.5
 | 
				
			||||
        i /= 2;
 | 
				
			||||
    } else if( i > (255 - 64)) {
 | 
				
			||||
        // end with slope 0.5
 | 
				
			||||
        i = 255 - i;
 | 
				
			||||
        i /= 2;
 | 
				
			||||
        i = 255 - i;
 | 
				
			||||
    } else {
 | 
				
			||||
        // in the middle, use slope 192/128 = 1.5
 | 
				
			||||
        i -= 64;
 | 
				
			||||
        i += (i / 2);
 | 
				
			||||
        i += 32;
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    return i;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#elif EASE8_AVRASM == 1
 | 
				
			||||
LIB8STATIC uint8_t ease8InOutApprox( fract8 i)
 | 
				
			||||
{
 | 
				
			||||
    // takes around 7 cycles on AVR
 | 
				
			||||
    asm volatile (
 | 
				
			||||
        "  subi %[i], 64         \n\t"
 | 
				
			||||
        "  cpi  %[i], 128        \n\t"
 | 
				
			||||
        "  brcc Lshift_%=        \n\t"
 | 
				
			||||
 | 
				
			||||
        // middle case
 | 
				
			||||
        "  mov __tmp_reg__, %[i] \n\t"
 | 
				
			||||
        "  lsr __tmp_reg__       \n\t"
 | 
				
			||||
        "  add %[i], __tmp_reg__ \n\t"
 | 
				
			||||
        "  subi %[i], 224        \n\t"
 | 
				
			||||
        "  rjmp Ldone_%=         \n\t"
 | 
				
			||||
 | 
				
			||||
        // start or end case
 | 
				
			||||
        "Lshift_%=:              \n\t"
 | 
				
			||||
        "  lsr %[i]              \n\t"
 | 
				
			||||
        "  subi %[i], 96         \n\t"
 | 
				
			||||
 | 
				
			||||
        "Ldone_%=:               \n\t"
 | 
				
			||||
 | 
				
			||||
        : [i] "+&a" (i)
 | 
				
			||||
        :
 | 
				
			||||
        : "r0", "r1"
 | 
				
			||||
        );
 | 
				
			||||
    return i;
 | 
				
			||||
}
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for ease8 available."
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// triwave8: triangle (sawtooth) wave generator.  Useful for
 | 
				
			||||
///           turning a one-byte ever-increasing value into a
 | 
				
			||||
///           one-byte value that oscillates up and down.
 | 
				
			||||
///
 | 
				
			||||
///           input         output
 | 
				
			||||
///           0..127        0..254 (positive slope)
 | 
				
			||||
///           128..255      254..0 (negative slope)
 | 
				
			||||
///
 | 
				
			||||
/// On AVR this function takes just three cycles.
 | 
				
			||||
///
 | 
				
			||||
LIB8STATIC uint8_t triwave8(uint8_t in)
 | 
				
			||||
{
 | 
				
			||||
    if( in & 0x80) {
 | 
				
			||||
        in = 255 - in;
 | 
				
			||||
    }
 | 
				
			||||
    uint8_t out = in << 1;
 | 
				
			||||
    return out;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
// quadwave8 and cubicwave8: S-shaped wave generators (like 'sine').
 | 
				
			||||
//           Useful for turning a one-byte 'counter' value into a
 | 
				
			||||
//           one-byte oscillating value that moves smoothly up and down,
 | 
				
			||||
//           with an 'acceleration' and 'deceleration' curve.
 | 
				
			||||
//
 | 
				
			||||
//           These are even faster than 'sin8', and have
 | 
				
			||||
//           slightly different curve shapes.
 | 
				
			||||
//
 | 
				
			||||
 | 
				
			||||
/// quadwave8: quadratic waveform generator.  Spends just a little more
 | 
				
			||||
///            time at the limits than 'sine' does.
 | 
				
			||||
LIB8STATIC uint8_t quadwave8(uint8_t in)
 | 
				
			||||
{
 | 
				
			||||
    return ease8InOutQuad( triwave8( in));
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// cubicwave8: cubic waveform generator.  Spends visibly more time
 | 
				
			||||
///             at the limits than 'sine' does.
 | 
				
			||||
LIB8STATIC uint8_t cubicwave8(uint8_t in)
 | 
				
			||||
{
 | 
				
			||||
    return ease8InOutCubic( triwave8( in));
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// squarewave8: square wave generator.  Useful for
 | 
				
			||||
///           turning a one-byte ever-increasing value
 | 
				
			||||
///           into a one-byte value that is either 0 or 255.
 | 
				
			||||
///           The width of the output 'pulse' is
 | 
				
			||||
///           determined by the pulsewidth argument:
 | 
				
			||||
///
 | 
				
			||||
///~~~
 | 
				
			||||
///           If pulsewidth is 255, output is always 255.
 | 
				
			||||
///           If pulsewidth < 255, then
 | 
				
			||||
///             if input < pulsewidth  then output is 255
 | 
				
			||||
///             if input >= pulsewidth then output is 0
 | 
				
			||||
///~~~
 | 
				
			||||
///
 | 
				
			||||
/// the output looking like:
 | 
				
			||||
///
 | 
				
			||||
///~~~
 | 
				
			||||
///     255   +--pulsewidth--+
 | 
				
			||||
///      .    |              |
 | 
				
			||||
///      0    0              +--------(256-pulsewidth)--------
 | 
				
			||||
///~~~
 | 
				
			||||
///
 | 
				
			||||
/// @param in
 | 
				
			||||
/// @param pulsewidth
 | 
				
			||||
/// @returns square wave output
 | 
				
			||||
LIB8STATIC uint8_t squarewave8( uint8_t in, uint8_t pulsewidth)
 | 
				
			||||
{
 | 
				
			||||
    if( in < pulsewidth || (pulsewidth == 255)) {
 | 
				
			||||
        return 255;
 | 
				
			||||
    } else {
 | 
				
			||||
        return 0;
 | 
				
			||||
    }
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
// Beat generators - These functions produce waves at a given
 | 
				
			||||
//                   number of 'beats per minute'.  Internally, they use
 | 
				
			||||
//                   the Arduino function 'millis' to track elapsed time.
 | 
				
			||||
//                   Accuracy is a bit better than one part in a thousand.
 | 
				
			||||
//
 | 
				
			||||
//       beat8( BPM ) returns an 8-bit value that cycles 'BPM' times
 | 
				
			||||
//                    per minute, rising from 0 to 255, resetting to zero,
 | 
				
			||||
//                    rising up again, etc..  The output of this function
 | 
				
			||||
//                    is suitable for feeding directly into sin8, and cos8,
 | 
				
			||||
//                    triwave8, quadwave8, and cubicwave8.
 | 
				
			||||
//       beat16( BPM ) returns a 16-bit value that cycles 'BPM' times
 | 
				
			||||
//                    per minute, rising from 0 to 65535, resetting to zero,
 | 
				
			||||
//                    rising up again, etc.  The output of this function is
 | 
				
			||||
//                    suitable for feeding directly into sin16 and cos16.
 | 
				
			||||
//       beat88( BPM88) is the same as beat16, except that the BPM88 argument
 | 
				
			||||
//                    MUST be in Q8.8 fixed point format, e.g. 120BPM must
 | 
				
			||||
//                    be specified as 120*256 = 30720.
 | 
				
			||||
//       beatsin8( BPM, uint8_t low, uint8_t high) returns an 8-bit value that
 | 
				
			||||
//                    rises and falls in a sine wave, 'BPM' times per minute,
 | 
				
			||||
//                    between the values of 'low' and 'high'.
 | 
				
			||||
//       beatsin16( BPM, uint16_t low, uint16_t high) returns a 16-bit value
 | 
				
			||||
//                    that rises and falls in a sine wave, 'BPM' times per
 | 
				
			||||
//                    minute, between the values of 'low' and 'high'.
 | 
				
			||||
//       beatsin88( BPM88, ...) is the same as beatsin16, except that the
 | 
				
			||||
//                    BPM88 argument MUST be in Q8.8 fixed point format,
 | 
				
			||||
//                    e.g. 120BPM must be specified as 120*256 = 30720.
 | 
				
			||||
//
 | 
				
			||||
//  BPM can be supplied two ways.  The simpler way of specifying BPM is as
 | 
				
			||||
//  a simple 8-bit integer from 1-255, (e.g., "120").
 | 
				
			||||
//  The more sophisticated way of specifying BPM allows for fractional
 | 
				
			||||
//  "Q8.8" fixed point number (an 'accum88') with an 8-bit integer part and
 | 
				
			||||
//  an 8-bit fractional part.  The easiest way to construct this is to multiply
 | 
				
			||||
//  a floating point BPM value (e.g. 120.3) by 256, (e.g. resulting in 30796
 | 
				
			||||
//  in this case), and pass that as the 16-bit BPM argument.
 | 
				
			||||
//  "BPM88" MUST always be specified in Q8.8 format.
 | 
				
			||||
//
 | 
				
			||||
//  Originally designed to make an entire animation project pulse with brightness.
 | 
				
			||||
//  For that effect, add this line just above your existing call to "FastLED.show()":
 | 
				
			||||
//
 | 
				
			||||
//     uint8_t bright = beatsin8( 60 /*BPM*/, 192 /*dimmest*/, 255 /*brightest*/ ));
 | 
				
			||||
//     FastLED.setBrightness( bright );
 | 
				
			||||
//     FastLED.show();
 | 
				
			||||
//
 | 
				
			||||
//  The entire animation will now pulse between brightness 192 and 255 once per second.
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
// The beat generators need access to a millisecond counter.
 | 
				
			||||
// On Arduino, this is "millis()".  On other platforms, you'll
 | 
				
			||||
// need to provide a function with this signature:
 | 
				
			||||
//   uint32_t get_millisecond_timer();
 | 
				
			||||
// that provides similar functionality.
 | 
				
			||||
// You can also force use of the get_millisecond_timer function
 | 
				
			||||
// by #defining USE_GET_MILLISECOND_TIMER.
 | 
				
			||||
#if (defined(ARDUINO) || defined(SPARK) || defined(FASTLED_HAS_MILLIS)) && !defined(USE_GET_MILLISECOND_TIMER)
 | 
				
			||||
// Forward declaration of Arduino function 'millis'.
 | 
				
			||||
//uint32_t millis();
 | 
				
			||||
#define GET_MILLIS millis
 | 
				
			||||
#else
 | 
				
			||||
uint32_t get_millisecond_timer(void);
 | 
				
			||||
#define GET_MILLIS get_millisecond_timer
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
// beat16 generates a 16-bit 'sawtooth' wave at a given BPM,
 | 
				
			||||
///        with BPM specified in Q8.8 fixed-point format; e.g.
 | 
				
			||||
///        for this function, 120 BPM MUST BE specified as
 | 
				
			||||
///        120*256 = 30720.
 | 
				
			||||
///        If you just want to specify "120", use beat16 or beat8.
 | 
				
			||||
LIB8STATIC uint16_t beat88( accum88 beats_per_minute_88, uint32_t timebase)
 | 
				
			||||
{
 | 
				
			||||
    // BPM is 'beats per minute', or 'beats per 60000ms'.
 | 
				
			||||
    // To avoid using the (slower) division operator, we
 | 
				
			||||
    // want to convert 'beats per 60000ms' to 'beats per 65536ms',
 | 
				
			||||
    // and then use a simple, fast bit-shift to divide by 65536.
 | 
				
			||||
    //
 | 
				
			||||
    // The ratio 65536:60000 is 279.620266667:256; we'll call it 280:256.
 | 
				
			||||
    // The conversion is accurate to about 0.05%, more or less,
 | 
				
			||||
    // e.g. if you ask for "120 BPM", you'll get about "119.93".
 | 
				
			||||
    return (((GET_MILLIS()) - timebase) * beats_per_minute_88 * 280) >> 16;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// beat16 generates a 16-bit 'sawtooth' wave at a given BPM
 | 
				
			||||
LIB8STATIC uint16_t beat16( accum88 beats_per_minute, uint32_t timebase)
 | 
				
			||||
{
 | 
				
			||||
    // Convert simple 8-bit BPM's to full Q8.8 accum88's if needed
 | 
				
			||||
    if( beats_per_minute < 256) beats_per_minute <<= 8;
 | 
				
			||||
    return beat88(beats_per_minute, timebase);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// beat8 generates an 8-bit 'sawtooth' wave at a given BPM
 | 
				
			||||
LIB8STATIC uint8_t beat8( accum88 beats_per_minute, uint32_t timebase)
 | 
				
			||||
{
 | 
				
			||||
    return beat16( beats_per_minute, timebase) >> 8;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// beatsin88 generates a 16-bit sine wave at a given BPM,
 | 
				
			||||
///           that oscillates within a given range.
 | 
				
			||||
///           For this function, BPM MUST BE SPECIFIED as
 | 
				
			||||
///           a Q8.8 fixed-point value; e.g. 120BPM must be
 | 
				
			||||
///           specified as 120*256 = 30720.
 | 
				
			||||
///           If you just want to specify "120", use beatsin16 or beatsin8.
 | 
				
			||||
LIB8STATIC uint16_t beatsin88( accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t beat = beat88( beats_per_minute_88, timebase);
 | 
				
			||||
    uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
 | 
				
			||||
    uint16_t rangewidth = highest - lowest;
 | 
				
			||||
    uint16_t scaledbeat = scale16( beatsin, rangewidth);
 | 
				
			||||
    uint16_t result = lowest + scaledbeat;
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// beatsin16 generates a 16-bit sine wave at a given BPM,
 | 
				
			||||
///           that oscillates within a given range.
 | 
				
			||||
LIB8STATIC uint16_t beatsin16(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t beat = beat16( beats_per_minute, timebase);
 | 
				
			||||
    uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
 | 
				
			||||
    uint16_t rangewidth = highest - lowest;
 | 
				
			||||
    uint16_t scaledbeat = scale16( beatsin, rangewidth);
 | 
				
			||||
    uint16_t result = lowest + scaledbeat;
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// beatsin8 generates an 8-bit sine wave at a given BPM,
 | 
				
			||||
///           that oscillates within a given range.
 | 
				
			||||
LIB8STATIC uint8_t beatsin8( accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t beat = beat8( beats_per_minute, timebase);
 | 
				
			||||
    uint8_t beatsin = sin8( beat + phase_offset);
 | 
				
			||||
    uint8_t rangewidth = highest - lowest;
 | 
				
			||||
    uint8_t scaledbeat = scale8( beatsin, rangewidth);
 | 
				
			||||
    uint8_t result = lowest + scaledbeat;
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// Return the current seconds since boot in a 16-bit value.  Used as part of the
 | 
				
			||||
/// "every N time-periods" mechanism
 | 
				
			||||
LIB8STATIC uint16_t seconds16(void)
 | 
				
			||||
{
 | 
				
			||||
    uint32_t ms = GET_MILLIS();
 | 
				
			||||
    uint16_t s16;
 | 
				
			||||
    s16 = ms / 1000;
 | 
				
			||||
    return s16;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Return the current minutes since boot in a 16-bit value.  Used as part of the
 | 
				
			||||
/// "every N time-periods" mechanism
 | 
				
			||||
LIB8STATIC uint16_t minutes16(void)
 | 
				
			||||
{
 | 
				
			||||
    uint32_t ms = GET_MILLIS();
 | 
				
			||||
    uint16_t m16;
 | 
				
			||||
    m16 = (ms / (60000L)) & 0xFFFF;
 | 
				
			||||
    return m16;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Return the current hours since boot in an 8-bit value.  Used as part of the
 | 
				
			||||
/// "every N time-periods" mechanism
 | 
				
			||||
LIB8STATIC uint8_t hours8(void)
 | 
				
			||||
{
 | 
				
			||||
    uint32_t ms = GET_MILLIS();
 | 
				
			||||
    uint8_t h8;
 | 
				
			||||
    h8 = (ms / (3600000L)) & 0xFF;
 | 
				
			||||
    return h8;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///@}
 | 
				
			||||
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,552 @@
 | 
				
			||||
#ifndef __INC_LIB8TION_MATH_H
 | 
				
			||||
#define __INC_LIB8TION_MATH_H
 | 
				
			||||
 | 
				
			||||
#include "scale8.h"
 | 
				
			||||
 | 
				
			||||
///@ingroup lib8tion
 | 
				
			||||
 | 
				
			||||
///@defgroup Math Basic math operations
 | 
				
			||||
/// Fast, efficient 8-bit math functions specifically
 | 
				
			||||
/// designed for high-performance LED programming.
 | 
				
			||||
///
 | 
				
			||||
/// Because of the AVR(Arduino) and ARM assembly language
 | 
				
			||||
/// implementations provided, using these functions often
 | 
				
			||||
/// results in smaller and faster code than the equivalent
 | 
				
			||||
/// program using plain "C" arithmetic and logic.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// add one byte to another, saturating at 0xFF
 | 
				
			||||
/// @param i - first byte to add
 | 
				
			||||
/// @param j - second byte to add
 | 
				
			||||
/// @returns the sum of i & j, capped at 0xFF
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if QADD8_C == 1
 | 
				
			||||
    uint16_t t = i + j;
 | 
				
			||||
    if (t > 255) t = 255;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif QADD8_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* First, add j to i, conditioning the C flag */
 | 
				
			||||
         "add %0, %1    \n\t"
 | 
				
			||||
 | 
				
			||||
         /* Now test the C flag.
 | 
				
			||||
           If C is clear, we branch around a load of 0xFF into i.
 | 
				
			||||
           If C is set, we go ahead and load 0xFF into i.
 | 
				
			||||
         */
 | 
				
			||||
         "brcc L_%=     \n\t"
 | 
				
			||||
         "ldi %0, 0xFF  \n\t"
 | 
				
			||||
         "L_%=: "
 | 
				
			||||
         : "+a" (i)
 | 
				
			||||
         : "a"  (j) );
 | 
				
			||||
    return i;
 | 
				
			||||
#elif QADD8_ARM_DSP_ASM == 1
 | 
				
			||||
    asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j));
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for qadd8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Add one byte to another, saturating at 0x7F
 | 
				
			||||
/// @param i - first byte to add
 | 
				
			||||
/// @param j - second byte to add
 | 
				
			||||
/// @returns the sum of i & j, capped at 0xFF
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if QADD7_C == 1
 | 
				
			||||
    int16_t t = i + j;
 | 
				
			||||
    if (t > 127) t = 127;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif QADD7_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* First, add j to i, conditioning the V flag */
 | 
				
			||||
         "add %0, %1    \n\t"
 | 
				
			||||
 | 
				
			||||
         /* Now test the V flag.
 | 
				
			||||
          If V is clear, we branch around a load of 0x7F into i.
 | 
				
			||||
          If V is set, we go ahead and load 0x7F into i.
 | 
				
			||||
          */
 | 
				
			||||
         "brvc L_%=     \n\t"
 | 
				
			||||
         "ldi %0, 0x7F  \n\t"
 | 
				
			||||
         "L_%=: "
 | 
				
			||||
         : "+a" (i)
 | 
				
			||||
         : "a"  (j) );
 | 
				
			||||
 | 
				
			||||
    return i;
 | 
				
			||||
#elif QADD7_ARM_DSP_ASM == 1
 | 
				
			||||
    asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j));
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for qadd7 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// subtract one byte from another, saturating at 0x00
 | 
				
			||||
/// @returns i - j with a floor of 0
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if QSUB8_C == 1
 | 
				
			||||
    int16_t t = i - j;
 | 
				
			||||
    if (t < 0) t = 0;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif QSUB8_AVRASM == 1
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* First, subtract j from i, conditioning the C flag */
 | 
				
			||||
         "sub %0, %1    \n\t"
 | 
				
			||||
 | 
				
			||||
         /* Now test the C flag.
 | 
				
			||||
          If C is clear, we branch around a load of 0x00 into i.
 | 
				
			||||
          If C is set, we go ahead and load 0x00 into i.
 | 
				
			||||
          */
 | 
				
			||||
         "brcc L_%=     \n\t"
 | 
				
			||||
         "ldi %0, 0x00  \n\t"
 | 
				
			||||
         "L_%=: "
 | 
				
			||||
         : "+a" (i)
 | 
				
			||||
         : "a"  (j) );
 | 
				
			||||
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for qsub8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// add one byte to another, with one byte result
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if ADD8_C == 1
 | 
				
			||||
    uint16_t t = i + j;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif ADD8_AVRASM == 1
 | 
				
			||||
    // Add j to i, period.
 | 
				
			||||
    asm volatile( "add %0, %1" : "+a" (i) : "a" (j));
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for add8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// add one byte to another, with one byte result
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j)
 | 
				
			||||
{
 | 
				
			||||
#if ADD8_C == 1
 | 
				
			||||
    uint16_t t = i + j;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif ADD8_AVRASM == 1
 | 
				
			||||
    // Add i(one byte) to j(two bytes)
 | 
				
			||||
    asm volatile( "add %A[j], %[i]              \n\t"
 | 
				
			||||
                  "adc %B[j], __zero_reg__      \n\t"
 | 
				
			||||
                 : [j] "+a" (j)
 | 
				
			||||
                 : [i] "a"  (i)
 | 
				
			||||
                 );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for add8to16 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// subtract one byte from another, 8-bit result
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if SUB8_C == 1
 | 
				
			||||
    int16_t t = i - j;
 | 
				
			||||
    return t;
 | 
				
			||||
#elif SUB8_AVRASM == 1
 | 
				
			||||
    // Subtract j from i, period.
 | 
				
			||||
    asm volatile( "sub %0, %1" : "+a" (i) : "a" (j));
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for sub8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Calculate an integer average of two unsigned
 | 
				
			||||
///       8-bit integer values (uint8_t).
 | 
				
			||||
///       Fractional results are rounded down, e.g. avg8(20,41) = 30
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if AVG8_C == 1
 | 
				
			||||
    return (i + j) >> 1;
 | 
				
			||||
#elif AVG8_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* First, add j to i, 9th bit overflows into C flag */
 | 
				
			||||
         "add %0, %1    \n\t"
 | 
				
			||||
         /* Divide by two, moving C flag into high 8th bit */
 | 
				
			||||
         "ror %0        \n\t"
 | 
				
			||||
         : "+a" (i)
 | 
				
			||||
         : "a"  (j) );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for avg8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Calculate an integer average of two unsigned
 | 
				
			||||
///       16-bit integer values (uint16_t).
 | 
				
			||||
///       Fractional results are rounded down, e.g. avg16(20,41) = 30
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j)
 | 
				
			||||
{
 | 
				
			||||
#if AVG16_C == 1
 | 
				
			||||
    return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1;
 | 
				
			||||
#elif AVG16_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
 | 
				
			||||
                 "add %A[i], %A[j]    \n\t"
 | 
				
			||||
                 /* Now, add C + jHi to iHi, 17th bit overflows into C flag */
 | 
				
			||||
                 "adc %B[i], %B[j]    \n\t"
 | 
				
			||||
                 /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
 | 
				
			||||
                 "ror %B[i]        \n\t"
 | 
				
			||||
                 /* Divide iLo by two, moving C flag into high 8th bit */
 | 
				
			||||
                 "ror %A[i]        \n\t"
 | 
				
			||||
                 : [i] "+a" (i)
 | 
				
			||||
                 : [j] "a"  (j) );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for avg16 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// Calculate an integer average of two signed 7-bit
 | 
				
			||||
///       integers (int8_t)
 | 
				
			||||
///       If the first argument is even, result is rounded down.
 | 
				
			||||
///       If the first argument is odd, result is result up.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if AVG7_C == 1
 | 
				
			||||
    return ((i + j) >> 1) + (i & 0x1);
 | 
				
			||||
#elif AVG7_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 "asr %1        \n\t"
 | 
				
			||||
                 "asr %0        \n\t"
 | 
				
			||||
                 "adc %0, %1    \n\t"
 | 
				
			||||
                 : "+a" (i)
 | 
				
			||||
                 : "a"  (j) );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for avg7 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Calculate an integer average of two signed 15-bit
 | 
				
			||||
///       integers (int16_t)
 | 
				
			||||
///       If the first argument is even, result is rounded down.
 | 
				
			||||
///       If the first argument is odd, result is result up.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j)
 | 
				
			||||
{
 | 
				
			||||
#if AVG15_C == 1
 | 
				
			||||
    return ((int32_t)((int32_t)(i) + (int32_t)(j)) >> 1) + (i & 0x1);
 | 
				
			||||
#elif AVG15_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 /* first divide j by 2, throwing away lowest bit */
 | 
				
			||||
                 "asr %B[j]          \n\t"
 | 
				
			||||
                 "ror %A[j]          \n\t"
 | 
				
			||||
                 /* now divide i by 2, with lowest bit going into C */
 | 
				
			||||
                 "asr %B[i]          \n\t"
 | 
				
			||||
                 "ror %A[i]          \n\t"
 | 
				
			||||
                 /* add j + C to i */
 | 
				
			||||
                 "adc %A[i], %A[j]   \n\t"
 | 
				
			||||
                 "adc %B[i], %B[j]   \n\t"
 | 
				
			||||
                 : [i] "+a" (i)
 | 
				
			||||
                 : [j] "a"  (j) );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for avg15 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///       Calculate the remainder of one unsigned 8-bit
 | 
				
			||||
///       value divided by anoter, aka A % M.
 | 
				
			||||
///       Implemented by repeated subtraction, which is
 | 
				
			||||
///       very compact, and very fast if A is 'probably'
 | 
				
			||||
///       less than M.  If A is a large multiple of M,
 | 
				
			||||
///       the loop has to execute multiple times.  However,
 | 
				
			||||
///       even in that case, the loop is only two
 | 
				
			||||
///       instructions long on AVR, i.e., quick.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m)
 | 
				
			||||
{
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
    asm volatile (
 | 
				
			||||
                  "L_%=:  sub %[a],%[m]    \n\t"
 | 
				
			||||
                  "       brcc L_%=        \n\t"
 | 
				
			||||
                  "       add %[a],%[m]    \n\t"
 | 
				
			||||
                  : [a] "+r" (a)
 | 
				
			||||
                  : [m] "r"  (m)
 | 
				
			||||
                  );
 | 
				
			||||
#else
 | 
				
			||||
    while( a >= m) a -= m;
 | 
				
			||||
#endif
 | 
				
			||||
    return a;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///          Add two numbers, and calculate the modulo
 | 
				
			||||
///          of the sum and a third number, M.
 | 
				
			||||
///          In other words, it returns (A+B) % M.
 | 
				
			||||
///          It is designed as a compact mechanism for
 | 
				
			||||
///          incrementing a 'mode' switch and wrapping
 | 
				
			||||
///          around back to 'mode 0' when the switch
 | 
				
			||||
///          goes past the end of the available range.
 | 
				
			||||
///          e.g. if you have seven modes, this switches
 | 
				
			||||
///          to the next one and wraps around if needed:
 | 
				
			||||
///            mode = addmod8( mode, 1, 7);
 | 
				
			||||
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
 | 
				
			||||
LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m)
 | 
				
			||||
{
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
    asm volatile (
 | 
				
			||||
                  "       add %[a],%[b]    \n\t"
 | 
				
			||||
                  "L_%=:  sub %[a],%[m]    \n\t"
 | 
				
			||||
                  "       brcc L_%=        \n\t"
 | 
				
			||||
                  "       add %[a],%[m]    \n\t"
 | 
				
			||||
                  : [a] "+r" (a)
 | 
				
			||||
                  : [b] "r"  (b), [m] "r" (m)
 | 
				
			||||
                  );
 | 
				
			||||
#else
 | 
				
			||||
    a += b;
 | 
				
			||||
    while( a >= m) a -= m;
 | 
				
			||||
#endif
 | 
				
			||||
    return a;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///          Subtract two numbers, and calculate the modulo
 | 
				
			||||
///          of the difference and a third number, M.
 | 
				
			||||
///          In other words, it returns (A-B) % M.
 | 
				
			||||
///          It is designed as a compact mechanism for
 | 
				
			||||
///          incrementing a 'mode' switch and wrapping
 | 
				
			||||
///          around back to 'mode 0' when the switch
 | 
				
			||||
///          goes past the end of the available range.
 | 
				
			||||
///          e.g. if you have seven modes, this switches
 | 
				
			||||
///          to the next one and wraps around if needed:
 | 
				
			||||
///            mode = addmod8( mode, 1, 7);
 | 
				
			||||
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
 | 
				
			||||
LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m)
 | 
				
			||||
{
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
    asm volatile (
 | 
				
			||||
                  "       sub %[a],%[b]    \n\t"
 | 
				
			||||
                  "L_%=:  sub %[a],%[m]    \n\t"
 | 
				
			||||
                  "       brcc L_%=        \n\t"
 | 
				
			||||
                  "       add %[a],%[m]    \n\t"
 | 
				
			||||
                  : [a] "+r" (a)
 | 
				
			||||
                  : [b] "r"  (b), [m] "r" (m)
 | 
				
			||||
                  );
 | 
				
			||||
#else
 | 
				
			||||
    a -= b;
 | 
				
			||||
    while( a >= m) a -= m;
 | 
				
			||||
#endif
 | 
				
			||||
    return a;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// 8x8 bit multiplication, with 8 bit result
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if MUL8_C == 1
 | 
				
			||||
    return ((uint16_t)i * (uint16_t)(j) ) & 0xFF;
 | 
				
			||||
#elif MUL8_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
 | 
				
			||||
         "mul %0, %1          \n\t"
 | 
				
			||||
         /* Extract the LOW 8-bits (r0) */
 | 
				
			||||
         "mov %0, r0          \n\t"
 | 
				
			||||
         /* Restore r1 to "0"; it's expected to always be that */
 | 
				
			||||
         "clr __zero_reg__    \n\t"
 | 
				
			||||
         : "+a" (i)
 | 
				
			||||
         : "a"  (j)
 | 
				
			||||
         : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for mul8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// saturating 8x8 bit multiplication, with 8 bit result
 | 
				
			||||
/// @returns the product of i * j, capping at 0xFF
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j)
 | 
				
			||||
{
 | 
				
			||||
#if QMUL8_C == 1
 | 
				
			||||
    int p = ((uint16_t)i * (uint16_t)(j) );
 | 
				
			||||
    if( p > 255) p = 255;
 | 
				
			||||
    return p;
 | 
				
			||||
#elif QMUL8_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
 | 
				
			||||
                 "  mul %0, %1          \n\t"
 | 
				
			||||
                 /* If high byte of result is zero, all is well. */
 | 
				
			||||
                 "  tst r1              \n\t"
 | 
				
			||||
                 "  breq Lnospill_%=    \n\t"
 | 
				
			||||
                 /* If high byte of result > 0, saturate low byte to 0xFF */
 | 
				
			||||
                 "  ldi %0,0xFF         \n\t"
 | 
				
			||||
                 "  rjmp Ldone_%=       \n\t"
 | 
				
			||||
                 "Lnospill_%=:          \n\t"
 | 
				
			||||
                 /* Extract the LOW 8-bits (r0) */
 | 
				
			||||
                 "  mov %0, r0          \n\t"
 | 
				
			||||
                 "Ldone_%=:             \n\t"
 | 
				
			||||
                 /* Restore r1 to "0"; it's expected to always be that */
 | 
				
			||||
                 "  clr __zero_reg__    \n\t"
 | 
				
			||||
                 : "+a" (i)
 | 
				
			||||
                 : "a"  (j)
 | 
				
			||||
                 : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for qmul8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// take abs() of a signed 8-bit uint8_t
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i)
 | 
				
			||||
{
 | 
				
			||||
#if ABS8_C == 1
 | 
				
			||||
    if( i < 0) i = -i;
 | 
				
			||||
    return i;
 | 
				
			||||
#elif ABS8_AVRASM == 1
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         /* First, check the high bit, and prepare to skip if it's clear */
 | 
				
			||||
         "sbrc %0, 7 \n"
 | 
				
			||||
 | 
				
			||||
         /* Negate the value */
 | 
				
			||||
         "neg %0     \n"
 | 
				
			||||
 | 
				
			||||
         : "+r" (i) : "r" (i) );
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for abs8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///         square root for 16-bit integers
 | 
				
			||||
///         About three times faster and five times smaller
 | 
				
			||||
///         than Arduino's general sqrt on AVR.
 | 
				
			||||
LIB8STATIC uint8_t sqrt16(uint16_t x)
 | 
				
			||||
{
 | 
				
			||||
    if( x <= 1) {
 | 
				
			||||
        return x;
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    uint8_t low = 1; // lower bound
 | 
				
			||||
    uint8_t hi, mid;
 | 
				
			||||
 | 
				
			||||
    if( x > 7904) {
 | 
				
			||||
        hi = 255;
 | 
				
			||||
    } else {
 | 
				
			||||
        hi = (x >> 5) + 8; // initial estimate for upper bound
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    do {
 | 
				
			||||
        mid = (low + hi) >> 1;
 | 
				
			||||
        if ((uint16_t)(mid * mid) > x) {
 | 
				
			||||
            hi = mid - 1;
 | 
				
			||||
        } else {
 | 
				
			||||
            if( mid == 255) {
 | 
				
			||||
                return 255;
 | 
				
			||||
            }
 | 
				
			||||
            low = mid + 1;
 | 
				
			||||
        }
 | 
				
			||||
    } while (hi >= low);
 | 
				
			||||
 | 
				
			||||
    return low - 1;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// blend a variable proproportion(0-255) of one byte to another
 | 
				
			||||
/// @param a - the starting byte value
 | 
				
			||||
/// @param b - the byte value to blend toward
 | 
				
			||||
/// @param amountOfB - the proportion (0-255) of b to blend
 | 
				
			||||
/// @returns a byte value between a and b, inclusive
 | 
				
			||||
#if (FASTLED_BLEND_FIXED == 1)
 | 
				
			||||
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
 | 
				
			||||
{
 | 
				
			||||
#if BLEND8_C == 1
 | 
				
			||||
    uint16_t partial;
 | 
				
			||||
    uint8_t result;
 | 
				
			||||
 | 
				
			||||
    uint8_t amountOfA = 255 - amountOfB;
 | 
				
			||||
 | 
				
			||||
    partial = (a * amountOfA);
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
    partial += a;
 | 
				
			||||
    //partial = add8to16( a, partial);
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
    partial += (b * amountOfB);
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
    partial += b;
 | 
				
			||||
    //partial = add8to16( b, partial);
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
    result = partial >> 8;
 | 
				
			||||
 | 
				
			||||
    return result;
 | 
				
			||||
 | 
				
			||||
#elif BLEND8_AVRASM == 1
 | 
				
			||||
    uint16_t partial;
 | 
				
			||||
    uint8_t result;
 | 
				
			||||
 | 
				
			||||
    asm volatile (
 | 
				
			||||
        /* partial = b * amountOfB */
 | 
				
			||||
        "  mul %[b], %[amountOfB]        \n\t"
 | 
				
			||||
        "  movw %A[partial], r0          \n\t"
 | 
				
			||||
 | 
				
			||||
        /* amountOfB (aka amountOfA) = 255 - amountOfB */
 | 
				
			||||
        "  com %[amountOfB]              \n\t"
 | 
				
			||||
 | 
				
			||||
        /* partial += a * amountOfB (aka amountOfA) */
 | 
				
			||||
        "  mul %[a], %[amountOfB]        \n\t"
 | 
				
			||||
 | 
				
			||||
        "  add %A[partial], r0           \n\t"
 | 
				
			||||
        "  adc %B[partial], r1           \n\t"
 | 
				
			||||
 | 
				
			||||
        "  clr __zero_reg__              \n\t"
 | 
				
			||||
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
        /* partial += a */
 | 
				
			||||
        "  add %A[partial], %[a]         \n\t"
 | 
				
			||||
        "  adc %B[partial], __zero_reg__ \n\t"
 | 
				
			||||
 | 
				
			||||
        // partial += b
 | 
				
			||||
        "  add %A[partial], %[b]         \n\t"
 | 
				
			||||
        "  adc %B[partial], __zero_reg__ \n\t"
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
        : [partial] "=r" (partial),
 | 
				
			||||
          [amountOfB] "+a" (amountOfB)
 | 
				
			||||
        : [a] "a" (a),
 | 
				
			||||
          [b] "a" (b)
 | 
				
			||||
        : "r0", "r1"
 | 
				
			||||
    );
 | 
				
			||||
 | 
				
			||||
    result = partial >> 8;
 | 
				
			||||
 | 
				
			||||
    return result;
 | 
				
			||||
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for blend8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#else
 | 
				
			||||
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
 | 
				
			||||
{
 | 
				
			||||
    // This version loses precision in the integer math
 | 
				
			||||
    // and can actually return results outside of the range
 | 
				
			||||
    // from a to b.  Its use is not recommended.
 | 
				
			||||
    uint8_t result;
 | 
				
			||||
    uint8_t amountOfA = 255 - amountOfB;
 | 
				
			||||
    result = scale8_LEAVING_R1_DIRTY( a, amountOfA)
 | 
				
			||||
           + scale8_LEAVING_R1_DIRTY( b, amountOfB);
 | 
				
			||||
    cleanup_R1();
 | 
				
			||||
    return result;
 | 
				
			||||
}
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///@}
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,94 @@
 | 
				
			||||
#ifndef __INC_LIB8TION_RANDOM_H
 | 
				
			||||
#define __INC_LIB8TION_RANDOM_H
 | 
				
			||||
///@ingroup lib8tion
 | 
				
			||||
 | 
				
			||||
///@defgroup Random Fast random number generators
 | 
				
			||||
/// Fast 8- and 16- bit unsigned random numbers.
 | 
				
			||||
///  Significantly faster than Arduino random(), but
 | 
				
			||||
///  also somewhat less random.  You can add entropy.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
// X(n+1) = (2053 * X(n)) + 13849)
 | 
				
			||||
#define FASTLED_RAND16_2053  ((uint16_t)(2053))
 | 
				
			||||
#define FASTLED_RAND16_13849 ((uint16_t)(13849))
 | 
				
			||||
 | 
				
			||||
/// random number seed
 | 
				
			||||
extern uint16_t rand16seed;// = RAND16_SEED;
 | 
				
			||||
 | 
				
			||||
/// Generate an 8-bit random number
 | 
				
			||||
LIB8STATIC uint8_t random8(void)
 | 
				
			||||
{
 | 
				
			||||
    rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
 | 
				
			||||
    // return the sum of the high and low bytes, for better
 | 
				
			||||
    //  mixing and non-sequential correlation
 | 
				
			||||
    return (uint8_t)(((uint8_t)(rand16seed & 0xFF)) +
 | 
				
			||||
                     ((uint8_t)(rand16seed >> 8)));
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Generate a 16 bit random number
 | 
				
			||||
LIB8STATIC uint16_t random16(void)
 | 
				
			||||
{
 | 
				
			||||
    rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
 | 
				
			||||
    return rand16seed;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Generate an 8-bit random number between 0 and lim
 | 
				
			||||
/// @param lim the upper bound for the result
 | 
				
			||||
LIB8STATIC uint8_t random8_max(uint8_t lim)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t r = random8();
 | 
				
			||||
    r = (r*lim) >> 8;
 | 
				
			||||
    return r;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Generate an 8-bit random number in the given range
 | 
				
			||||
/// @param min the lower bound for the random number
 | 
				
			||||
/// @param lim the upper bound for the random number
 | 
				
			||||
LIB8STATIC uint8_t random8_min_max(uint8_t min, uint8_t lim)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t delta = lim - min;
 | 
				
			||||
    uint8_t r = random8_max(delta) + min;
 | 
				
			||||
    return r;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Generate an 16-bit random number between 0 and lim
 | 
				
			||||
/// @param lim the upper bound for the result
 | 
				
			||||
LIB8STATIC uint16_t random16_max(uint16_t lim)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t r = random16();
 | 
				
			||||
    uint32_t p = (uint32_t)lim * (uint32_t)r;
 | 
				
			||||
    r = p >> 16;
 | 
				
			||||
    return r;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Generate an 16-bit random number in the given range
 | 
				
			||||
/// @param min the lower bound for the random number
 | 
				
			||||
/// @param lim the upper bound for the random number
 | 
				
			||||
LIB8STATIC uint16_t random16_min_max( uint16_t min, uint16_t lim)
 | 
				
			||||
{
 | 
				
			||||
    uint16_t delta = lim - min;
 | 
				
			||||
    uint16_t r = random16_max(delta) + min;
 | 
				
			||||
    return r;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Set the 16-bit seed used for the random number generator
 | 
				
			||||
LIB8STATIC void random16_set_seed(uint16_t seed)
 | 
				
			||||
{
 | 
				
			||||
    rand16seed = seed;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Get the current seed value for the random number generator
 | 
				
			||||
LIB8STATIC uint16_t random16_get_seed(void)
 | 
				
			||||
{
 | 
				
			||||
    return rand16seed;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Add entropy into the random number generator
 | 
				
			||||
LIB8STATIC void random16_add_entropy(uint16_t entropy)
 | 
				
			||||
{
 | 
				
			||||
    rand16seed += entropy;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///@}
 | 
				
			||||
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,542 @@
 | 
				
			||||
#ifndef __INC_LIB8TION_SCALE_H
 | 
				
			||||
#define __INC_LIB8TION_SCALE_H
 | 
				
			||||
 | 
				
			||||
///@ingroup lib8tion
 | 
				
			||||
 | 
				
			||||
///@defgroup Scaling Scaling functions
 | 
				
			||||
/// Fast, efficient 8-bit scaling functions specifically
 | 
				
			||||
/// designed for high-performance LED programming.
 | 
				
			||||
///
 | 
				
			||||
/// Because of the AVR(Arduino) and ARM assembly language
 | 
				
			||||
/// implementations provided, using these functions often
 | 
				
			||||
/// results in smaller and faster code than the equivalent
 | 
				
			||||
/// program using plain "C" arithmetic and logic.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
///  scale one byte by a second one, which is treated as
 | 
				
			||||
///  the numerator of a fraction whose denominator is 256
 | 
				
			||||
///  In other words, it computes i * (scale / 256)
 | 
				
			||||
///  4 clocks AVR with MUL, 2 clocks ARM
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t scale8( uint8_t i, fract8 scale)
 | 
				
			||||
{
 | 
				
			||||
#if SCALE8_C == 1
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
    return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
 | 
				
			||||
#else
 | 
				
			||||
    return ((uint16_t)i * (uint16_t)(scale) ) >> 8;
 | 
				
			||||
#endif
 | 
				
			||||
#elif SCALE8_AVRASM == 1
 | 
				
			||||
#if defined(LIB8_ATTINY)
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
    uint8_t work=i;
 | 
				
			||||
#else
 | 
				
			||||
    uint8_t work=0;
 | 
				
			||||
#endif
 | 
				
			||||
    uint8_t cnt=0x80;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
        "  inc %[scale]                 \n\t"
 | 
				
			||||
        "  breq DONE_%=                 \n\t"
 | 
				
			||||
        "  clr %[work]                  \n\t"
 | 
				
			||||
#endif
 | 
				
			||||
        "LOOP_%=:                       \n\t"
 | 
				
			||||
        /*"  sbrc %[scale], 0             \n\t"
 | 
				
			||||
        "  add %[work], %[i]            \n\t"
 | 
				
			||||
        "  ror %[work]                  \n\t"
 | 
				
			||||
        "  lsr %[scale]                 \n\t"
 | 
				
			||||
        "  clc                          \n\t"*/
 | 
				
			||||
        "  sbrc %[scale], 0             \n\t"
 | 
				
			||||
        "  add %[work], %[i]            \n\t"
 | 
				
			||||
        "  ror %[work]                  \n\t"
 | 
				
			||||
        "  lsr %[scale]                 \n\t"
 | 
				
			||||
        "  lsr %[cnt]                   \n\t"
 | 
				
			||||
        "brcc LOOP_%=                   \n\t"
 | 
				
			||||
        "DONE_%=:                       \n\t"
 | 
				
			||||
        : [work] "+r" (work), [cnt] "+r" (cnt)
 | 
				
			||||
        : [scale] "r" (scale), [i] "r" (i)
 | 
				
			||||
        :
 | 
				
			||||
      );
 | 
				
			||||
    return work;
 | 
				
			||||
#else
 | 
				
			||||
    asm volatile(
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED==1)
 | 
				
			||||
        // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
 | 
				
			||||
        "mul %0, %1          \n\t"
 | 
				
			||||
        // Add i to r0, possibly setting the carry flag
 | 
				
			||||
        "add r0, %0         \n\t"
 | 
				
			||||
        // load the immediate 0 into i (note, this does _not_ touch any flags)
 | 
				
			||||
        "ldi %0, 0x00       \n\t"
 | 
				
			||||
        // walk and chew gum at the same time
 | 
				
			||||
        "adc %0, r1          \n\t"
 | 
				
			||||
#else
 | 
				
			||||
         /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
 | 
				
			||||
         "mul %0, %1          \n\t"
 | 
				
			||||
         /* Move the high 8-bits of the product (r1) back to i */
 | 
				
			||||
         "mov %0, r1          \n\t"
 | 
				
			||||
         /* Restore r1 to "0"; it's expected to always be that */
 | 
				
			||||
#endif
 | 
				
			||||
         "clr __zero_reg__    \n\t"
 | 
				
			||||
 | 
				
			||||
         : "+a" (i)      /* writes to i */
 | 
				
			||||
         : "a"  (scale)  /* uses scale */
 | 
				
			||||
         : "r0", "r1"    /* clobbers r0, r1 */ );
 | 
				
			||||
 | 
				
			||||
    /* Return the result */
 | 
				
			||||
    return i;
 | 
				
			||||
#endif
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for scale8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
///  The "video" version of scale8 guarantees that the output will
 | 
				
			||||
///  be only be zero if one or both of the inputs are zero.  If both
 | 
				
			||||
///  inputs are non-zero, the output is guaranteed to be non-zero.
 | 
				
			||||
///  This makes for better 'video'/LED dimming, at the cost of
 | 
				
			||||
///  several additional cycles.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video( uint8_t i, fract8 scale)
 | 
				
			||||
{
 | 
				
			||||
#if SCALE8_C == 1 || defined(LIB8_ATTINY)
 | 
				
			||||
    uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
 | 
				
			||||
    // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | 
				
			||||
    // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
 | 
				
			||||
    return j;
 | 
				
			||||
#elif SCALE8_AVRASM == 1
 | 
				
			||||
    uint8_t j=0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
        "  tst %[i]\n\t"
 | 
				
			||||
        "  breq L_%=\n\t"
 | 
				
			||||
        "  mul %[i], %[scale]\n\t"
 | 
				
			||||
        "  mov %[j], r1\n\t"
 | 
				
			||||
        "  clr __zero_reg__\n\t"
 | 
				
			||||
        "  cpse %[scale], r1\n\t"
 | 
				
			||||
        "  subi %[j], 0xFF\n\t"
 | 
				
			||||
        "L_%=: \n\t"
 | 
				
			||||
        : [j] "+a" (j)
 | 
				
			||||
        : [i] "a" (i), [scale] "a" (scale)
 | 
				
			||||
        : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    return j;
 | 
				
			||||
    // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | 
				
			||||
    // asm volatile(
 | 
				
			||||
    //      "      tst %0           \n"
 | 
				
			||||
    //      "      breq L_%=        \n"
 | 
				
			||||
    //      "      mul %0, %1       \n"
 | 
				
			||||
    //      "      mov %0, r1       \n"
 | 
				
			||||
    //      "      add %0, %2       \n"
 | 
				
			||||
    //      "      clr __zero_reg__ \n"
 | 
				
			||||
    //      "L_%=:                  \n"
 | 
				
			||||
 | 
				
			||||
    //      : "+a" (i)
 | 
				
			||||
    //      : "a" (scale), "a" (nonzeroscale)
 | 
				
			||||
    //      : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    // // Return the result
 | 
				
			||||
    // return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for scale8_video available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// This version of scale8 does not clean up the R1 register on AVR
 | 
				
			||||
/// If you are doing several 'scale8's in a row, use this, and
 | 
				
			||||
/// then explicitly call cleanup_R1.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
 | 
				
			||||
{
 | 
				
			||||
#if SCALE8_C == 1
 | 
				
			||||
#if (FASTLED_SCALE8_FIXED == 1)
 | 
				
			||||
    return (((uint16_t)i) * ((uint16_t)(scale)+1)) >> 8;
 | 
				
			||||
#else
 | 
				
			||||
    return ((int)i * (int)(scale) ) >> 8;
 | 
				
			||||
#endif
 | 
				
			||||
#elif SCALE8_AVRASM == 1
 | 
				
			||||
    asm volatile(
 | 
				
			||||
      #if (FASTLED_SCALE8_FIXED==1)
 | 
				
			||||
              // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
 | 
				
			||||
              "mul %0, %1          \n\t"
 | 
				
			||||
              // Add i to r0, possibly setting the carry flag
 | 
				
			||||
              "add r0, %0         \n\t"
 | 
				
			||||
              // load the immediate 0 into i (note, this does _not_ touch any flags)
 | 
				
			||||
              "ldi %0, 0x00       \n\t"
 | 
				
			||||
              // walk and chew gum at the same time
 | 
				
			||||
              "adc %0, r1          \n\t"
 | 
				
			||||
      #else
 | 
				
			||||
         /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
 | 
				
			||||
         "mul %0, %1    \n\t"
 | 
				
			||||
         /* Move the high 8-bits of the product (r1) back to i */
 | 
				
			||||
         "mov %0, r1    \n\t"
 | 
				
			||||
      #endif
 | 
				
			||||
         /* R1 IS LEFT DIRTY HERE; YOU MUST ZERO IT OUT YOURSELF  */
 | 
				
			||||
         /* "clr __zero_reg__    \n\t" */
 | 
				
			||||
 | 
				
			||||
         : "+a" (i)      /* writes to i */
 | 
				
			||||
         : "a"  (scale)  /* uses scale */
 | 
				
			||||
         : "r0", "r1"    /* clobbers r0, r1 */ );
 | 
				
			||||
 | 
				
			||||
    // Return the result
 | 
				
			||||
    return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for scale8_LEAVING_R1_DIRTY available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// This version of scale8_video does not clean up the R1 register on AVR
 | 
				
			||||
/// If you are doing several 'scale8_video's in a row, use this, and
 | 
				
			||||
/// then explicitly call cleanup_R1.
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
 | 
				
			||||
{
 | 
				
			||||
#if SCALE8_C == 1 || defined(LIB8_ATTINY)
 | 
				
			||||
    uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
 | 
				
			||||
    // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | 
				
			||||
    // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
 | 
				
			||||
    return j;
 | 
				
			||||
#elif SCALE8_AVRASM == 1
 | 
				
			||||
    uint8_t j=0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
        "  tst %[i]\n\t"
 | 
				
			||||
        "  breq L_%=\n\t"
 | 
				
			||||
        "  mul %[i], %[scale]\n\t"
 | 
				
			||||
        "  mov %[j], r1\n\t"
 | 
				
			||||
        "  breq L_%=\n\t"
 | 
				
			||||
        "  subi %[j], 0xFF\n\t"
 | 
				
			||||
        "L_%=: \n\t"
 | 
				
			||||
        : [j] "+a" (j)
 | 
				
			||||
        : [i] "a" (i), [scale] "a" (scale)
 | 
				
			||||
        : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    return j;
 | 
				
			||||
    // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | 
				
			||||
    // asm volatile(
 | 
				
			||||
    //      "      tst %0           \n"
 | 
				
			||||
    //      "      breq L_%=        \n"
 | 
				
			||||
    //      "      mul %0, %1       \n"
 | 
				
			||||
    //      "      mov %0, r1       \n"
 | 
				
			||||
    //      "      add %0, %2       \n"
 | 
				
			||||
    //      "      clr __zero_reg__ \n"
 | 
				
			||||
    //      "L_%=:                  \n"
 | 
				
			||||
 | 
				
			||||
    //      : "+a" (i)
 | 
				
			||||
    //      : "a" (scale), "a" (nonzeroscale)
 | 
				
			||||
    //      : "r0", "r1");
 | 
				
			||||
 | 
				
			||||
    // // Return the result
 | 
				
			||||
    // return i;
 | 
				
			||||
#else
 | 
				
			||||
#error "No implementation for scale8_video_LEAVING_R1_DIRTY available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Clean up the r1 register after a series of *LEAVING_R1_DIRTY calls
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE void cleanup_R1(void)
 | 
				
			||||
{
 | 
				
			||||
#if CLEANUP_R1_AVRASM == 1
 | 
				
			||||
    // Restore r1 to "0"; it's expected to always be that
 | 
				
			||||
    asm volatile( "clr __zero_reg__  \n\t" : : : "r1" );
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// scale a 16-bit unsigned value by an 8-bit value,
 | 
				
			||||
///         considered as numerator of a fraction whose denominator
 | 
				
			||||
///         is 256. In other words, it computes i * (scale / 256)
 | 
				
			||||
 | 
				
			||||
LIB8STATIC_ALWAYS_INLINE uint16_t scale16by8( uint16_t i, fract8 scale )
 | 
				
			||||
{
 | 
				
			||||
#if SCALE16BY8_C == 1
 | 
				
			||||
    uint16_t result;
 | 
				
			||||
#if FASTLED_SCALE8_FIXED == 1
 | 
				
			||||
    result = (i * (1+((uint16_t)scale))) >> 8;
 | 
				
			||||
#else
 | 
				
			||||
    result = (i * scale) / 256;
 | 
				
			||||
#endif
 | 
				
			||||
    return result;
 | 
				
			||||
#elif SCALE16BY8_AVRASM == 1
 | 
				
			||||
#if FASTLED_SCALE8_FIXED == 1
 | 
				
			||||
    uint16_t result = 0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.A = HighByte( (i.A x scale) + i.A )
 | 
				
			||||
                 "  mul %A[i], %[scale]                 \n\t"
 | 
				
			||||
                 "  add r0, %A[i]                       \n\t"
 | 
				
			||||
            //   "  adc r1, [zero]                      \n\t"
 | 
				
			||||
            //   "  mov %A[result], r1                  \n\t"
 | 
				
			||||
                 "  adc %A[result], r1                  \n\t"
 | 
				
			||||
 | 
				
			||||
                 // result.A-B += i.B x scale
 | 
				
			||||
                 "  mul %B[i], %[scale]                 \n\t"
 | 
				
			||||
                 "  add %A[result], r0                  \n\t"
 | 
				
			||||
                 "  adc %B[result], r1                  \n\t"
 | 
				
			||||
 | 
				
			||||
                 // cleanup r1
 | 
				
			||||
                 "  clr __zero_reg__                    \n\t"
 | 
				
			||||
 | 
				
			||||
                 // result.A-B += i.B
 | 
				
			||||
                 "  add %A[result], %B[i]               \n\t"
 | 
				
			||||
                 "  adc %B[result], __zero_reg__        \n\t"
 | 
				
			||||
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i), [scale] "r" (scale)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
    return result;
 | 
				
			||||
#else
 | 
				
			||||
    uint16_t result = 0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
         // result.A = HighByte(i.A x j )
 | 
				
			||||
         "  mul %A[i], %[scale]                 \n\t"
 | 
				
			||||
         "  mov %A[result], r1                  \n\t"
 | 
				
			||||
         //"  clr %B[result]                      \n\t"
 | 
				
			||||
 | 
				
			||||
         // result.A-B += i.B x j
 | 
				
			||||
         "  mul %B[i], %[scale]                 \n\t"
 | 
				
			||||
         "  add %A[result], r0                  \n\t"
 | 
				
			||||
         "  adc %B[result], r1                  \n\t"
 | 
				
			||||
 | 
				
			||||
         // cleanup r1
 | 
				
			||||
         "  clr __zero_reg__                    \n\t"
 | 
				
			||||
 | 
				
			||||
         : [result] "+r" (result)
 | 
				
			||||
         : [i] "r" (i), [scale] "r" (scale)
 | 
				
			||||
         : "r0", "r1"
 | 
				
			||||
         );
 | 
				
			||||
    return result;
 | 
				
			||||
#endif
 | 
				
			||||
#else
 | 
				
			||||
    #error "No implementation for scale16by8 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// scale a 16-bit unsigned value by a 16-bit value,
 | 
				
			||||
///         considered as numerator of a fraction whose denominator
 | 
				
			||||
///         is 65536. In other words, it computes i * (scale / 65536)
 | 
				
			||||
 | 
				
			||||
LIB8STATIC uint16_t scale16( uint16_t i, fract16 scale )
 | 
				
			||||
{
 | 
				
			||||
  #if SCALE16_C == 1
 | 
				
			||||
    uint16_t result;
 | 
				
			||||
#if FASTLED_SCALE8_FIXED == 1
 | 
				
			||||
    result = ((uint32_t)(i) * (1+(uint32_t)(scale))) / 65536;
 | 
				
			||||
#else
 | 
				
			||||
    result = ((uint32_t)(i) * (uint32_t)(scale)) / 65536;
 | 
				
			||||
#endif
 | 
				
			||||
    return result;
 | 
				
			||||
#elif SCALE16_AVRASM == 1
 | 
				
			||||
#if FASTLED_SCALE8_FIXED == 1
 | 
				
			||||
    // implemented sort of like
 | 
				
			||||
    //   result = ((i * scale) + i ) / 65536
 | 
				
			||||
    //
 | 
				
			||||
    // why not like this, you may ask?
 | 
				
			||||
    //   result = (i * (scale+1)) / 65536
 | 
				
			||||
    // the answer is that if scale is 65535, then scale+1
 | 
				
			||||
    // will be zero, which is not what we want.
 | 
				
			||||
    uint32_t result;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.A-B  = i.A x scale.A
 | 
				
			||||
                 "  mul %A[i], %A[scale]                 \n\t"
 | 
				
			||||
                 //  save results...
 | 
				
			||||
                 // basic idea:
 | 
				
			||||
                 //"  mov %A[result], r0                 \n\t"
 | 
				
			||||
                 //"  mov %B[result], r1                 \n\t"
 | 
				
			||||
                 // which can be written as...
 | 
				
			||||
                 "  movw %A[result], r0                   \n\t"
 | 
				
			||||
                 // Because we're going to add i.A-B to
 | 
				
			||||
                 // result.A-D, we DO need to keep both
 | 
				
			||||
                 // the r0 and r1 portions of the product
 | 
				
			||||
                 // UNlike in the 'unfixed scale8' version.
 | 
				
			||||
                 // So the movw here is needed.
 | 
				
			||||
                 : [result] "=r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                 [scale] "r" (scale)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.C-D  = i.B x scale.B
 | 
				
			||||
                 "  mul %B[i], %B[scale]                 \n\t"
 | 
				
			||||
                 //"  mov %C[result], r0                 \n\t"
 | 
				
			||||
                 //"  mov %D[result], r1                 \n\t"
 | 
				
			||||
                 "  movw %C[result], r0                   \n\t"
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                 [scale] "r" (scale)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    const uint8_t  zero = 0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.B-D += i.B x scale.A
 | 
				
			||||
                 "  mul %B[i], %A[scale]                 \n\t"
 | 
				
			||||
 | 
				
			||||
                 "  add %B[result], r0                   \n\t"
 | 
				
			||||
                 "  adc %C[result], r1                   \n\t"
 | 
				
			||||
                 "  adc %D[result], %[zero]              \n\t"
 | 
				
			||||
 | 
				
			||||
                 // result.B-D += i.A x scale.B
 | 
				
			||||
                 "  mul %A[i], %B[scale]                 \n\t"
 | 
				
			||||
 | 
				
			||||
                 "  add %B[result], r0                   \n\t"
 | 
				
			||||
                 "  adc %C[result], r1                   \n\t"
 | 
				
			||||
                 "  adc %D[result], %[zero]              \n\t"
 | 
				
			||||
 | 
				
			||||
                 // cleanup r1
 | 
				
			||||
                 "  clr r1                               \n\t"
 | 
				
			||||
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                 [scale] "r" (scale),
 | 
				
			||||
                 [zero] "r" (zero)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.A-D += i.A-B
 | 
				
			||||
                 "  add %A[result], %A[i]                \n\t"
 | 
				
			||||
                 "  adc %B[result], %B[i]                \n\t"
 | 
				
			||||
                 "  adc %C[result], %[zero]              \n\t"
 | 
				
			||||
                 "  adc %D[result], %[zero]              \n\t"
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                 [zero] "r" (zero)
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    result = result >> 16;
 | 
				
			||||
    return result;
 | 
				
			||||
#else
 | 
				
			||||
    uint32_t result;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.A-B  = i.A x scale.A
 | 
				
			||||
                 "  mul %A[i], %A[scale]                 \n\t"
 | 
				
			||||
                 //  save results...
 | 
				
			||||
                 // basic idea:
 | 
				
			||||
                 //"  mov %A[result], r0                 \n\t"
 | 
				
			||||
                 //"  mov %B[result], r1                 \n\t"
 | 
				
			||||
                 // which can be written as...
 | 
				
			||||
                 "  movw %A[result], r0                   \n\t"
 | 
				
			||||
                 // We actually don't need to do anything with r0,
 | 
				
			||||
                 // as result.A is never used again here, so we
 | 
				
			||||
                 // could just move the high byte, but movw is
 | 
				
			||||
                 // one clock cycle, just like mov, so might as
 | 
				
			||||
                 // well, in case we want to use this code for
 | 
				
			||||
                 // a generic 16x16 multiply somewhere.
 | 
				
			||||
 | 
				
			||||
                 : [result] "=r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                   [scale] "r" (scale)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.C-D  = i.B x scale.B
 | 
				
			||||
                 "  mul %B[i], %B[scale]                 \n\t"
 | 
				
			||||
                 //"  mov %C[result], r0                 \n\t"
 | 
				
			||||
                 //"  mov %D[result], r1                 \n\t"
 | 
				
			||||
                 "  movw %C[result], r0                   \n\t"
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                   [scale] "r" (scale)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    const uint8_t  zero = 0;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 // result.B-D += i.B x scale.A
 | 
				
			||||
                 "  mul %B[i], %A[scale]                 \n\t"
 | 
				
			||||
 | 
				
			||||
                 "  add %B[result], r0                   \n\t"
 | 
				
			||||
                 "  adc %C[result], r1                   \n\t"
 | 
				
			||||
                 "  adc %D[result], %[zero]              \n\t"
 | 
				
			||||
 | 
				
			||||
                 // result.B-D += i.A x scale.B
 | 
				
			||||
                 "  mul %A[i], %B[scale]                 \n\t"
 | 
				
			||||
 | 
				
			||||
                 "  add %B[result], r0                   \n\t"
 | 
				
			||||
                 "  adc %C[result], r1                   \n\t"
 | 
				
			||||
                 "  adc %D[result], %[zero]              \n\t"
 | 
				
			||||
 | 
				
			||||
                 // cleanup r1
 | 
				
			||||
                 "  clr r1                               \n\t"
 | 
				
			||||
 | 
				
			||||
                 : [result] "+r" (result)
 | 
				
			||||
                 : [i] "r" (i),
 | 
				
			||||
                   [scale] "r" (scale),
 | 
				
			||||
                   [zero] "r" (zero)
 | 
				
			||||
                 : "r0", "r1"
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    result = result >> 16;
 | 
				
			||||
    return result;
 | 
				
			||||
#endif
 | 
				
			||||
#else
 | 
				
			||||
    #error "No implementation for scale16 available."
 | 
				
			||||
#endif
 | 
				
			||||
}
 | 
				
			||||
///@}
 | 
				
			||||
 | 
				
			||||
///@defgroup Dimming Dimming and brightening functions
 | 
				
			||||
///
 | 
				
			||||
/// Dimming and brightening functions
 | 
				
			||||
///
 | 
				
			||||
/// The eye does not respond in a linear way to light.
 | 
				
			||||
/// High speed PWM'd LEDs at 50% duty cycle appear far
 | 
				
			||||
/// brighter then the 'half as bright' you might expect.
 | 
				
			||||
///
 | 
				
			||||
/// If you want your midpoint brightness leve (128) to
 | 
				
			||||
/// appear half as bright as 'full' brightness (255), you
 | 
				
			||||
/// have to apply a 'dimming function'.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
/// Adjust a scaling value for dimming
 | 
				
			||||
LIB8STATIC uint8_t dim8_raw( uint8_t x)
 | 
				
			||||
{
 | 
				
			||||
    return scale8( x, x);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Adjust a scaling value for dimming for video (value will never go below 1)
 | 
				
			||||
LIB8STATIC uint8_t dim8_video( uint8_t x)
 | 
				
			||||
{
 | 
				
			||||
    return scale8_video( x, x);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Linear version of the dimming function that halves for values < 128
 | 
				
			||||
LIB8STATIC uint8_t dim8_lin( uint8_t x )
 | 
				
			||||
{
 | 
				
			||||
    if( x & 0x80 ) {
 | 
				
			||||
        x = scale8( x, x);
 | 
				
			||||
    } else {
 | 
				
			||||
        x += 1;
 | 
				
			||||
        x /= 2;
 | 
				
			||||
    }
 | 
				
			||||
    return x;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// inverse of the dimming function, brighten a value
 | 
				
			||||
LIB8STATIC uint8_t brighten8_raw( uint8_t x)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t ix = 255 - x;
 | 
				
			||||
    return 255 - scale8( ix, ix);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// inverse of the dimming function, brighten a value
 | 
				
			||||
LIB8STATIC uint8_t brighten8_video( uint8_t x)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t ix = 255 - x;
 | 
				
			||||
    return 255 - scale8_video( ix, ix);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// inverse of the dimming function, brighten a value
 | 
				
			||||
LIB8STATIC uint8_t brighten8_lin( uint8_t x )
 | 
				
			||||
{
 | 
				
			||||
    uint8_t ix = 255 - x;
 | 
				
			||||
    if( ix & 0x80 ) {
 | 
				
			||||
        ix = scale8( ix, ix);
 | 
				
			||||
    } else {
 | 
				
			||||
        ix += 1;
 | 
				
			||||
        ix /= 2;
 | 
				
			||||
    }
 | 
				
			||||
    return 255 - ix;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///@}
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,259 @@
 | 
				
			||||
#ifndef __INC_LIB8TION_TRIG_H
 | 
				
			||||
#define __INC_LIB8TION_TRIG_H
 | 
				
			||||
 | 
				
			||||
///@ingroup lib8tion
 | 
				
			||||
 | 
				
			||||
///@defgroup Trig Fast trig functions
 | 
				
			||||
/// Fast 8 and 16-bit approximations of sin(x) and cos(x).
 | 
				
			||||
///        Don't use these approximations for calculating the
 | 
				
			||||
///        trajectory of a rocket to Mars, but they're great
 | 
				
			||||
///        for art projects and LED displays.
 | 
				
			||||
///
 | 
				
			||||
///        On Arduino/AVR, the 16-bit approximation is more than
 | 
				
			||||
///        10X faster than floating point sin(x) and cos(x), while
 | 
				
			||||
/// the 8-bit approximation is more than 20X faster.
 | 
				
			||||
///@{
 | 
				
			||||
 | 
				
			||||
#if defined(__AVR__)
 | 
				
			||||
#define sin16 sin16_avr
 | 
				
			||||
#else
 | 
				
			||||
#define sin16 sin16_C
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
/// Fast 16-bit approximation of sin(x). This approximation never varies more than
 | 
				
			||||
/// 0.69% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = sin(x) * 32767.0;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-65535
 | 
				
			||||
/// @returns sin of theta, value between -32767 to 32767.
 | 
				
			||||
LIB8STATIC int16_t sin16_avr( uint16_t theta )
 | 
				
			||||
{
 | 
				
			||||
    static const uint8_t data[] =
 | 
				
			||||
    { 0,         0,         49, 0, 6393%256,   6393/256, 48, 0,
 | 
				
			||||
      12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0,
 | 
				
			||||
      23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0,
 | 
				
			||||
      30273%256, 30273/256, 14, 0, 32137%256, 32137/256,  4 /*,0*/ };
 | 
				
			||||
 | 
				
			||||
    uint16_t offset = (theta & 0x3FFF);
 | 
				
			||||
 | 
				
			||||
    // AVR doesn't have a multi-bit shift instruction,
 | 
				
			||||
    // so if we say "offset >>= 3", gcc makes a tiny loop.
 | 
				
			||||
    // Inserting empty volatile statements between each
 | 
				
			||||
    // bit shift forces gcc to unroll the loop.
 | 
				
			||||
    offset >>= 1; // 0..8191
 | 
				
			||||
    asm volatile("");
 | 
				
			||||
    offset >>= 1; // 0..4095
 | 
				
			||||
    asm volatile("");
 | 
				
			||||
    offset >>= 1; // 0..2047
 | 
				
			||||
 | 
				
			||||
    if( theta & 0x4000 ) offset = 2047 - offset;
 | 
				
			||||
 | 
				
			||||
    uint8_t sectionX4;
 | 
				
			||||
    sectionX4 = offset / 256;
 | 
				
			||||
    sectionX4 *= 4;
 | 
				
			||||
 | 
				
			||||
    uint8_t m;
 | 
				
			||||
 | 
				
			||||
    union {
 | 
				
			||||
        uint16_t b;
 | 
				
			||||
        struct {
 | 
				
			||||
            uint8_t blo;
 | 
				
			||||
            uint8_t bhi;
 | 
				
			||||
        };
 | 
				
			||||
    } u;
 | 
				
			||||
 | 
				
			||||
    //in effect u.b = blo + (256 * bhi);
 | 
				
			||||
    u.blo = data[ sectionX4 ];
 | 
				
			||||
    u.bhi = data[ sectionX4 + 1];
 | 
				
			||||
    m     = data[ sectionX4 + 2];
 | 
				
			||||
 | 
				
			||||
    uint8_t secoffset8 = (uint8_t)(offset) / 2;
 | 
				
			||||
 | 
				
			||||
    uint16_t mx = m * secoffset8;
 | 
				
			||||
 | 
				
			||||
    int16_t  y  = mx + u.b;
 | 
				
			||||
    if( theta & 0x8000 ) y = -y;
 | 
				
			||||
 | 
				
			||||
    return y;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Fast 16-bit approximation of sin(x). This approximation never varies more than
 | 
				
			||||
/// 0.69% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = sin(x) * 32767.0;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-65535
 | 
				
			||||
/// @returns sin of theta, value between -32767 to 32767.
 | 
				
			||||
LIB8STATIC int16_t sin16_C( uint16_t theta )
 | 
				
			||||
{
 | 
				
			||||
    static const uint16_t base[] =
 | 
				
			||||
    { 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 };
 | 
				
			||||
    static const uint8_t slope[] =
 | 
				
			||||
    { 49, 48, 44, 38, 31, 23, 14, 4 };
 | 
				
			||||
 | 
				
			||||
    uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047
 | 
				
			||||
    if( theta & 0x4000 ) offset = 2047 - offset;
 | 
				
			||||
 | 
				
			||||
    uint8_t section = offset / 256; // 0..7
 | 
				
			||||
    uint16_t b   = base[section];
 | 
				
			||||
    uint8_t  m   = slope[section];
 | 
				
			||||
 | 
				
			||||
    uint8_t secoffset8 = (uint8_t)(offset) / 2;
 | 
				
			||||
 | 
				
			||||
    uint16_t mx = m * secoffset8;
 | 
				
			||||
    int16_t  y  = mx + b;
 | 
				
			||||
 | 
				
			||||
    if( theta & 0x8000 ) y = -y;
 | 
				
			||||
 | 
				
			||||
    return y;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// Fast 16-bit approximation of cos(x). This approximation never varies more than
 | 
				
			||||
/// 0.69% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = cos(x) * 32767.0;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-65535
 | 
				
			||||
/// @returns sin of theta, value between -32767 to 32767.
 | 
				
			||||
LIB8STATIC int16_t cos16( uint16_t theta)
 | 
				
			||||
{
 | 
				
			||||
    return sin16( theta + 16384);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///////////////////////////////////////////////////////////////////////
 | 
				
			||||
 | 
				
			||||
// sin8 & cos8
 | 
				
			||||
//        Fast 8-bit approximations of sin(x) & cos(x).
 | 
				
			||||
//        Input angle is an unsigned int from 0-255.
 | 
				
			||||
//        Output is an unsigned int from 0 to 255.
 | 
				
			||||
//
 | 
				
			||||
//        This approximation can vary to to 2%
 | 
				
			||||
//        from the floating point value you'd get by doing
 | 
				
			||||
//          float s = (sin( x ) * 128.0) + 128;
 | 
				
			||||
//
 | 
				
			||||
//        Don't use this approximation for calculating the
 | 
				
			||||
//        "real" trigonometric calculations, but it's great
 | 
				
			||||
//        for art projects and LED displays.
 | 
				
			||||
//
 | 
				
			||||
//        On Arduino/AVR, this approximation is more than
 | 
				
			||||
//        20X faster than floating point sin(x) and cos(x)
 | 
				
			||||
 | 
				
			||||
#if defined(__AVR__) && !defined(LIB8_ATTINY)
 | 
				
			||||
#define sin8 sin8_avr
 | 
				
			||||
#else
 | 
				
			||||
#define sin8 sin8_C
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
const uint8_t b_m16_interleave[] = { 0, 49, 49, 41, 90, 27, 117, 10 };
 | 
				
			||||
 | 
				
			||||
/// Fast 8-bit approximation of sin(x). This approximation never varies more than
 | 
				
			||||
/// 2% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = (sin(x) * 128.0) + 128;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-255
 | 
				
			||||
/// @returns sin of theta, value between 0 and 255
 | 
				
			||||
LIB8STATIC uint8_t  sin8_avr( uint8_t theta)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t offset = theta;
 | 
				
			||||
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 "sbrc %[theta],6         \n\t"
 | 
				
			||||
                 "com  %[offset]           \n\t"
 | 
				
			||||
                 : [theta] "+r" (theta), [offset] "+r" (offset)
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    offset &= 0x3F; // 0..63
 | 
				
			||||
 | 
				
			||||
    uint8_t secoffset  = offset & 0x0F; // 0..15
 | 
				
			||||
    if( theta & 0x40) secoffset++;
 | 
				
			||||
 | 
				
			||||
    uint8_t m16; uint8_t b;
 | 
				
			||||
 | 
				
			||||
    uint8_t section = offset >> 4; // 0..3
 | 
				
			||||
    uint8_t s2 = section * 2;
 | 
				
			||||
 | 
				
			||||
    const uint8_t* p = b_m16_interleave;
 | 
				
			||||
    p += s2;
 | 
				
			||||
    b   = *p;
 | 
				
			||||
    p++;
 | 
				
			||||
    m16 = *p;
 | 
				
			||||
 | 
				
			||||
    uint8_t mx;
 | 
				
			||||
    uint8_t xr1;
 | 
				
			||||
    asm volatile(
 | 
				
			||||
                 "mul %[m16],%[secoffset]   \n\t"
 | 
				
			||||
                 "mov %[mx],r0              \n\t"
 | 
				
			||||
                 "mov %[xr1],r1             \n\t"
 | 
				
			||||
                 "eor  r1, r1               \n\t"
 | 
				
			||||
                 "swap %[mx]                \n\t"
 | 
				
			||||
                 "andi %[mx],0x0F           \n\t"
 | 
				
			||||
                 "swap %[xr1]               \n\t"
 | 
				
			||||
                 "andi %[xr1], 0xF0         \n\t"
 | 
				
			||||
                 "or   %[mx], %[xr1]        \n\t"
 | 
				
			||||
                 : [mx] "=d" (mx), [xr1] "=d" (xr1)
 | 
				
			||||
                 : [m16] "d" (m16), [secoffset] "d" (secoffset)
 | 
				
			||||
                 );
 | 
				
			||||
 | 
				
			||||
    int8_t y = mx + b;
 | 
				
			||||
    if( theta & 0x80 ) y = -y;
 | 
				
			||||
 | 
				
			||||
    y += 128;
 | 
				
			||||
 | 
				
			||||
    return y;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
/// Fast 8-bit approximation of sin(x). This approximation never varies more than
 | 
				
			||||
/// 2% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = (sin(x) * 128.0) + 128;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-255
 | 
				
			||||
/// @returns sin of theta, value between 0 and 255
 | 
				
			||||
LIB8STATIC uint8_t sin8_C( uint8_t theta)
 | 
				
			||||
{
 | 
				
			||||
    uint8_t offset = theta;
 | 
				
			||||
    if( theta & 0x40 ) {
 | 
				
			||||
        offset = (uint8_t)255 - offset;
 | 
				
			||||
    }
 | 
				
			||||
    offset &= 0x3F; // 0..63
 | 
				
			||||
 | 
				
			||||
    uint8_t secoffset  = offset & 0x0F; // 0..15
 | 
				
			||||
    if( theta & 0x40) secoffset++;
 | 
				
			||||
 | 
				
			||||
    uint8_t section = offset >> 4; // 0..3
 | 
				
			||||
    uint8_t s2 = section * 2;
 | 
				
			||||
    const uint8_t* p = b_m16_interleave;
 | 
				
			||||
    p += s2;
 | 
				
			||||
    uint8_t b   =  *p;
 | 
				
			||||
    p++;
 | 
				
			||||
    uint8_t m16 =  *p;
 | 
				
			||||
 | 
				
			||||
    uint8_t mx = (m16 * secoffset) >> 4;
 | 
				
			||||
 | 
				
			||||
    int8_t y = mx + b;
 | 
				
			||||
    if( theta & 0x80 ) y = -y;
 | 
				
			||||
 | 
				
			||||
    y += 128;
 | 
				
			||||
 | 
				
			||||
    return y;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
/// Fast 8-bit approximation of cos(x). This approximation never varies more than
 | 
				
			||||
/// 2% from the floating point value you'd get by doing
 | 
				
			||||
///
 | 
				
			||||
///     float s = (cos(x) * 128.0) + 128;
 | 
				
			||||
///
 | 
				
			||||
/// @param theta input angle from 0-255
 | 
				
			||||
/// @returns sin of theta, value between 0 and 255
 | 
				
			||||
LIB8STATIC uint8_t cos8( uint8_t theta)
 | 
				
			||||
{
 | 
				
			||||
    return sin8( theta + 64);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
///@}
 | 
				
			||||
#endif
 | 
				
			||||
@ -0,0 +1,26 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_ALPHAS_MODS
 | 
				
			||||
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
// alphas = color1, mods = color2
 | 
				
			||||
bool rgb_matrix_alphas_mods(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  RGB rgb1 = hsv_to_rgb(hsv);
 | 
				
			||||
  hsv.h += rgb_matrix_config.speed;
 | 
				
			||||
  RGB rgb2 = hsv_to_rgb(hsv);
 | 
				
			||||
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    if (g_rgb_leds[i].modifier) {
 | 
				
			||||
      rgb_matrix_set_color(i, rgb2.r, rgb2.g, rgb2.b);
 | 
				
			||||
    } else {
 | 
				
			||||
      rgb_matrix_set_color(i, rgb1.r, rgb1.g, rgb1.b);
 | 
				
			||||
    }
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_ALPHAS_MODS
 | 
				
			||||
@ -0,0 +1,19 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_BREATHING
 | 
				
			||||
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_breathing(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 8);
 | 
				
			||||
  uint8_t val = scale8(abs8(sin8(time) - 128) * 2, rgb_matrix_config.val);
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, val };
 | 
				
			||||
  RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_BREATHING
 | 
				
			||||
@ -0,0 +1,21 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_CYCLE_ALL
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_cycle_all(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    hsv.h = time;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_CYCLE_ALL
 | 
				
			||||
@ -0,0 +1,22 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_cycle_left_right(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = point.x - time;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT
 | 
				
			||||
@ -0,0 +1,22 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_CYCLE_UP_DOWN
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_cycle_up_down(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = point.y - time;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_CYCLE_UP_DOWN
 | 
				
			||||
@ -0,0 +1,74 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_DIGITAL_RAIN
 | 
				
			||||
 | 
				
			||||
#ifndef RGB_DIGITAL_RAIN_DROPS
 | 
				
			||||
    // lower the number for denser effect/wider keyboard
 | 
				
			||||
    #define RGB_DIGITAL_RAIN_DROPS 24
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_digital_rain(bool init, uint8_t iter) {
 | 
				
			||||
  // algorithm ported from https://github.com/tremby/Kaleidoscope-LEDEffect-DigitalRain
 | 
				
			||||
  const uint8_t drop_ticks           = 28;
 | 
				
			||||
  const uint8_t pure_green_intensity = 0xd0;
 | 
				
			||||
  const uint8_t max_brightness_boost = 0xc0;
 | 
				
			||||
  const uint8_t max_intensity        = 0xff;
 | 
				
			||||
 | 
				
			||||
  static uint8_t map[MATRIX_COLS][MATRIX_ROWS] = {{0}};
 | 
				
			||||
  static uint8_t drop = 0;
 | 
				
			||||
 | 
				
			||||
  if (init) {
 | 
				
			||||
    rgb_matrix_set_color_all(0, 0, 0);
 | 
				
			||||
    memset(map, 0, sizeof map);
 | 
				
			||||
    drop = 0;
 | 
				
			||||
  }
 | 
				
			||||
  for (uint8_t col = 0; col < MATRIX_COLS; col++) {
 | 
				
			||||
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
 | 
				
			||||
      if (row == 0 && drop == 0 && rand() < RAND_MAX / RGB_DIGITAL_RAIN_DROPS) {
 | 
				
			||||
        // top row, pixels have just fallen and we're
 | 
				
			||||
        // making a new rain drop in this column
 | 
				
			||||
        map[col][row] = max_intensity;
 | 
				
			||||
      }
 | 
				
			||||
      else if (map[col][row] > 0 && map[col][row] < max_intensity) {
 | 
				
			||||
        // neither fully bright nor dark, decay it
 | 
				
			||||
        map[col][row]--;
 | 
				
			||||
      }
 | 
				
			||||
      // set the pixel colour
 | 
				
			||||
      uint8_t led[LED_HITS_TO_REMEMBER];
 | 
				
			||||
      uint8_t led_count = rgb_matrix_map_row_column_to_led(row, col, led);
 | 
				
			||||
 | 
				
			||||
      // TODO: multiple leds are supported mapped to the same row/column
 | 
				
			||||
      if (led_count > 0) {
 | 
				
			||||
        if (map[col][row] > pure_green_intensity) {
 | 
				
			||||
          const uint8_t boost = (uint8_t) ((uint16_t) max_brightness_boost * (map[col][row] - pure_green_intensity) / (max_intensity - pure_green_intensity));
 | 
				
			||||
          rgb_matrix_set_color(led[0], boost, max_intensity, boost);
 | 
				
			||||
        }
 | 
				
			||||
        else {
 | 
				
			||||
          const uint8_t green = (uint8_t) ((uint16_t) max_intensity * map[col][row] / pure_green_intensity);
 | 
				
			||||
          rgb_matrix_set_color(led[0], 0, green, 0);
 | 
				
			||||
        }
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
  }
 | 
				
			||||
  if (++drop > drop_ticks) {
 | 
				
			||||
    // reset drop timer
 | 
				
			||||
    drop = 0;
 | 
				
			||||
    for (uint8_t row = MATRIX_ROWS - 1; row > 0; row--) {
 | 
				
			||||
      for (uint8_t col = 0; col < MATRIX_COLS; col++) {
 | 
				
			||||
        // if ths is on the bottom row and bright allow decay
 | 
				
			||||
        if (row == MATRIX_ROWS - 1 && map[col][row] == max_intensity) {
 | 
				
			||||
          map[col][row]--;
 | 
				
			||||
        }
 | 
				
			||||
        // check if the pixel above is bright
 | 
				
			||||
        if (map[col][row - 1] == max_intensity) {
 | 
				
			||||
          // allow old bright pixel to decay
 | 
				
			||||
          map[col][row - 1]--;
 | 
				
			||||
          // make this pixel bright
 | 
				
			||||
          map[col][row] = max_intensity;
 | 
				
			||||
        }
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
  }
 | 
				
			||||
  return false;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_DIGITAL_RAIN
 | 
				
			||||
@ -0,0 +1,24 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_DUAL_BEACON
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_dual_beacon(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  int8_t cos_value = cos8(time) - 128;
 | 
				
			||||
  int8_t sin_value = sin8(time) - 128;
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = ((point.y - 32) * cos_value + (point.x - 112) * sin_value) / 128 + rgb_matrix_config.hue;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_DUAL_BEACON
 | 
				
			||||
@ -0,0 +1,22 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_GRADIENT_UP_DOWN
 | 
				
			||||
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_gradient_up_down(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint8_t scale = scale8(64, rgb_matrix_config.speed);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    // The y range will be 0..64, map this to 0..4
 | 
				
			||||
    // Relies on hue being 8-bit and wrapping
 | 
				
			||||
    hsv.h = rgb_matrix_config.hue + scale * (point.y >> 4);
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_GRADIENT_UP_DOWN
 | 
				
			||||
@ -0,0 +1,30 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_JELLYBEAN_RAINDROPS
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
static void jellybean_raindrops_set_color(int i) {
 | 
				
			||||
  HSV hsv = { rand() & 0xFF , rand() & 0xFF, rgb_matrix_config.val };
 | 
				
			||||
  RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
  rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_jellybean_raindrops(bool init, uint8_t iter) {
 | 
				
			||||
  if (!init) {
 | 
				
			||||
    // Change one LED every tick, make sure speed is not 0
 | 
				
			||||
    if (scale16by8(g_rgb_counters.tick, qadd8(rgb_matrix_config.speed, 16)) % 5 == 0) {
 | 
				
			||||
      jellybean_raindrops_set_color(rand() % DRIVER_LED_TOTAL);
 | 
				
			||||
    }
 | 
				
			||||
    return false;
 | 
				
			||||
  }
 | 
				
			||||
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
  for (int i = led_min; i < led_max; i++) {
 | 
				
			||||
    jellybean_raindrops_set_color(i);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_JELLYBEAN_RAINDROPS
 | 
				
			||||
@ -0,0 +1,24 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_RAINBOW_BEACON
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_rainbow_beacon(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  int16_t cos_value = 2 * (cos8(time) - 128);
 | 
				
			||||
  int16_t sin_value = 2 * (sin8(time) - 128);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = ((point.y - 32) * cos_value + (point.x - 112) * sin_value) / 128 + rgb_matrix_config.hue;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_RAINBOW_BEACON
 | 
				
			||||
@ -0,0 +1,22 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_rainbow_moving_chevron(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = abs8(point.y - 32) + (point.x - time) + rgb_matrix_config.hue;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON
 | 
				
			||||
@ -0,0 +1,24 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_RAINBOW_PINWHEELS
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_rainbow_pinwheels(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
 | 
				
			||||
  int16_t cos_value = 3 * (cos8(time) - 128);
 | 
				
			||||
  int16_t sin_value = 3 * (sin8(time) - 128);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    hsv.h = ((point.y - 32) * cos_value + (56 - abs8(point.x - 112)) * sin_value) / 128 + rgb_matrix_config.hue;
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_RAINBOW_PINWHEELS
 | 
				
			||||
@ -0,0 +1,40 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_RAINDROPS
 | 
				
			||||
#include "rgb_matrix_types.h"
 | 
				
			||||
 | 
				
			||||
extern rgb_counters_t g_rgb_counters;
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
static void raindrops_set_color(int i) {
 | 
				
			||||
  HSV hsv = { 0 , rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
 | 
				
			||||
  // Take the shortest path between hues
 | 
				
			||||
  int16_t deltaH = ((rgb_matrix_config.hue + 180) % 360 - rgb_matrix_config.hue) / 4;
 | 
				
			||||
  if (deltaH > 127) {
 | 
				
			||||
    deltaH -= 256;
 | 
				
			||||
  } else if (deltaH < -127) {
 | 
				
			||||
    deltaH += 256;
 | 
				
			||||
  }
 | 
				
			||||
 | 
				
			||||
  hsv.h = rgb_matrix_config.hue + (deltaH * (rand() & 0x03));
 | 
				
			||||
  RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
  rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_raindrops(bool init, uint8_t iter) {
 | 
				
			||||
  if (!init) {
 | 
				
			||||
    // Change one LED every tick, make sure speed is not 0
 | 
				
			||||
    if (scale16by8(g_rgb_counters.tick, qadd8(rgb_matrix_config.speed, 16)) % 10 == 0) {
 | 
				
			||||
      raindrops_set_color(rand() % DRIVER_LED_TOTAL);
 | 
				
			||||
    }
 | 
				
			||||
    return false;
 | 
				
			||||
  }
 | 
				
			||||
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
  for (int i = led_min; i < led_max; i++) {
 | 
				
			||||
    raindrops_set_color(i);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_RAINDROPS
 | 
				
			||||
@ -0,0 +1,14 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_solid_color(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
 | 
				
			||||
  RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
@ -0,0 +1,33 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifdef RGB_MATRIX_KEYPRESSES
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE
 | 
				
			||||
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
extern last_hit_t g_last_hit_tracker;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_solid_reactive(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, 255, rgb_matrix_config.val };
 | 
				
			||||
  // Max tick based on speed scale ensures results from scale16by8 with rgb_matrix_config.speed are no greater than 255
 | 
				
			||||
  uint16_t max_tick = 65535 / rgb_matrix_config.speed;
 | 
				
			||||
  // Relies on hue being 8-bit and wrapping
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    uint16_t tick = max_tick;
 | 
				
			||||
    for(uint8_t j = 0; j < g_last_hit_tracker.count; j++) {
 | 
				
			||||
      if (g_last_hit_tracker.index[j] == i && g_last_hit_tracker.tick[j] < tick) {
 | 
				
			||||
        tick = g_last_hit_tracker.tick[j];
 | 
				
			||||
        break;
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    uint16_t  offset = scale16by8(tick, rgb_matrix_config.speed);
 | 
				
			||||
    hsv.h = rgb_matrix_config.hue + qsub8(130, offset);
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON
 | 
				
			||||
#endif // RGB_MATRIX_KEYPRESSES
 | 
				
			||||
@ -0,0 +1,32 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifdef RGB_MATRIX_KEYPRESSES
 | 
				
			||||
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_SIMPLE
 | 
				
			||||
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
extern last_hit_t g_last_hit_tracker;
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_solid_reactive_simple(bool init, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
 | 
				
			||||
  // Max tick based on speed scale ensures results from scale16by8 with rgb_matrix_config.speed are no greater than 255
 | 
				
			||||
  uint16_t max_tick = 65535 / rgb_matrix_config.speed;
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    uint16_t tick = max_tick;
 | 
				
			||||
    for(uint8_t j = 0; j < g_last_hit_tracker.count; j++) {
 | 
				
			||||
      if (g_last_hit_tracker.index[j] == i && g_last_hit_tracker.tick[j] < tick) {
 | 
				
			||||
        tick = g_last_hit_tracker.tick[j];
 | 
				
			||||
        break;
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    uint16_t  offset = scale16by8(tick, rgb_matrix_config.speed);
 | 
				
			||||
    hsv.v = scale8(255 - offset, rgb_matrix_config.val);
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // DISABLE_RGB_MATRIX_SOLID_REACTIVE_SIMPLE
 | 
				
			||||
#endif // RGB_MATRIX_KEYPRESSES
 | 
				
			||||
@ -0,0 +1,42 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifdef RGB_MATRIX_KEYPRESSES
 | 
				
			||||
#if !defined(DISABLE_RGB_MATRIX_SOLID_SPLASH) || !defined(DISABLE_RGB_MATRIX_SOLID_MULTISPLASH)
 | 
				
			||||
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
extern last_hit_t g_last_hit_tracker;
 | 
				
			||||
 | 
				
			||||
static bool rgb_matrix_solid_multisplash_range(uint8_t start, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
 | 
				
			||||
  uint8_t count = g_last_hit_tracker.count;
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    hsv.v = 0;
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    for (uint8_t j = start; j < count; j++) {
 | 
				
			||||
      int16_t dx = point.x - g_last_hit_tracker.x[j];
 | 
				
			||||
      int16_t dy = point.y - g_last_hit_tracker.y[j];
 | 
				
			||||
      uint8_t dist = sqrt16(dx * dx + dy * dy);
 | 
				
			||||
      uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) - dist;
 | 
				
			||||
      if (effect > 255)
 | 
				
			||||
        effect = 255;
 | 
				
			||||
      hsv.v = qadd8(hsv.v, 255 - effect);
 | 
				
			||||
    }
 | 
				
			||||
    hsv.v = scale8(hsv.v, rgb_matrix_config.val);
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_solid_multisplash(bool init, uint8_t iter) {
 | 
				
			||||
  return rgb_matrix_solid_multisplash_range(0, iter);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_solid_splash(bool init, uint8_t iter) {
 | 
				
			||||
  return rgb_matrix_solid_multisplash_range(qsub8(g_last_hit_tracker.count, 1), iter);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // !defined(DISABLE_RGB_MATRIX_SPLASH) && !defined(DISABLE_RGB_MATRIX_MULTISPLASH)
 | 
				
			||||
#endif // RGB_MATRIX_KEYPRESSES
 | 
				
			||||
@ -0,0 +1,44 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
#ifdef RGB_MATRIX_KEYPRESSES
 | 
				
			||||
#if !defined(DISABLE_RGB_MATRIX_SPLASH) || !defined(DISABLE_RGB_MATRIX_MULTISPLASH)
 | 
				
			||||
 | 
				
			||||
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
 | 
				
			||||
extern rgb_config_t rgb_matrix_config;
 | 
				
			||||
extern last_hit_t g_last_hit_tracker;
 | 
				
			||||
 | 
				
			||||
static bool rgb_matrix_multisplash_range(uint8_t start, uint8_t iter) {
 | 
				
			||||
  RGB_MATRIX_USE_LIMITS(led_min, led_max);
 | 
				
			||||
 | 
				
			||||
  HSV hsv = { 0, rgb_matrix_config.sat, 0 };
 | 
				
			||||
  uint8_t count = g_last_hit_tracker.count;
 | 
				
			||||
  for (uint8_t i = led_min; i < led_max; i++) {
 | 
				
			||||
    hsv.h = rgb_matrix_config.hue;
 | 
				
			||||
    hsv.v = 0;
 | 
				
			||||
    point_t point = g_rgb_leds[i].point;
 | 
				
			||||
    for (uint8_t j = start; j < count; j++) {
 | 
				
			||||
      int16_t dx = point.x - g_last_hit_tracker.x[j];
 | 
				
			||||
      int16_t dy = point.y - g_last_hit_tracker.y[j];
 | 
				
			||||
      uint8_t dist = sqrt16(dx * dx + dy * dy);
 | 
				
			||||
      uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) - dist;
 | 
				
			||||
      if (effect > 255)
 | 
				
			||||
        effect = 255;
 | 
				
			||||
      hsv.h += effect;
 | 
				
			||||
      hsv.v = qadd8(hsv.v, 255 - effect);
 | 
				
			||||
    }
 | 
				
			||||
    hsv.v = scale8(hsv.v, rgb_matrix_config.val);
 | 
				
			||||
    RGB rgb = hsv_to_rgb(hsv);
 | 
				
			||||
    rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
 | 
				
			||||
  }
 | 
				
			||||
  return led_max < DRIVER_LED_TOTAL;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_multisplash(bool init, uint8_t iter) {
 | 
				
			||||
  return rgb_matrix_multisplash_range(0, iter);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
bool rgb_matrix_splash(bool init, uint8_t iter) {
 | 
				
			||||
  return rgb_matrix_multisplash_range(qsub8(g_last_hit_tracker.count, 1), iter);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
#endif // !defined(DISABLE_RGB_MATRIX_SPLASH) || !defined(DISABLE_RGB_MATRIX_MULTISPLASH)
 | 
				
			||||
#endif // RGB_MATRIX_KEYPRESSES
 | 
				
			||||
@ -0,0 +1,88 @@
 | 
				
			||||
#pragma once
 | 
				
			||||
 | 
				
			||||
#include <stdint.h>
 | 
				
			||||
#include <stdbool.h>
 | 
				
			||||
 | 
				
			||||
#if defined(__GNUC__)
 | 
				
			||||
#define PACKED __attribute__ ((__packed__))
 | 
				
			||||
#else
 | 
				
			||||
#define PACKED
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
#if defined(_MSC_VER)
 | 
				
			||||
#pragma pack( push, 1 )
 | 
				
			||||
#endif
 | 
				
			||||
 | 
				
			||||
// Last led hit
 | 
				
			||||
#ifndef LED_HITS_TO_REMEMBER
 | 
				
			||||
  #define LED_HITS_TO_REMEMBER 8
 | 
				
			||||
#endif // LED_HITS_TO_REMEMBER
 | 
				
			||||
 | 
				
			||||
#if defined(RGB_MATRIX_KEYPRESSES) || defined(RGB_MATRIX_KEYRELEASES)
 | 
				
			||||
typedef struct PACKED {
 | 
				
			||||
  uint8_t count;
 | 
				
			||||
  uint8_t x[LED_HITS_TO_REMEMBER];
 | 
				
			||||
  uint8_t y[LED_HITS_TO_REMEMBER];
 | 
				
			||||
  uint8_t index[LED_HITS_TO_REMEMBER];
 | 
				
			||||
  uint16_t tick[LED_HITS_TO_REMEMBER];
 | 
				
			||||
} last_hit_t;
 | 
				
			||||
#endif // defined(RGB_MATRIX_KEYPRESSES) || defined(RGB_MATRIX_KEYRELEASES)
 | 
				
			||||
 | 
				
			||||
typedef enum rgb_task_states {
 | 
				
			||||
  STARTING,
 | 
				
			||||
  RENDERING,
 | 
				
			||||
  FLUSHING,
 | 
				
			||||
  SYNCING
 | 
				
			||||
} rgb_task_states;
 | 
				
			||||
 | 
				
			||||
typedef struct PACKED {
 | 
				
			||||
  // Global tick at 20 Hz
 | 
				
			||||
  uint32_t tick;
 | 
				
			||||
  // Ticks since this key was last hit.
 | 
				
			||||
  uint32_t any_key_hit;
 | 
				
			||||
} rgb_counters_t;
 | 
				
			||||
 | 
				
			||||
typedef struct PACKED {
 | 
				
			||||
	uint8_t x;
 | 
				
			||||
	uint8_t y;
 | 
				
			||||
} point_t;
 | 
				
			||||
 | 
				
			||||
typedef union {
 | 
				
			||||
  uint8_t raw;
 | 
				
			||||
  struct {
 | 
				
			||||
    uint8_t row:4; // 16 max
 | 
				
			||||
    uint8_t col:4; // 16 max
 | 
				
			||||
  };
 | 
				
			||||
} matrix_co_t;
 | 
				
			||||
 | 
				
			||||
typedef struct PACKED {
 | 
				
			||||
	matrix_co_t matrix_co;
 | 
				
			||||
	point_t point;
 | 
				
			||||
	uint8_t modifier:1;
 | 
				
			||||
} rgb_led;
 | 
				
			||||
 | 
				
			||||
/*typedef union {
 | 
				
			||||
  uint32_t raw;           // 32 bits
 | 
				
			||||
  struct {
 | 
				
			||||
    bool     enable  :1;  // 1 bit
 | 
				
			||||
    uint8_t  mode    :7;  // 7 bits
 | 
				
			||||
    HSV      hsv;         // 24 bits
 | 
				
			||||
    uint8_t  speed;       // 8 bits
 | 
				
			||||
  };                      // 40 bits =(
 | 
				
			||||
} rgb_config_t;*/
 | 
				
			||||
 | 
				
			||||
typedef union {
 | 
				
			||||
  uint32_t raw;
 | 
				
			||||
  struct PACKED {
 | 
				
			||||
    bool     enable  :1;
 | 
				
			||||
    uint8_t  mode    :7;
 | 
				
			||||
    uint8_t  hue     :8;
 | 
				
			||||
    uint8_t  sat     :8;
 | 
				
			||||
    uint8_t  val     :8;
 | 
				
			||||
    uint8_t  speed   :8;//EECONFIG needs to be increased to support this
 | 
				
			||||
  };
 | 
				
			||||
} rgb_config_t;
 | 
				
			||||
 | 
				
			||||
#if defined(_MSC_VER)
 | 
				
			||||
#pragma pack( pop )
 | 
				
			||||
#endif
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue