Add documentation to the USB Class Drivers module on how to use the Host mode class drivers.

pull/1469/head
Dean Camera 15 years ago
parent 53eca61d02
commit a96d77eca7

@ -235,7 +235,116 @@
* class-specific functions. * class-specific functions.
* *
* \subsection SSec_ClassDriverHost Host Mode Class Drivers * \subsection SSec_ClassDriverHost Host Mode Class Drivers
* Implementing a Host Mode Class Driver in a user application requires a number of steps to be followed. Firstly,
* the module configuration and state structure must be added to the project source. These structures are named in a
* similar manner between classes, that of <i>USB_ClassInfo_<b>{Class Name}</b>_Host_t</i>, and are used to hold the
* complete state and configuration for each class instance. Multiple class instances is where the power of the class
* drivers lie; multiple interfaces of the same class simply require more instances of the Class Driver's ClassInfo
* structure.
*
* Inside the ClassInfo structure lies two sections, a <i>Config</i> section, and a <i>State</i> section. The Config
* section contains the instance's configuration parameters, and <b>must have all fields set by the user application</b>
* before the class driver is used. Each Device mode Class driver typically contains a set of configuration parameters
* for the endpoint size/number of the associated logical USB interface, plus any class-specific configuration parameters.
*
* The <i>State</i> section of the ClassInfo structures are designed to be controlled by the Class Drivers only for
* maintaining the Class Driver instance's state, and should not normally be set by the user application.
*
* The following is an example of a properly initialized instance of the MIDI Class Driver structure:
*
* \code
* USB_ClassInfo_MIDI_Host_t My_MIDI_Interface =
* {
* .Config =
* {
* .DataINPipeNumber = 1,
* .DataINPipeDoubleBank = false,
*
* .DataOUTPipeNumber = 2,
* .DataOUTPipeDoubleBank = false,
* },
* };
* \endcode
*
* To initialize the Class driver instance, the driver's <i><b>{Class Name}</b>_Host_ConfigurePipes()</i> function
* should be called in response to the host state machine entering the \ref HOST_STATE_Addressed state. This function
* will return an error code from the class driver's <i><b>{Class Name}</b>_EnumerationFailure_ErrorCodes_t</i> enum
* to indicate if the driver sucessfully initialized the instance and bound it to an interface in the attached device.
* Like all the class driver functions, this function takes in the address of the specific instance you wish to initialize
* - in this manner, multiple seperate instances of the same class type can be initialized. A fragment of a Class Driver
* based Host mode application may look like the following:
*
* \code
* switch (USB_HostState)
* {
* case HOST_STATE_Addressed:
* LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
*
* uint16_t ConfigDescriptorSize;
* uint8_t ConfigDescriptorData[512];
*
* if (USB_Host_GetDeviceConfigDescriptor(1, &ConfigDescriptorSize, ConfigDescriptorData,
* sizeof(ConfigDescriptorData)) != HOST_GETCONFIG_Successful)
* {
* LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
* USB_HostState = HOST_STATE_WaitForDeviceRemoval;
* break;
* }
*
* if (MIDI_Host_ConfigurePipes(&My_MIDI_Interface,
* ConfigDescriptorSize, ConfigDescriptorData) != MIDI_ENUMERROR_NoError)
* {
* LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
* USB_HostState = HOST_STATE_WaitForDeviceRemoval;
* break;
* }
* *
* // Other state handler code here
* \endcode
*
* Note that the function also required the device's configuration descriptor so that it can determine which interface
* in the device to bind to - this can be retrieved as shown in the above fragment using the
* \ref USB_Host_GetDeviceConfigDescriptor() function. If the device does not implement the interface the class driver
* is looking for, if all the matching interfaces are already bound to class driver instances or if an error occurs while
* binding to a device interface (for example, a device endpoint bank larger that the maximum supported bank size is used)
* the configuration will fail.
*
* Once initialized, it is important to maintain the class driver's state by repeatedly calling the Class Driver's
* <i><b>{Class Name}</b>_Host_USBTask()</i> function in the main program loop. The exact implementation of this
* function varies between class drivers, and can be used for any internal class driver purpose to maintain each
* instance. Again, this function uses the address of the instance to operate on, and thus needs to be called for each
* seperate instance, just like the main USB maintenance routine \ref USB_USBTask():
*
* \code
* int main(void)
* {
* SetupHardware();
*
* LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
*
* for (;;)
* {
* switch (USB_HostState)
* {
* // Host state machine handling here
* }
*
* MIDI_Host_USBTask(&My_Audio_Interface);
* USB_USBTask();
* }
* }
* \endcode
*
* Each class driver may also define a set of callback functions (which are prefixed by "CALLBACK_"
* in the function's name) which <b>must</b> also be added to the user application - refer to each
* individual class driver's documentation for mandatory callbacks. In addition, each class driver may
* also define a set of events (identifiable by their prefix of "EVENT_" in the function's name), which
* the user application <b>may</b> choose to implement, or ignore if not needed.
*
* The individual Host Mode Class Driver documentation contains more information on the non-standardized,
* class-specific functions which the user application can then use on the driver instances, such as data
* read and write routines. See each driver's individual documentation for more information on the
* class-specific functions.
*/ */
#ifndef __USB_H__ #ifndef __USB_H__

Loading…
Cancel
Save