Removed software PDI/TPI emulation from the AVRISP-MKII clone project, as it was very buggy. PDI and TPI must now be implemented via seperate headers instead of the one unified ISP/TPI/PDI header.

pull/1469/head
Dean Camera 15 years ago
parent 708a1c6166
commit ab8668b14e

@ -17,8 +17,7 @@
* is suspended before or during a transfer
*
* <b>Changed:</b>
* - AVRISP programmer project now has a more robust timeout system, allowing for an increase of the software USART speed
* for PDI and TPI programming
* - AVRISP programmer project now has a more robust timeout system
* - Added a timeout value to the TWI_StartTransmission() function, within which the addressed device must respond
* - Webserver project now uses the board LEDs to indicate the current IP configuration state
* - Added ENABLE_TELNET_SERVER compile time option to the Webserver project to disable the TELNET server if desired
@ -35,6 +34,8 @@
* - The Audio_Device_IsSampleReceived() and Audio_Device_IsReadyForNextSample() functions are now inline, to reduce overhead
* - Removed the cast to uint16_t on the set baud rate in the USBtoSerial project, so that the higher >1M baud rates can be
* selected (thanks to Steffan Woltjer)
* - Removed software PDI and TPI emulation from the AVRISP-MKII clone project as it was very buggy and slow - PDI and TPI must
* now be implemented via seperate programming headers
*
* <b>Fixed:</b>
* - Fixed software PDI/TPI programming mode in the AVRISP project not correctly toggling just the clock pin

@ -56,17 +56,12 @@
* Note that this design currently has the following limitations:
* - Minimum ISP target clock speed of 500KHz due to hardware SPI module prescaler limitations
* - No reversed/shorted target connector detection and notification
* - Very slow TPI and PDI programming when in software emulated USART mode
* - A seperate header is required for each of the ISP, PDI and TPI programming protocols that the user wishes to use
*
* On AVR models with an ADC converter, AVCC should be tied to 5V (e.g. VBUS) and the VTARGET_ADC_CHANNEL token should be
* set to an appropriate ADC channel number in the project makefile for VTARGET detection to operate correctly. On models
* without an ADC converter, VTARGET will report a fixed 5V level at all times.
*
* When compiled for the XPLAIN board target, this will automatically configure itself for the correct connections to the
* XPLAIN's XMEGA AVR, and will enable hardware PDI/TPI only programming support (since ISP mode is not needed). Note that
* the first revision XPLAIN board lacks a bootloader on the AT90USB1287, and thus for this firmware to be loaded, an external
* programmer will be required.
*
* While this application can be compiled for USB AVRs with as little as 8KB of FLASH, for full functionality 16KB or more
* of FLASH is required. On 8KB devices, ISP or PDI/TPI programming support can be disabled to reduce program size.
*
@ -128,7 +123,7 @@
* <td><b>PDI 6 Pin Layout:</b></td>
* </tr>
* <tr>
* <td>MISO <b><sup>2</sup></b></td>
* <td>Tx/Rx <b><sup>2</sup></b></td>
* <td>DATA</td>
* <td>1</td>
* </tr>
@ -148,7 +143,7 @@
* <td>4</td>
* </tr>
* <tr>
* <td>PORTx.y <b><sup>2, 3</sup></b></td>
* <td>XCLK</td>
* <td>CLOCK</td>
* <td>5</td>
* </tr>
@ -160,9 +155,7 @@
* </table>
*
* <b><sup>1</sup></b> <i>Optional, see \ref SSec_Options section - for USB AVRs with ADC modules only</i> \n
* <b><sup>2</sup></b> <i>When XPROG_VIA_HARDWARE_USART is set, the AVR's Tx and Rx become the DATA line when connected together
* via a pair of 220 ohm resistors, and the AVR's XCK pin becomes CLOCK.</i> \n
* <b><sup>3</sup></b> <i>See AUX line related tokens in the \ref SSec_Options section</i>
* <b><sup>2</sup></b> <i>The AVR's Tx and Rx become the DATA line when connected together via a pair of 220 ohm resistors</i> \n
*
* \section Sec_TPI TPI Connections
* Connections to the device for TPI programming<b><sup>1</sup></b> (when enabled):
@ -174,7 +167,7 @@
* <td><b>TPI 6 Pin Layout:</b></td>
* </tr>
* <tr>
* <td>MISO <b><sup>2</sup></b></td>
* <td>Tx/Rx <b><sup>2</sup></b></td>
* <td>DATA</td>
* <td>1</td>
* </tr>
@ -184,7 +177,7 @@
* <td>2</td>
* </tr>
* <tr>
* <td>SCLK <b><sup>2</sup></b></td>
* <td>XCLK <b><sup>2</sup></b></td>
* <td>CLOCK</td>
* <td>3</td>
* </tr>
@ -206,8 +199,7 @@
* </table>
*
* <b><sup>1</sup></b> <i>Optional, see \ref SSec_Options section - for USB AVRs with ADC modules only</i> \n
* <b><sup>2</sup></b> <i>When XPROG_VIA_HARDWARE_USART is set, the AVR's Tx and Rx become the DATA line when connected together
* via a pair of 220 ohm resistors, and the AVR's XCK pin becomes CLOCK.</i> \n
* <b><sup>2</sup></b> <i>The AVR's Tx and Rx become the DATA line when connected together via a pair of 220 ohm resistors</i> \n
* <b><sup>3</sup></b> <i>See AUX line related tokens in the \ref SSec_Options section</i>
*
* \section SSec_Options Project Options
@ -261,14 +253,6 @@
* <td>Define to enable PDI and TPI programming protocol support. <i>Ignored when compiled for the XPLAIN board.</i></td>
* </tr>
* <tr>
* <td>XPROG_VIA_HARDWARE_USART</td>
* <td>Makefile CDEFS</td>
* <td>Define to force the PDI and TPI protocols (when enabled) to use the much faster hardware USART instead of bit-banging
* to match the official AVRISP pinout. This breaks pinout compatibility with the official AVRISP MKII (and requires
* seperate ISP, PDI, and TPI programming headers) but increases programming speed dramatically.
* <i>Ignored when compiled for the XPLAIN board.</i></td>
* </tr>
* <tr>
* <td>NO_VTARGET_DETECT</td>
* <td>Makefile CDEFS</td>
* <td>Define to disable VTARGET sampling and reporting on AVR models with an ADC converter. This will cause the programmer

@ -41,113 +41,11 @@
/** Flag to indicate if the USART is currently in Tx or Rx mode. */
volatile bool IsSending;
#if !defined(XPROG_VIA_HARDWARE_USART)
/** Software USART raw frame bits for transmission/reception. */
volatile uint16_t SoftUSART_Data;
/** Bits remaining to be sent or received via the software USART - set as a GPIOR for speed. */
#define SoftUSART_BitCount GPIOR2
/** ISR to manage the PDI software USART when bit-banged PDI USART mode is selected. */
ISR(TIMER1_COMPA_vect, ISR_BLOCK)
{
/* Toggle CLOCK pin in a single cycle (see AVR datasheet) */
BITBANG_PDICLOCK_PIN = BITBANG_PDICLOCK_MASK;
/* If not sending or receiving, just exit */
if (!(SoftUSART_BitCount))
return;
/* Check to see if we are at a rising or falling edge of the clock */
if (BITBANG_PDICLOCK_PORT & BITBANG_PDICLOCK_MASK)
{
/* If at rising clock edge and we are in send mode, abort */
if (IsSending)
return;
/* Wait for the start bit when receiving */
if ((SoftUSART_BitCount == BITS_IN_USART_FRAME) && (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK))
return;
/* Shift in the bit one less than the frame size in position, so that the start bit will eventually
* be discarded leaving the data to be byte-aligned for quick access (subtract 9 as we are ORing to the MSB) */
if (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK)
((uint8_t*)&SoftUSART_Data)[1] |= (1 << (BITS_IN_USART_FRAME - 9));
SoftUSART_Data >>= 1;
SoftUSART_BitCount--;
}
else
{
/* If at falling clock edge and we are in receive mode, abort */
if (!IsSending)
return;
/* Set the data line to the next bit value */
if (((uint8_t*)&SoftUSART_Data)[0] & 0x01)
BITBANG_PDIDATA_PORT |= BITBANG_PDIDATA_MASK;
else
BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK;
SoftUSART_Data >>= 1;
SoftUSART_BitCount--;
}
}
/** ISR to manage the TPI software USART when bit-banged TPI USART mode is selected. */
ISR(TIMER1_CAPT_vect, ISR_BLOCK)
{
/* Toggle CLOCK pin in a single cycle (see AVR datasheet) */
BITBANG_TPICLOCK_PIN = BITBANG_TPICLOCK_MASK;
/* If not sending or receiving, just exit */
if (!(SoftUSART_BitCount))
return;
/* Check to see if we are at a rising or falling edge of the clock */
if (BITBANG_TPICLOCK_PORT & BITBANG_TPICLOCK_MASK)
{
/* If at rising clock edge and we are in send mode, abort */
if (IsSending)
return;
/* Wait for the start bit when receiving */
if ((SoftUSART_BitCount == BITS_IN_USART_FRAME) && (BITBANG_TPIDATA_PIN & BITBANG_TPIDATA_MASK))
return;
/* Shift in the bit one less than the frame size in position, so that the start bit will eventually
* be discarded leaving the data to be byte-aligned for quick access (subtract 9 as we are ORing to the MSB) */
if (BITBANG_TPIDATA_PIN & BITBANG_TPIDATA_MASK)
((uint8_t*)&SoftUSART_Data)[1] |= (1 << (BITS_IN_USART_FRAME - 9));
SoftUSART_Data >>= 1;
SoftUSART_BitCount--;
}
else
{
/* If at falling clock edge and we are in receive mode, abort */
if (!IsSending)
return;
/* Set the data line to the next bit value */
if (((uint8_t*)&SoftUSART_Data)[0] & 0x01)
BITBANG_TPIDATA_PORT |= BITBANG_TPIDATA_MASK;
else
BITBANG_TPIDATA_PORT &= ~BITBANG_TPIDATA_MASK;
SoftUSART_Data >>= 1;
SoftUSART_BitCount--;
}
}
#endif
/** Enables the target's PDI interface, holding the target in reset until PDI mode is exited. */
void XPROGTarget_EnableTargetPDI(void)
{
IsSending = false;
#if defined(XPROG_VIA_HARDWARE_USART)
/* Set Tx and XCK as outputs, Rx as input */
DDRD |= (1 << 5) | (1 << 3);
DDRD &= ~(1 << 2);
@ -160,24 +58,6 @@ void XPROGTarget_EnableTargetPDI(void)
UBRR1 = (F_CPU / XPROG_HARDWARE_SPEED);
UCSR1B = (1 << TXEN1);
UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
#else
/* Set DATA and CLOCK lines to outputs */
BITBANG_PDIDATA_DDR |= BITBANG_PDIDATA_MASK;
BITBANG_PDICLOCK_DDR |= BITBANG_PDICLOCK_MASK;
/* Set DATA line low for at least 1ms to ensure that the device is ready for PDI mode to be entered */
BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK;
_delay_ms(1);
/* Set DATA line high for at least 90ns to disable /RESET functionality */
BITBANG_PDIDATA_PORT |= BITBANG_PDIDATA_MASK;
_delay_us(1);
/* Fire timer compare channel A ISR to manage the software USART */
OCR1A = BITS_BETWEEN_USART_CLOCKS;
TCCR1B = (1 << WGM12) | (1 << CS10);
TIMSK1 = (1 << OCIE1A);
#endif
/* Send two BREAKs of 12 bits each to enable PDI interface (need at least 16 idle bits) */
XPROGTarget_SendBreak();
@ -194,7 +74,6 @@ void XPROGTarget_EnableTargetTPI(void)
AUX_LINE_PORT &= ~AUX_LINE_MASK;
_delay_us(1);
#if defined(XPROG_VIA_HARDWARE_USART)
/* Set Tx and XCK as outputs, Rx as input */
DDRD |= (1 << 5) | (1 << 3);
DDRD &= ~(1 << 2);
@ -203,19 +82,6 @@ void XPROGTarget_EnableTargetTPI(void)
UBRR1 = (F_CPU / XPROG_HARDWARE_SPEED);
UCSR1B = (1 << TXEN1);
UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
#else
/* Set DATA and CLOCK lines to outputs */
BITBANG_TPIDATA_DDR |= BITBANG_TPIDATA_MASK;
BITBANG_TPICLOCK_DDR |= BITBANG_TPICLOCK_MASK;
/* Set DATA line high for idle state */
BITBANG_TPIDATA_PORT |= BITBANG_TPIDATA_MASK;
/* Fire timer capture channel ISR to manage the software USART */
ICR1 = BITS_BETWEEN_USART_CLOCKS;
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);
TIMSK1 = (1 << ICIE1);
#endif
/* Send two BREAKs of 12 bits each to enable TPI interface (need at least 16 idle bits) */
XPROGTarget_SendBreak();
@ -228,7 +94,6 @@ void XPROGTarget_DisableTargetPDI(void)
/* Switch to Rx mode to ensure that all pending transmissions are complete */
XPROGTarget_SetRxMode();
#if defined(XPROG_VIA_HARDWARE_USART)
/* Turn off receiver and transmitter of the USART, clear settings */
UCSR1A = ((1 << TXC1) | (1 << RXC1));
UCSR1B = 0;
@ -237,18 +102,6 @@ void XPROGTarget_DisableTargetPDI(void)
/* Tristate all pins */
DDRD &= ~((1 << 5) | (1 << 3));
PORTD &= ~((1 << 5) | (1 << 3) | (1 << 2));
#else
/* Turn off software USART management timer */
TCCR1B = 0;
/* Set DATA and CLOCK lines to inputs */
BITBANG_PDIDATA_DDR &= ~BITBANG_PDIDATA_MASK;
BITBANG_PDICLOCK_DDR &= ~BITBANG_PDICLOCK_MASK;
/* Tristate DATA and CLOCK lines */
BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK;
BITBANG_PDICLOCK_PORT &= ~BITBANG_PDICLOCK_MASK;
#endif
}
/** Disables the target's TPI interface, exits programming mode and starts the target's application. */
@ -257,7 +110,6 @@ void XPROGTarget_DisableTargetTPI(void)
/* Switch to Rx mode to ensure that all pending transmissions are complete */
XPROGTarget_SetRxMode();
#if defined(XPROG_VIA_HARDWARE_USART)
/* Turn off receiver and transmitter of the USART, clear settings */
UCSR1A |= (1 << TXC1) | (1 << RXC1);
UCSR1B = 0;
@ -266,18 +118,6 @@ void XPROGTarget_DisableTargetTPI(void)
/* Set all USART lines as input, tristate */
DDRD &= ~((1 << 5) | (1 << 3));
PORTD &= ~((1 << 5) | (1 << 3) | (1 << 2));
#else
/* Turn off software USART management timer */
TCCR1B = 0;
/* Set DATA and CLOCK lines to inputs */
BITBANG_TPIDATA_DDR &= ~BITBANG_TPIDATA_MASK;
BITBANG_TPICLOCK_DDR &= ~BITBANG_TPICLOCK_MASK;
/* Tristate DATA and CLOCK lines */
BITBANG_TPIDATA_PORT &= ~BITBANG_TPIDATA_MASK;
BITBANG_TPICLOCK_PORT &= ~BITBANG_TPICLOCK_MASK;
#endif
/* Tristate target /RESET line */
AUX_LINE_DDR &= ~AUX_LINE_MASK;
@ -294,30 +134,10 @@ void XPROGTarget_SendByte(const uint8_t Byte)
if (!(IsSending))
XPROGTarget_SetTxMode();
#if defined(XPROG_VIA_HARDWARE_USART)
/* Wait until there is space in the hardware Tx buffer before writing */
while (!(UCSR1A & (1 << UDRE1)));
UCSR1A |= (1 << TXC1);
UDR1 = Byte;
#else
/* Calculate the new USART frame data here while while we wait for a previous byte (if any) to finish sending */
uint16_t NewUSARTData = ((1 << 11) | (1 << 10) | (0 << 9) | ((uint16_t)Byte << 1) | (0 << 0));
/* Compute Even parity - while a bit is still set, chop off lowest bit and toggle parity bit */
uint8_t ParityData = Byte;
while (ParityData)
{
NewUSARTData ^= (1 << 9);
ParityData &= (ParityData - 1);
}
/* Wait until transmitter is idle before writing new data */
while (SoftUSART_BitCount);
/* Data shifted out LSB first, START DATA PARITY STOP STOP */
SoftUSART_Data = NewUSARTData;
SoftUSART_BitCount = BITS_IN_USART_FRAME;
#endif
if (TimeoutMSRemaining)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;
@ -333,7 +153,6 @@ uint8_t XPROGTarget_ReceiveByte(void)
if (IsSending)
XPROGTarget_SetRxMode();
#if defined(XPROG_VIA_HARDWARE_USART)
/* Wait until a byte has been received before reading */
while (!(UCSR1A & (1 << RXC1)) && TimeoutMSRemaining);
@ -341,17 +160,6 @@ uint8_t XPROGTarget_ReceiveByte(void)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;
return UDR1;
#else
/* Wait until a byte has been received before reading */
SoftUSART_BitCount = BITS_IN_USART_FRAME;
while (SoftUSART_BitCount && TimeoutMSRemaining);
if (TimeoutMSRemaining)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;
/* Throw away the parity and stop bits to leave only the data (start bit is already discarded) */
return (uint8_t)SoftUSART_Data;
#endif
}
/** Sends a BREAK via the USART to the attached target, consisting of a full frame of idle bits. */
@ -361,7 +169,6 @@ void XPROGTarget_SendBreak(void)
if (!(IsSending))
XPROGTarget_SetTxMode();
#if defined(XPROG_VIA_HARDWARE_USART)
/* Need to do nothing for a full frame to send a BREAK */
for (uint8_t i = 0; i < BITS_IN_USART_FRAME; i++)
{
@ -369,13 +176,6 @@ void XPROGTarget_SendBreak(void)
while (PIND & (1 << 5));
while (!(PIND & (1 << 5)));
}
#else
while (SoftUSART_BitCount);
/* Need to do nothing for a full frame to send a BREAK */
SoftUSART_Data = 0x0FFF;
SoftUSART_BitCount = BITS_IN_USART_FRAME;
#endif
if (TimeoutMSRemaining)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;
@ -383,7 +183,6 @@ void XPROGTarget_SendBreak(void)
static void XPROGTarget_SetTxMode(void)
{
#if defined(XPROG_VIA_HARDWARE_USART)
/* Wait for a full cycle of the clock */
while (PIND & (1 << 5));
while (!(PIND & (1 << 5)));
@ -395,25 +194,6 @@ static void XPROGTarget_SetTxMode(void)
UCSR1B |= (1 << TXEN1);
IsSending = true;
#else
while (SoftUSART_BitCount && TimeoutMSRemaining);
/* Wait for a full cycle of the clock */
SoftUSART_Data = 0x0001;
SoftUSART_BitCount = 1;
while (SoftUSART_BitCount);
if (XPROG_SelectedProtocol == XPRG_PROTOCOL_PDI)
{
BITBANG_PDIDATA_PORT |= BITBANG_PDIDATA_MASK;
BITBANG_PDIDATA_DDR |= BITBANG_PDIDATA_MASK;
}
else
{
BITBANG_TPIDATA_PORT |= BITBANG_TPIDATA_MASK;
BITBANG_TPIDATA_DDR |= BITBANG_TPIDATA_MASK;
}
#endif
if (TimeoutMSRemaining)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;
@ -423,7 +203,6 @@ static void XPROGTarget_SetTxMode(void)
static void XPROGTarget_SetRxMode(void)
{
#if defined(XPROG_VIA_HARDWARE_USART)
while (!(UCSR1A & (1 << TXC1)));
UCSR1A |= (1 << TXC1);
@ -432,26 +211,6 @@ static void XPROGTarget_SetRxMode(void)
DDRD &= ~(1 << 3);
PORTD &= ~(1 << 3);
#else
while (SoftUSART_BitCount && TimeoutMSRemaining);
if (XPROG_SelectedProtocol == XPRG_PROTOCOL_PDI)
{
BITBANG_PDIDATA_DDR &= ~BITBANG_PDIDATA_MASK;
BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK;
/* Wait until DATA line has been pulled up to idle by the target */
while (!(BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK) && TimeoutMSRemaining);
}
else
{
BITBANG_TPIDATA_DDR &= ~BITBANG_TPIDATA_MASK;
BITBANG_TPIDATA_PORT &= ~BITBANG_TPIDATA_MASK;
/* Wait until DATA line has been pulled up to idle by the target */
while (!(BITBANG_TPIDATA_PIN & BITBANG_TPIDATA_MASK) && TimeoutMSRemaining);
}
#endif
if (TimeoutMSRemaining)
TimeoutMSRemaining = COMMAND_TIMEOUT_MS;

@ -55,37 +55,9 @@
#endif
#endif
/* Defines: */
#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
#define XPROG_VIA_HARDWARE_USART
#else
#define BITBANG_PDIDATA_PORT PORTB
#define BITBANG_PDIDATA_DDR DDRB
#define BITBANG_PDIDATA_PIN PINB
#define BITBANG_PDIDATA_MASK (1 << 3)
#define BITBANG_PDICLOCK_PORT AUX_LINE_PORT
#define BITBANG_PDICLOCK_DDR AUX_LINE_DDR
#define BITBANG_PDICLOCK_PIN AUX_LINE_PIN
#define BITBANG_PDICLOCK_MASK AUX_LINE_MASK
#define BITBANG_TPIDATA_PORT PORTB
#define BITBANG_TPIDATA_DDR DDRB
#define BITBANG_TPIDATA_PIN PINB
#define BITBANG_TPIDATA_MASK (1 << 3)
#define BITBANG_TPICLOCK_PORT PORTB
#define BITBANG_TPICLOCK_DDR DDRB
#define BITBANG_TPICLOCK_PIN PINB
#define BITBANG_TPICLOCK_MASK (1 << 1)
#endif
/** Serial carrier TPI/PDI speed when hardware TPI/PDI mode is used */
#define XPROG_HARDWARE_SPEED 1000000
/** Number of cycles between each clock when software USART mode is used */
#define BITS_BETWEEN_USART_CLOCKS 100
/** Total number of bits in a single USART frame */
#define BITS_IN_USART_FRAME 12

Loading…
Cancel
Save