Merge pull request #3 from jackhumbert/master

Merge from jackhumbert
pull/763/head
Damien 8 years ago committed by GitHub
commit af24ea558a

1
.gitattributes vendored

@ -91,3 +91,4 @@ GRAPHICS
# hex files # hex files
*.hex binary *.hex binary
*.eep binary

3
.gitmodules vendored

@ -7,3 +7,6 @@
[submodule "lib/ugfx"] [submodule "lib/ugfx"]
path = lib/ugfx path = lib/ugfx
url = https://bitbucket.org/Tectu/ugfx url = https://bitbucket.org/Tectu/ugfx
[submodule "lib/googletest"]
path = lib/googletest
url = https://github.com/google/googletest

@ -9,8 +9,11 @@ branches:
env: env:
global: global:
- secure: vBTSL34BDPxDilKUuTXqU4CJ26Pv5hogD2nghatkxSQkI1/jbdnLj/DQdPUrMJFDIY6TK3AltsBx72MaMsLQ1JO/Ou24IeHINHXzUC1FlS9yQa48cpxnhX5kzXNyGs3oa0qaFbvnr7RgYRWtmD52n4bIZuSuW+xpBv05x2OCizdT2ZonH33nATaHGFasxROm4qYZ241VfzcUv766V6RVHgL4x9V08warugs+RENVkfzxxwhk3NmkrISabze0gSVJLHBPHxroZC6EUcf/ocobcuDrCwFqtEt90i7pNIAFUE7gZsN2uE75LmpzAWin21G7lLPcPL2k4FJVd8an1HiP2WmscJU6U89fOfMb2viObnKcCzebozBCmKGtHEuXZo9FcReOx49AnQSpmESJGs+q2dL/FApkTjQiyT4J6O5dJpoww0/r57Wx0cmmqjETKBb5rSgXM51Etk3wO09mvcPHsEwrT7qH8r9XWdyCDoEn7FCLX3/LYnf/D4SmZ633YPl5gv3v9XEwxR5+04akjgnvWDSNIaDbWBdxHNb7l4pMc+WR1bwCyMyA7KXj0RrftEGOrm9ZRLe6BkbT4cycA+j77nbPOMcyZChliV9pPQos+4TOJoTzcK2L8yWVoY409aDNVuAjdP6Yum0R2maBGl/etLmIMpJC35C5/lZ+dUNjJAM= - secure: vBTSL34BDPxDilKUuTXqU4CJ26Pv5hogD2nghatkxSQkI1/jbdnLj/DQdPUrMJFDIY6TK3AltsBx72MaMsLQ1JO/Ou24IeHINHXzUC1FlS9yQa48cpxnhX5kzXNyGs3oa0qaFbvnr7RgYRWtmD52n4bIZuSuW+xpBv05x2OCizdT2ZonH33nATaHGFasxROm4qYZ241VfzcUv766V6RVHgL4x9V08warugs+RENVkfzxxwhk3NmkrISabze0gSVJLHBPHxroZC6EUcf/ocobcuDrCwFqtEt90i7pNIAFUE7gZsN2uE75LmpzAWin21G7lLPcPL2k4FJVd8an1HiP2WmscJU6U89fOfMb2viObnKcCzebozBCmKGtHEuXZo9FcReOx49AnQSpmESJGs+q2dL/FApkTjQiyT4J6O5dJpoww0/r57Wx0cmmqjETKBb5rSgXM51Etk3wO09mvcPHsEwrT7qH8r9XWdyCDoEn7FCLX3/LYnf/D4SmZ633YPl5gv3v9XEwxR5+04akjgnvWDSNIaDbWBdxHNb7l4pMc+WR1bwCyMyA7KXj0RrftEGOrm9ZRLe6BkbT4cycA+j77nbPOMcyZChliV9pPQos+4TOJoTzcK2L8yWVoY409aDNVuAjdP6Yum0R2maBGl/etLmIMpJC35C5/lZ+dUNjJAM=
matrix:
- TARGET=all-keyboards AUTOGEN=true
- TARGET=test AUTOGEN=false
script: script:
- make all-keyboards AUTOGEN=true - make $TARGET AUTOGEN=$AUTOGEN
addons: addons:
apt: apt:
packages: packages:
@ -21,4 +24,8 @@ addons:
- gcc-arm-none-eabi - gcc-arm-none-eabi
- binutils-arm-none-eabi - binutils-arm-none-eabi
- libnewlib-arm-none-eabi - libnewlib-arm-none-eabi
after_success: bash util/travis_compiled_push.sh - diffutils
after_success:
if [ "$AUTOGEN" == "true" ]; then
bash util/travis_compiled_push.sh;
fi

@ -2,284 +2,518 @@ ifndef VERBOSE
.SILENT: .SILENT:
endif endif
.DEFAULT_GOAL := all # Never run this makefile in parallel, as it could screw things up
# It won't affect the submakes, so you still get the speedup from specifying -jx
space := $(subst ,, ) .NOTPARALLEL:
ESCAPED_ABS_PATH = $(subst $(space),_SPACE_,$(abspath $1))
starting_makefile := $(call ESCAPED_ABS_PATH,$(firstword $(MAKEFILE_LIST))) # Allow the silent with lower caps to work the same way as upper caps
mkfile_path := $(call ESCAPED_ABS_PATH,$(lastword $(MAKEFILE_LIST)))) ifdef silent
abs_tmk_root := $(patsubst %/,%,$(dir $(mkfile_path))) SILENT = $(silent)
endif
ifneq (,$(findstring /keyboards/,$(starting_makefile)))
possible_keyboard:=$(patsubst %/,%,$(dir $(patsubst $(abs_tmk_root)/keyboards/%,%,$(starting_makefile)))) ifdef SILENT
ifneq (,$(findstring /keymaps/,$(possible_keyboard))) SUB_IS_SILENT := $(SILENT)
KEYMAP_DIR:=$(lastword $(subst /keymaps/, ,$(possible_keyboard))) endif
KEYBOARD_DIR:=$(firstword $(subst /keymaps/, ,$(possible_keyboard)))
ifneq (,$(findstring /,$(KEYBOARD_DIR))) # We need to make sure that silent is always turned off at the top level
# SUBPROJECT_DIR:=$(lastword $(subst /, ,$(KEYBOARD_DIR))) # Otherwise the [OK], [ERROR] and [WARN] messags won't be displayed correctly
# KEYBOARD_DIR:=$(firstword $(subst /, ,$(KEYBOARD_DIR))) override SILENT := false
tmk_root = ../../..
else ON_ERROR := error_occured=1
tmk_root = ../../../..
endif STARTING_MAKEFILE := $(firstword $(MAKEFILE_LIST))
else ROOT_MAKEFILE := $(lastword $(MAKEFILE_LIST))
KEYMAP_DIR:=default ROOT_DIR := $(dir $(ROOT_MAKEFILE))
KEYBOARD_DIR:=$(possible_keyboard) ifeq ($(ROOT_DIR),)
ifneq (,$(findstring /,$(KEYBOARD_DIR))) ROOT_DIR := .
# SUBPROJECT_DIR:=$(lastword $(subst /, ,$(KEYBOARD_DIR))) endif
# KEYBOARD_DIR:=$(firstword $(subst /, ,$(KEYBOARD_DIR))) ABS_STARTING_MAKEFILE := $(abspath $(STARTING_MAKEFILE))
tmk_root = ../../.. ABS_ROOT_MAKEFILE := $(abspath $(ROOT_MAKEFILE))
else ABS_STARTING_DIR := $(dir $(ABS_STARTING_MAKEFILE))
tmk_root = ../.. ABS_ROOT_DIR := $(dir $(ABS_ROOT_MAKEFILE))
STARTING_DIR := $(subst $(ABS_ROOT_DIR),,$(ABS_STARTING_DIR))
TEST_DIR := $(ROOT_DIR)/.build/test
MAKEFILE_INCLUDED=yes
# Helper function to process the newt element of a space separated path
# It works a bit like the traditional functional head tail
# so the CURRENT_PATH_ELEMENT will beome the new head
# and the PATH_ELEMENTS are the rest that are still unprocessed
define NEXT_PATH_ELEMENT
$$(eval CURRENT_PATH_ELEMENT := $$(firstword $$(PATH_ELEMENTS)))
$$(eval PATH_ELEMENTS := $$(wordlist 2,9999,$$(PATH_ELEMENTS)))
endef
# We change the / to spaces so that we more easily can work with the elements
# separately
PATH_ELEMENTS := $(subst /, ,$(STARTING_DIR))
# Initialize the path elements list for further processing
$(eval $(call NEXT_PATH_ELEMENT))
# This function sets the KEYBOARD; KEYMAP and SUBPROJECT to the correct
# variables depending on which directory you stand in.
# It's really a very simple if else chain, if you squint enough,
# but the makefile syntax makes it very verbose.
# If we are in a subfolder of keyboards
ifeq ($(CURRENT_PATH_ELEMENT),keyboards)
$(eval $(call NEXT_PATH_ELEMENT))
KEYBOARD := $(CURRENT_PATH_ELEMENT)
$(eval $(call NEXT_PATH_ELEMENT))
# If we are in a subfolder of keymaps, or in other words in a keymap
# folder
ifeq ($(CURRENT_PATH_ELEMENT),keymaps)
$(eval $(call NEXT_PATH_ELEMENT))
KEYMAP := $(CURRENT_PATH_ELEMENT)
# else if we are not in the keyboard folder itself
else ifneq ($(CURRENT_PATH_ELEMENT),)
# the we can assume it's a subproject, as no other folders
# should have make files in them
SUBPROJECT := $(CURRENT_PATH_ELEMENT)
$(eval $(call NEXT_PATH_ELEMENT))
# if we are inside a keymap folder of a subproject
ifeq ($(CURRENT_PATH_ELEMENT),keymaps)
$(eval $(call NEXT_PATH_ELEMENT))
KEYMAP := $(CURRENT_PATH_ELEMENT)
endif endif
endif endif
else
tmk_root = .
endif endif
# $(info $(KEYBOARD_DIR))
# $(info $(KEYMAP_DIR))
# $(info $(SUBPROJECT_DIR))
# Directory common source filess exist
TOP_DIR = $(tmk_root)
TMK_DIR = tmk_core
TMK_PATH = $(TOP_DIR)/$(TMK_DIR)
LIB_PATH = $(TOP_DIR)/lib
QUANTUM_DIR = quantum
QUANTUM_PATH = $(TOP_DIR)/$(QUANTUM_DIR)
# Only consider folders with makefiles, to prevent errors in case there are extra folders
KEYBOARDS := $(notdir $(patsubst %/Makefile,%,$(wildcard $(ROOT_DIR)/keyboards/*/Makefile)))
#Compability with the old make variables, anything you specify directly on the command line
# always overrides the detected folders
ifdef keyboard ifdef keyboard
KEYBOARD ?= $(keyboard) KEYBOARD := $(keyboard)
endif
ifdef KEYBOARD_DIR
KEYBOARD ?= $(KEYBOARD_DIR)
endif endif
ifndef KEYBOARD ifdef sub
KEYBOARD=planck SUBPROJECT := $(sub)
endif endif
ifdef subproject
MASTER ?= left SUBPROJECT := $(subproject)
ifdef master
MASTER = $(master)
endif endif
ifdef keymap
KEYMAP := $(keymap)
# converts things to keyboards/subproject
ifneq (,$(findstring /,$(KEYBOARD)))
TEMP:=$(KEYBOARD)
KEYBOARD:=$(firstword $(subst /, ,$(TEMP)))
SUBPROJECT:=$(lastword $(subst /, ,$(TEMP)))
endif endif
KEYBOARD_PATH = $(TOP_DIR)/keyboards/$(KEYBOARD) # Uncomment these for debugging
#$(info Keyboard: $(KEYBOARD))
#$(info Keymap: $(KEYMAP))
#$(info Subproject: $(SUBPROJECT))
#$(info Keyboards: $(KEYBOARDS))
ifdef sub
SUBPROJECT=$(sub)
endif
ifdef subproject
SUBPROJECT=$(subproject)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH)/$(KEYBOARD).c)","") # Set the default goal depening on where we are running make from
KEYBOARD_FILE = keyboards/$(KEYBOARD)/$(KEYBOARD).c # this handles the case where you run make without any arguments
ifneq ($(call ESCAPED_ABS_PATH,$(KEYBOARD_PATH)/Makefile),$(starting_makefile)) .DEFAULT_GOAL := all
-include $(KEYBOARD_PATH)/Makefile ifneq ($(KEYMAP),)
ifeq ($(SUBPROJECT),)
# Inside a keymap folder, just build the keymap, with the
# default subproject
.DEFAULT_GOAL := $(KEYBOARD)-$(KEYMAP)
else
# Inside a subproject keyamp folder, build the keymap
# for that subproject
.DEFAULT_GOAL := $(KEYBOARD)-$(SUBPROJECT)-$(KEYMAP)
endif endif
else else ifneq ($(SUBPROJECT),)
$(error "$(KEYBOARD_PATH)/$(KEYBOARD).c" does not exist) # Inside a subproject folder, build all keymaps for that subproject
endif .DEFAULT_GOAL := $(KEYBOARD)-$(SUBPROJECT)-allkm
else ifneq ($(KEYBOARD),)
# Inside a keyboard folder, build all keymaps for all subprojects
# Note that this is different from the old behaviour, which would
# build only the default keymap of the default keyboard
.DEFAULT_GOAL := $(KEYBOARD)-allsp-allkm
endif
# Compare the start of the RULE variable with the first argument($1)
# If the rules equals $1 or starts with $1-, RULE_FOUND is set to true
# and $1 is removed from the RULE variable
# Otherwise the RULE_FOUND variable is set to false, and RULE left as it was
# The function is a bit tricky, since there's no built in $(startswith) function
define COMPARE_AND_REMOVE_FROM_RULE_HELPER
ifeq ($1,$$(RULE))
RULE:=
RULE_FOUND := true
else
STARTDASH_REMOVED=$$(subst START$1-,,START$$(RULE))
ifneq ($$(STARTDASH_REMOVED),START$$(RULE))
RULE_FOUND := true
RULE := $$(STARTDASH_REMOVED)
else
RULE_FOUND := false
endif
endif
endef
# This makes it easier to call COMPARE_AND_REMOVE_FROM_RULE, since it makes it behave like
# a function that returns the value
COMPARE_AND_REMOVE_FROM_RULE = $(eval $(call COMPARE_AND_REMOVE_FROM_RULE_HELPER,$1))$(RULE_FOUND)
ifdef SUBPROJECT_DEFAULT
SUBPROJECT?=$(SUBPROJECT_DEFAULT)
endif
ifdef SUBPROJECT # Recursively try to find a match for the start of the rule to be checked
SUBPROJECT_PATH = $(TOP_DIR)/keyboards/$(KEYBOARD)/$(SUBPROJECT) # $1 The list to be checked
ifneq ("$(wildcard $(SUBPROJECT_PATH)/$(SUBPROJECT).c)","") # If a match is found, then RULE_FOUND is set to true
OPT_DEFS += -DSUBPROJECT_$(SUBPROJECT) # and MATCHED_ITEM to the item that was matched
SUBPROJECT_FILE = keyboards/$(KEYBOARD)/$(SUBPROJECT)/$(SUBPROJECT).c define TRY_TO_MATCH_RULE_FROM_LIST_HELPER3
ifneq ($(call ESCAPED_ABS_PATH,$(SUBPROJECT_PATH)/Makefile),$(starting_makefile)) ifneq ($1,)
-include $(SUBPROJECT_PATH)/Makefile ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,$$(firstword $1)),true)
MATCHED_ITEM := $$(firstword $1)
else
$$(eval $$(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER3,$$(wordlist 2,9999,$1)))
endif
endif
endef
# A recursive helper function for finding the longest match
# $1 The list to be checed
# It works by always removing the currently matched item from the list
# and call itself recursively, until a match is found
define TRY_TO_MATCH_RULE_FROM_LIST_HELPER2
# Stop the recursion when the list is empty
ifneq ($1,)
RULE_BEFORE := $$(RULE)
$$(eval $$(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER3,$1))
# If a match is found in the current list, otherwise just return what we had before
ifeq ($$(RULE_FOUND),true)
# Save the best match so far and call itself recursivel
BEST_MATCH := $$(MATCHED_ITEM)
BEST_MATCH_RULE := $$(RULE)
RULE_FOUND := false
RULE := $$(RULE_BEFORE)
$$(eval $$(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER2,$$(filter-out $$(MATCHED_ITEM),$1)))
endif endif
endif
endef
# Recursively try to find the longest match for the start of the rule to be checked
# $1 The list to be checked
# If a match is found, then RULE_FOUND is set to true
# and MATCHED_ITEM to the item that was matched
define TRY_TO_MATCH_RULE_FROM_LIST_HELPER
BEST_MATCH :=
$$(eval $$(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER2,$1))
ifneq ($$(BEST_MATCH),)
RULE_FOUND := true
RULE := $$(BEST_MATCH_RULE)
MATCHED_ITEM := $$(BEST_MATCH)
else else
$(error "$(SUBPROJECT_PATH)/$(SUBPROJECT).c" does not exist) RULE_FOUND := false
MATCHED_ITEM :=
endif endif
endif endef
ifdef keymap # Make it easier to call TRY_TO_MATCH_RULE_FROM_LIST
KEYMAP ?= $(keymap) TRY_TO_MATCH_RULE_FROM_LIST = $(eval $(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER,$1))$(RULE_FOUND)
endif
ifdef KEYMAP_DIR define ALL_IN_LIST_LOOP
KEYMAP ?= $(KEYMAP_DIR) OLD_RULE$1 := $$(RULE)
endif $$(eval $$(call $1,$$(ITEM$1)))
ifndef KEYMAP RULE := $$(OLD_RULE$1)
KEYMAP = default endef
endif
KEYMAP_PATH = $(KEYBOARD_PATH)/keymaps/$(KEYMAP) define PARSE_ALL_IN_LIST
ifneq ("$(wildcard $(KEYMAP_PATH)/keymap.c)","") $$(foreach ITEM$1,$2,$$(eval $$(call ALL_IN_LIST_LOOP,$1)))
KEYMAP_FILE = keyboards/$(KEYBOARD)/keymaps/$(KEYMAP)/keymap.c endef
ifneq ($(call ESCAPED_ABS_PATH,$(KEYMAP_PATH)/Makefile),$(starting_makefile))
-include $(KEYMAP_PATH)/Makefile # The entry point for rule parsing
# parses a rule in the format <keyboard>-<subproject>-<keymap>-<target>
# but this particular function only deals with the first <keyboard> part
define PARSE_RULE
RULE := $1
COMMANDS :=
# If the rule starts with allkb, then continue the parsing from
# PARSE_ALL_KEYBOARDS
ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,allkb),true)
$$(eval $$(call PARSE_ALL_KEYBOARDS))
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,test),true)
$$(eval $$(call PARSE_TEST))
# If the rule starts with the name of a known keyboard, then continue
# the parsing from PARSE_KEYBOARD
else ifeq ($$(call TRY_TO_MATCH_RULE_FROM_LIST,$$(KEYBOARDS)),true)
$$(eval $$(call PARSE_KEYBOARD,$$(MATCHED_ITEM)))
# Otherwise use the KEYBOARD variable, which is determined either by
# the current directory you run make from, or passed in as an argument
else ifneq ($$(KEYBOARD),)
$$(eval $$(call PARSE_KEYBOARD,$$(KEYBOARD)))
else
$$(info make: *** No rule to make target '$1'. Stop.)
# Notice the tab instead of spaces below!
exit 1
endif endif
else endef
ifeq ("$(wildcard $(SUBPROJECT_PATH)/keymaps/$(KEYMAP)/keymap.c)","")
$(error "$(KEYMAP_PATH)/keymap.c" does not exist) # $1 = Keyboard
# Parses a rule in the format <subproject>-<keymap>-<target>
# the keyboard is already known when entering this function
define PARSE_KEYBOARD
CURRENT_KB := $1
# A subproject is any keyboard subfolder with a makefile
SUBPROJECTS := $$(notdir $$(patsubst %/Makefile,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(CURRENT_KB)/*/Makefile)))
# if the rule starts with allsp, then continue with looping over all subprojects
ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,allsp),true)
$$(eval $$(call PARSE_ALL_SUBPROJECTS))
# A special case for matching the defaultsp (default subproject)
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,defaultsp),true)
$$(eval $$(call PARSE_SUBPROJECT,defaultsp))
# If the rule starts with the name of a known subproject
else ifeq ($$(call TRY_TO_MATCH_RULE_FROM_LIST,$$(SUBPROJECTS)),true)
$$(eval $$(call PARSE_SUBPROJECT,$$(MATCHED_ITEM)))
# Try to use the SUBPROJECT variable, which is either determined by the
# directory which invoked make, or passed as an argument to make
else ifneq ($$(SUBPROJECT),)
$$(eval $$(call PARSE_SUBPROJECT,$$(SUBPROJECT)))
# If there's no matching subproject, we assume it's the default
# This will allow you to leave the subproject part of the target out
else else
KEYMAP_PATH = $(SUBPROJECT_PATH)/keymaps/$(KEYMAP) $$(eval $$(call PARSE_SUBPROJECT,))
KEYMAP_FILE = keyboards/$(KEYBOARD)/$(SUBPROJECT)/keymaps/$(KEYMAP)/keymap.c
ifneq ($(call ESCAPED_ABS_PATH,$(KEYMAP_PATH)/Makefile),$(starting_makefile))
-include $(KEYMAP_PATH)/Makefile
endif endif
endef
# if we are going to compile all keyboards, match the rest of the rule
# for each of them
define PARSE_ALL_KEYBOARDS
$$(eval $$(call PARSE_ALL_IN_LIST,PARSE_KEYBOARD,$(KEYBOARDS)))
endef
# $1 Subproject
# When entering this, the keyboard and subproject are known, so now we need
# to determine which keymaps are going to get compiled
define PARSE_SUBPROJECT
# If we want to compile the default subproject, then we need to
# include the correct makefile to determine the actual name of it
CURRENT_SP := $1
ifeq ($$(CURRENT_SP),)
CURRENT_SP := defaultsp
endif endif
endif ifeq ($$(CURRENT_SP),defaultsp)
SUBPROJECT_DEFAULT=
ifdef SUBPROJECT $$(eval include $(ROOT_DIR)/keyboards/$$(CURRENT_KB)/Makefile)
TARGET ?= $(KEYBOARD)_$(SUBPROJECT)_$(KEYMAP) CURRENT_SP := $$(SUBPROJECT_DEFAULT)
else
TARGET ?= $(KEYBOARD)_$(KEYMAP)
endif
BUILD_DIR = $(TOP_DIR)/.build
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = $(BUILD_DIR)/obj_$(TARGET)
ifneq ("$(wildcard $(KEYMAP_PATH)/config.h)","")
CONFIG_H = $(KEYMAP_PATH)/config.h
else
CONFIG_H = $(KEYBOARD_PATH)/config.h
ifdef SUBPROJECT
ifneq ("$(wildcard $(SUBPROJECT_PATH)/$(SUBPROJECT).c)","")
CONFIG_H = $(SUBPROJECT_PATH)/config.h
endif endif
# If current subproject is empty (the default was not defined), and we have a list of subproject
# then make all of them
ifeq ($$(CURRENT_SP),)
ifneq ($$(SUBPROJECTS),)
CURRENT_SP := allsp
endif endif
endif endif
# The special allsp is handled later
# # project specific files ifneq ($$(CURRENT_SP),allsp)
SRC += $(KEYBOARD_FILE) \ # get a list of all keymaps
$(KEYMAP_FILE) \ KEYMAPS := $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(CURRENT_KB)/keymaps/*/.)))
$(QUANTUM_DIR)/quantum.c \ ifneq ($$(CURRENT_SP),)
$(QUANTUM_DIR)/keymap_common.c \ # if the subproject is defined, then also look for keymaps inside the subproject folder
$(QUANTUM_DIR)/keycode_config.c \ SP_KEYMAPS := $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(CURRENT_KB)/$$(CURRENT_SP)/keymaps/*/.)))
$(QUANTUM_DIR)/process_keycode/process_leader.c KEYMAPS := $$(sort $$(KEYMAPS) $$(SP_KEYMAPS))
endif
ifdef SUBPROJECT # if the rule after removing the start of it is empty (we haven't specified a kemap or target)
SRC += $(SUBPROJECT_FILE) # compile all the keymaps
endif ifeq ($$(RULE),)
$$(eval $$(call PARSE_ALL_KEYMAPS))
ifdef SUBPROJECT # The same if allkm was specified
SRC += $(SUBPROJECT_FILE) else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,allkm),true)
endif $$(eval $$(call PARSE_ALL_KEYMAPS))
# Try to match the specified keyamp with the list of known keymaps
ifdef SUBPROJECT else ifeq ($$(call TRY_TO_MATCH_RULE_FROM_LIST,$$(KEYMAPS)),true)
SRC += $(SUBPROJECT_FILE) $$(eval $$(call PARSE_KEYMAP,$$(MATCHED_ITEM)))
endif # Otherwise try to match the keymap from the current folder, or arguments to the make command
else ifneq ($$(KEYMAP),)
ifndef CUSTOM_MATRIX $$(eval $$(call PARSE_KEYMAP,$$(KEYMAP)))
SRC += $(QUANTUM_DIR)/matrix.c # No matching keymap found, so we assume that the rest of the rule is the target
endif # If we haven't been able to parse out a subproject, then make all of them
# This is consistent with running make without any arguments from the keyboard
ifeq ($(strip $(MIDI_ENABLE)), yes) # folder
OPT_DEFS += -DMIDI_ENABLE else ifeq ($1,)
SRC += $(QUANTUM_DIR)/process_keycode/process_midi.c $$(eval $$(call PARSE_ALL_SUBPROJECTS))
endif # Otherwise, make all keymaps, again this is consistent with how it works without
# any arguments
ifeq ($(strip $(VIRTSER_ENABLE)), yes) else
OPT_DEFS += -DVIRTSER_ENABLE $$(eval $$(call PARSE_ALL_KEYMAPS))
endif endif
else
ifeq ($(strip $(AUDIO_ENABLE)), yes) # As earlier mentione,d when allsb is specified, we call our self recursively
OPT_DEFS += -DAUDIO_ENABLE # for all of the subprojects
SRC += $(QUANTUM_DIR)/process_keycode/process_music.c $$(eval $$(call PARSE_ALL_IN_LIST,PARSE_SUBPROJECT,$(SUBPROJECTS)))
SRC += $(QUANTUM_DIR)/audio/audio.c endif
SRC += $(QUANTUM_DIR)/audio/voices.c endef
SRC += $(QUANTUM_DIR)/audio/luts.c
endif
ifeq ($(strip $(UCIS_ENABLE)), yes)
OPT_DEFS += -DUCIS_ENABLE
UNICODE_ENABLE = yes
endif
ifeq ($(strip $(UNICODE_ENABLE)), yes)
OPT_DEFS += -DUNICODE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode.c
endif
ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
OPT_DEFS += -DRGBLIGHT_ENABLE
SRC += $(QUANTUM_DIR)/light_ws2812.c
SRC += $(QUANTUM_DIR)/rgblight.c
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
OPT_DEFS += -DTAP_DANCE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c
endif
ifeq ($(strip $(SERIAL_LINK_ENABLE)), yes)
SERIAL_DIR = $(QUANTUM_DIR)/serial_link
SERIAL_PATH = $(QUANTUM_PATH)/serial_link
SERIAL_SRC = $(wildcard $(SERIAL_PATH)/protocol/*.c)
SERIAL_SRC += $(wildcard $(SERIAL_PATH)/system/*.c)
SRC += $(patsubst $(QUANTUM_PATH)/%,%,$(SERIAL_SRC))
OPT_DEFS += -DSERIAL_LINK_ENABLE
VAPTH += $(SERIAL_PATH)
endif
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(KEYMAP_PATH)
ifdef SUBPROJECT
VPATH += $(SUBPROJECT_PATH)
endif
VPATH += $(KEYBOARD_PATH)
VPATH += $(TOP_DIR)
VPATH += $(TMK_PATH)
VPATH += $(QUANTUM_PATH)
VPATH += $(QUANTUM_PATH)/keymap_extras
VPATH += $(QUANTUM_PATH)/audio
VPATH += $(QUANTUM_PATH)/process_keycode
# We can assume a ChibiOS target When MCU_FAMILY is defined, since it's not used for LUFA
ifdef MCU_FAMILY
PLATFORM=CHIBIOS
else
PLATFORM=AVR
endif
include $(TMK_PATH)/common.mk
ifeq ($(PLATFORM),AVR)
include $(TMK_PATH)/protocol/lufa.mk
include $(TMK_PATH)/avr.mk
else ifeq ($(PLATFORM),CHIBIOS)
include $(TMK_PATH)/protocol/chibios.mk
include $(TMK_PATH)/chibios.mk
OPT_OS = chibios
else
$(error Unknown platform)
endif
ifeq ($(strip $(VISUALIZER_ENABLE)), yes)
VISUALIZER_DIR = $(QUANTUM_DIR)/visualizer
VISUALIZER_PATH = $(QUANTUM_PATH)/visualizer
include $(VISUALIZER_PATH)/visualizer.mk
endif
include $(TMK_PATH)/rules.mk
# If we want to parse all subprojects, but the keyboard doesn't have any,
# then use defaultsp instead
define PARSE_ALL_SUBPROJECTS
ifeq ($$(SUBPROJECTS),)
$$(eval $$(call PARSE_SUBPROJECT,defaultsp))
else
$$(eval $$(call PARSE_ALL_IN_LIST,PARSE_SUBPROJECT,$$(SUBPROJECTS)))
endif
endef
# $1 Keymap
# This is the meat of compiling a keyboard, when entering this, everything is known
# keyboard, subproject, and keymap
# Note that we are not directly calling the command here, but instead building a list,
# which will later be processed
define PARSE_KEYMAP
CURRENT_KM = $1
# The rest of the rule is the target
# Remove the leading "-" from the target, as it acts as a separator
MAKE_TARGET := $$(patsubst -%,%,$$(RULE))
# We need to generate an unique indentifer to append to the COMMANDS list
COMMAND := COMMAND_KEYBOARD_$$(CURRENT_KB)_SUBPROJECT_$(CURRENT_SP)_KEYMAP_$$(CURRENT_KM)
# If we are compiling a keyboard without a subproject, we want to display just the name
# of the keyboard, otherwise keyboard/subproject
ifeq ($$(CURRENT_SP),)
KB_SP := $(CURRENT_KB)
else
KB_SP := $(CURRENT_KB)/$$(CURRENT_SP)
endif
# Format it in bold
KB_SP := $(BOLD)$$(KB_SP)$(NO_COLOR)
# Specify the variables that we are passing forward to submake
MAKE_VARS := KEYBOARD=$$(CURRENT_KB) SUBPROJECT=$$(CURRENT_SP) KEYMAP=$$(CURRENT_KM)
# And the first part of the make command
MAKE_CMD := $$(MAKE) -r -R -C $(ROOT_DIR) -f build_keyboard.mk $$(MAKE_TARGET)
# The message to display
MAKE_MSG := $$(MSG_MAKE_KB)
# We run the command differently, depending on if we want more output or not
# The true version for silent output and the false version otherwise
$$(eval $$(call BUILD))
endef
define BUILD
MAKE_VARS += VERBOSE=$(VERBOSE) COLOR=$(COLOR)
COMMANDS += $$(COMMAND)
COMMAND_true_$$(COMMAND) := \
printf "$$(MAKE_MSG)" | \
$$(MAKE_MSG_FORMAT); \
LOG=$$$$($$(MAKE_CMD) $$(MAKE_VARS) SILENT=true 2>&1) ; \
if [ $$$$? -gt 0 ]; \
then $$(PRINT_ERROR_PLAIN); \
elif [ "$$$$LOG" != "" ] ; \
then $$(PRINT_WARNING_PLAIN); \
else \
$$(PRINT_OK); \
fi;
COMMAND_false_$$(COMMAND) := \
printf "$$(MAKE_MSG)\n\n"; \
$$(MAKE_CMD) $$(MAKE_VARS) SILENT=false; \
if [ $$$$? -gt 0 ]; \
then error_occured=1; \
fi;
endef
# Just parse all the keymaps for a specifc keyboard
define PARSE_ALL_KEYMAPS
$$(eval $$(call PARSE_ALL_IN_LIST,PARSE_KEYMAP,$$(KEYMAPS)))
endef
define BUILD_TEST
TEST_NAME := $1
MAKE_TARGET := $2
COMMAND := $1
MAKE_CMD := $$(MAKE) -r -R -C $(ROOT_DIR) -f build_test.mk $$(MAKE_TARGET)
MAKE_VARS := TEST=$$(TEST_NAME)
MAKE_MSG := $$(MSG_MAKE_TEST)
$$(eval $$(call BUILD))
ifneq ($$(MAKE_TARGET),clean)
TEST_EXECUTABLE := $$(TEST_DIR)/$$(TEST_NAME).elf
TESTS += $$(TEST_NAME)
TEST_MSG := $$(MSG_TEST)
$$(TEST_NAME)_COMMAND := \
printf "$$(TEST_MSG)\n"; \
$$(TEST_EXECUTABLE); \
if [ $$$$? -gt 0 ]; \
then error_occured=1; \
fi; \
printf "\n";
endif
endef
define PARSE_TEST
TESTS :=
TEST_NAME := $$(firstword $$(subst -, ,$$(RULE)))
TEST_TARGET := $$(subst $$(TEST_NAME),,$$(subst $$(TEST_NAME)-,,$$(RULE)))
ifeq ($$(TEST_NAME),all)
MATCHED_TESTS := $$(TEST_LIST)
else
MATCHED_TESTS := $$(foreach TEST,$$(TEST_LIST),$$(if $$(findstring $$(TEST_NAME),$$(TEST)),$$(TEST),))
endif
$$(foreach TEST,$$(MATCHED_TESTS),$$(eval $$(call BUILD_TEST,$$(TEST),$$(TEST_TARGET))))
endef
# Set the silent mode depending on if we are trying to compile multiple keyboards or not
# By default it's on in that case, but it can be overriden by specifying silent=false
# from the command line
define SET_SILENT_MODE
ifdef SUB_IS_SILENT
SILENT_MODE := $(SUB_IS_SILENT)
else ifeq ($$(words $$(COMMANDS)),1)
SILENT_MODE := false
else
SILENT_MODE := true
endif
endef
include $(ROOT_DIR)/message.mk
RUN_COMMAND = \
$(COMMAND_$(SILENT_MODE)_$(COMMAND))
# Allow specifying just the subproject, in the keyboard directory, which will compile all keymaps
SUBPROJECTS := $(notdir $(patsubst %/Makefile,%,$(wildcard ./*/Makefile)))
.PHONY: $(SUBPROJECTS)
$(SUBPROJECTS): %: %-allkm
# Let's match everything, we handle all the rule parsing ourselves
.PHONY: %
%:
# Check if we have the CMP tool installed
cmp --version >/dev/null 2>&1; if [ $$? -gt 0 ]; then printf "$(MSG_NO_CMP)"; exit 1; fi;
# Check if the submodules are dirty, and display a warning if they are
git submodule status --recursive 2>/dev/null | \
while IFS= read -r x; do \
case "$$x" in \
\ *) ;; \
*) printf "$(MSG_SUBMODULE_DIRTY)";break;; \
esac \
done
$(eval $(call PARSE_RULE,$@))
$(eval $(call SET_SILENT_MODE))
# Run all the commands in the same shell, notice the + at the first line
# it has to be there to allow parallel execution of the submake
# This always tries to compile everything, even if error occurs in the middle
# But we return the error code at the end, to trigger travis failures
+error_occured=0; \
$(foreach COMMAND,$(COMMANDS),$(RUN_COMMAND)) \
if [ $$error_occured -gt 0 ]; then printf "$(MSG_ERRORS)" & exit $$error_occured; fi;\
$(foreach TEST,$(TESTS),$($(TEST)_COMMAND)) \
if [ $$error_occured -gt 0 ]; then printf "$(MSG_ERRORS)" & exit $$error_occured; fi;\
# All should compile everything
.PHONY: all
all: all-keyboards test-all
# Define some shortcuts, mostly for compability with the old syntax
.PHONY: all-keyboards
all-keyboards: allkb-allsp-allkm
.PHONY: all-keyboards-defaults
all-keyboards-defaults: allkb-allsp-default
.PHONY: test
test: test-all
.PHONY: test-clean
test-clean: test-all-clean
# Generate the version.h file
GIT_VERSION := $(shell git describe --abbrev=6 --dirty --always --tags 2>/dev/null || date +"%Y-%m-%d-%H:%M:%S") GIT_VERSION := $(shell git describe --abbrev=6 --dirty --always --tags 2>/dev/null || date +"%Y-%m-%d-%H:%M:%S")
BUILD_DATE := $(shell date +"%Y-%m-%d-%H:%M:%S") BUILD_DATE := $(shell date +"%Y-%m-%d-%H:%M:%S")
OPT_DEFS += -DQMK_KEYBOARD=\"$(KEYBOARD)\" -DQMK_KEYMAP=\"$(KEYMAP)\" $(shell echo '#define QMK_VERSION "$(GIT_VERSION)"' > $(ROOT_DIR)/quantum/version.h)
$(shell echo '#define QMK_BUILDDATE "$(BUILD_DATE)"' >> $(ROOT_DIR)/quantum/version.h)
$(shell echo '#define QMK_VERSION "$(GIT_VERSION)"' > $(QUANTUM_PATH)/version.h) include $(ROOT_DIR)/testlist.mk
$(shell echo '#define QMK_BUILDDATE "$(BUILD_DATE)"' >> $(QUANTUM_PATH)/version.h)

@ -0,0 +1,221 @@
ifndef VERBOSE
.SILENT:
endif
.DEFAULT_GOAL := all
include common.mk
ifneq ($(SUBPROJECT),)
TARGET ?= $(KEYBOARD)_$(SUBPROJECT)_$(KEYMAP)
KEYBOARD_OUTPUT := $(BUILD_DIR)/obj_$(KEYBOARD)_$(SUBPROJECT)
else
TARGET ?= $(KEYBOARD)_$(KEYMAP)
KEYBOARD_OUTPUT := $(BUILD_DIR)/obj_$(KEYBOARD)
endif
# Force expansion
TARGET := $(TARGET)
MASTER ?= left
ifdef master
MASTER = $(master)
endif
ifeq ($(MASTER),right)
OPT_DEFS += -DMASTER_IS_ON_RIGHT
else
ifneq ($(MASTER),left)
$(error MASTER does not have a valid value(left/right))
endif
endif
KEYBOARD_PATH := keyboards/$(KEYBOARD)
KEYBOARD_C := $(KEYBOARD_PATH)/$(KEYBOARD).c
ifneq ("$(wildcard $(KEYBOARD_C))","")
include $(KEYBOARD_PATH)/rules.mk
else
$(error "$(KEYBOARD_C)" does not exist)
endif
ifneq ($(SUBPROJECT),)
SUBPROJECT_PATH := keyboards/$(KEYBOARD)/$(SUBPROJECT)
SUBPROJECT_C := $(SUBPROJECT_PATH)/$(SUBPROJECT).c
ifneq ("$(wildcard $(SUBPROJECT_C))","")
OPT_DEFS += -DSUBPROJECT_$(SUBPROJECT)
include $(SUBPROJECT_PATH)/rules.mk
else
$(error "$(SUBPROJECT_PATH)/$(SUBPROJECT).c" does not exist)
endif
endif
# We can assume a ChibiOS target When MCU_FAMILY is defined, since it's not used for LUFA
ifdef MCU_FAMILY
PLATFORM=CHIBIOS
else
PLATFORM=AVR
endif
ifeq ($(PLATFORM),CHIBIOS)
include $(TMK_PATH)/protocol/chibios.mk
include $(TMK_PATH)/chibios.mk
OPT_OS = chibios
ifneq ("$(wildcard $(SUBPROJECT_PATH)/bootloader_defs.h)","")
OPT_DEFS += -include $(SUBPROJECT_PATH)/bootloader_defs.h
else ifneq ("$(wildcard $(SUBPROJECT_PATH)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(SUBPROJECT_PATH)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH)/boards/$(BOARD)/bootloader_defs.h
endif
endif
CONFIG_H = $(KEYBOARD_PATH)/config.h
ifneq ($(SUBPROJECT),)
ifneq ("$(wildcard $(SUBPROJECT_C))","")
CONFIG_H = $(SUBPROJECT_PATH)/config.h
endif
endif
# Save the defines and includes here, so we don't include any keymap specific ones
PROJECT_DEFS := $(OPT_DEFS)
PROJECT_INC := $(VPATH) $(EXTRAINCDIRS) $(SUBPROJECT_PATH) $(KEYBOARD_PATH)
PROJECT_CONFIG := $(CONFIG_H)
MAIN_KEYMAP_PATH := $(KEYBOARD_PATH)/keymaps/$(KEYMAP)
MAIN_KEYMAP_C := $(MAIN_KEYMAP_PATH)/keymap.c
SUBPROJ_KEYMAP_PATH := $(SUBPROJECT_PATH)/keymaps/$(KEYMAP)
SUBPROJ_KEYMAP_C := $(SUBPROJ_KEYMAP_PATH)/keymap.c
ifneq ("$(wildcard $(SUBPROJ_KEYMAP_C))","")
-include $(SUBPROJ_KEYMAP_PATH)/Makefile
KEYMAP_C := $(SUBPROJ_KEYMAP_C)
KEYMAP_PATH := $(SUBPROJ_KEYMAP_PATH)
else ifneq ("$(wildcard $(MAIN_KEYMAP_C))","")
-include $(MAIN_KEYMAP_PATH)/Makefile
KEYMAP_C := $(MAIN_KEYMAP_C)
KEYMAP_PATH := $(MAIN_KEYMAP_PATH)
else
$(error "$(MAIN_KEYMAP_C)/keymap.c" does not exist)
endif
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
KEYMAP_OUTPUT := $(BUILD_DIR)/obj_$(TARGET)
ifneq ("$(wildcard $(KEYMAP_PATH)/config.h)","")
CONFIG_H = $(KEYMAP_PATH)/config.h
endif
# # project specific files
SRC += $(KEYBOARD_C) \
$(KEYMAP_C) \
$(QUANTUM_DIR)/quantum.c \
$(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/keycode_config.c \
$(QUANTUM_DIR)/process_keycode/process_leader.c
ifneq ($(SUBPROJECT),)
SRC += $(SUBPROJECT_C)
endif
ifndef CUSTOM_MATRIX
SRC += $(QUANTUM_DIR)/matrix.c
endif
ifeq ($(strip $(MIDI_ENABLE)), yes)
OPT_DEFS += -DMIDI_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_midi.c
endif
ifeq ($(strip $(VIRTSER_ENABLE)), yes)
OPT_DEFS += -DVIRTSER_ENABLE
endif
ifeq ($(strip $(AUDIO_ENABLE)), yes)
OPT_DEFS += -DAUDIO_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_music.c
SRC += $(QUANTUM_DIR)/audio/audio.c
SRC += $(QUANTUM_DIR)/audio/voices.c
SRC += $(QUANTUM_DIR)/audio/luts.c
endif
ifeq ($(strip $(UNICODE_ENABLE)), yes)
OPT_DEFS += -DUNICODE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode.c
endif
ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
OPT_DEFS += -DRGBLIGHT_ENABLE
SRC += $(QUANTUM_DIR)/light_ws2812.c
SRC += $(QUANTUM_DIR)/rgblight.c
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
OPT_DEFS += -DTAP_DANCE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c
endif
ifeq ($(strip $(SERIAL_LINK_ENABLE)), yes)
SRC += $(patsubst $(QUANTUM_PATH)/%,%,$(SERIAL_SRC))
OPT_DEFS += $(SERIAL_DEFS)
VAPTH += $(SERIAL_PATH)
endif
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(KEYMAP_PATH)
ifneq ($(SUBPROJECT),)
VPATH += $(SUBPROJECT_PATH)
endif
VPATH += $(KEYBOARD_PATH)
VPATH += $(COMMON_VPATH)
include $(TMK_PATH)/common.mk
SRC += $(TMK_COMMON_SRC)
OPT_DEFS += $(TMK_COMMON_DEFS)
EXTRALDFLAGS += $(TMK_COMMON_LDFLAGS)
ifeq ($(PLATFORM),AVR)
include $(TMK_PATH)/protocol/lufa.mk
include $(TMK_PATH)/avr.mk
endif
ifeq ($(strip $(VISUALIZER_ENABLE)), yes)
VISUALIZER_DIR = $(QUANTUM_DIR)/visualizer
VISUALIZER_PATH = $(QUANTUM_PATH)/visualizer
include $(VISUALIZER_PATH)/visualizer.mk
endif
OUTPUTS := $(KEYMAP_OUTPUT) $(KEYBOARD_OUTPUT)
$(KEYMAP_OUTPUT)_SRC := $(SRC)
$(KEYMAP_OUTPUT)_DEFS := $(OPT_DEFS) -DQMK_KEYBOARD=\"$(KEYBOARD)\" -DQMK_KEYMAP=\"$(KEYMAP)\"
$(KEYMAP_OUTPUT)_INC := $(VPATH) $(EXTRAINCDIRS)
$(KEYMAP_OUTPUT)_CONFIG := $(CONFIG_H)
$(KEYBOARD_OUTPUT)_SRC := $(CHIBISRC)
$(KEYBOARD_OUTPUT)_DEFS := $(PROJECT_DEFS)
$(KEYBOARD_OUTPUT)_INC := $(PROJECT_INC)
$(KEYBOARD_OUTPUT)_CONFIG := $(PROJECT_CONFIG)
# Default target.
all: build sizeafter
# Change the build target to build a HEX file or a library.
build: elf hex
#build: elf hex eep lss sym
#build: lib
include $(TMK_PATH)/rules.mk

@ -0,0 +1,57 @@
ifndef VERBOSE
.SILENT:
endif
.DEFAULT_GOAL := all
include common.mk
TARGET=test/$(TEST)
GTEST_OUTPUT = $(BUILD_DIR)/gtest
TEST_OBJ = $(BUILD_DIR)/test_obj
OUTPUTS := $(TEST_OBJ)/$(TEST) $(GTEST_OUTPUT)
GTEST_INC := \
$(LIB_PATH)/googletest/googletest/include\
$(LIB_PATH)/googletest/googlemock/include\
GTEST_INTERNAL_INC :=\
$(LIB_PATH)/googletest/googletest\
$(LIB_PATH)/googletest/googlemock
$(GTEST_OUTPUT)_SRC :=\
googletest/src/gtest-all.cc\
googletest/src/gtest_main.cc\
googlemock/src/gmock-all.cc
$(GTEST_OUTPUT)_DEFS :=
$(GTEST_OUTPUT)_INC := $(GTEST_INC) $(GTEST_INTERNAL_INC)
LDFLAGS += -lstdc++ -lpthread -shared-libgcc
CREATE_MAP := no
VPATH +=\
$(LIB_PATH)/googletest\
$(LIB_PATH)/googlemock
all: elf
VPATH += $(COMMON_VPATH)
include $(TMK_PATH)/common.mk
include $(QUANTUM_PATH)/serial_link/tests/rules.mk
$(TEST_OBJ)/$(TEST)_SRC := $($(TEST)_SRC)
$(TEST_OBJ)/$(TEST)_INC := $($(TEST)_INC) $(VPATH) $(GTEST_INC)
$(TEST_OBJ)/$(TEST)_DEFS := $($(TEST)_DEFS)
include $(TMK_PATH)/native.mk
include $(TMK_PATH)/rules.mk
$(shell mkdir -p $(BUILD_DIR)/test 2>/dev/null)
$(shell mkdir -p $(TEST_OBJ) 2>/dev/null)

@ -0,0 +1,26 @@
include message.mk
# Directory common source files exist
TOP_DIR = .
TMK_DIR = tmk_core
TMK_PATH = $(TOP_DIR)/$(TMK_DIR)
LIB_PATH = $(TOP_DIR)/lib
QUANTUM_DIR = quantum
QUANTUM_PATH = $(TOP_DIR)/$(QUANTUM_DIR)
BUILD_DIR := $(TOP_DIR)/.build
SERIAL_DIR := $(QUANTUM_DIR)/serial_link
SERIAL_PATH := $(QUANTUM_PATH)/serial_link
SERIAL_SRC := $(wildcard $(SERIAL_PATH)/protocol/*.c)
SERIAL_SRC += $(wildcard $(SERIAL_PATH)/system/*.c)
SERIAL_DEFS += -DSERIAL_LINK_ENABLE
COMMON_VPATH := $(TOP_DIR)
COMMON_VPATH += $(TMK_PATH)
COMMON_VPATH += $(QUANTUM_PATH)
COMMON_VPATH += $(QUANTUM_PATH)/keymap_extras
COMMON_VPATH += $(QUANTUM_PATH)/audio
COMMON_VPATH += $(QUANTUM_PATH)/process_keycode
COMMON_VPATH += $(SERIAL_PATH)

@ -1,70 +1,3 @@
ifndef MAKEFILE_INCLUDED
# Target file name (without extension).
# project specific files
SRC = led.c
# MCU name
MCU = atmega32u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
#NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,66 @@
# Target file name (without extension).
# project specific files
SRC = led.c
# MCU name
MCU = atmega32u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
#NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA

@ -1,70 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,66 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,74 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -12,13 +12,15 @@ Download or clone the whole firmware and navigate to the keyboards/arrow_pad fol
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,70 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -1,73 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -13,13 +13,14 @@ Download or clone the whole firmware and navigate to the keyboards/atomic folder
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,69 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend

@ -1,88 +1,3 @@
ifndef MAKEFILE_INCLUDED
ifdef TEENSY2
OPT_DEFS += -DATREUS_TEENSY2
ATREUS_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex
else
OPT_DEFS += -DATREUS_ASTAR
OPT_DEFS += -DCATERINA_BOOTLOADER
ATREUS_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)
endif
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
#BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - not yet supported in LUFA
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif
USB ?= /dev/cu.usbmodem1411
upload: build
$(ATREUS_UPLOAD_COMMAND)

@ -174,13 +174,14 @@ Download or clone the whole firmware and navigate to the keyboards/planck folder
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,82 @@
ifdef TEENSY2
OPT_DEFS += -DATREUS_TEENSY2
ATRUES_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex
else
OPT_DEFS += -DATREUS_ASTAR
OPT_DEFS += -DCATERINA_BOOTLOADER
ATRUES_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)
endif
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
#BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - not yet supported in LUFA
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
USB ?= /dev/cu.usbmodem1411
upload: build
$(ATRUES_UPLOAD_COMMAND)

@ -1,72 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -12,13 +12,14 @@ Download or clone the whole firmware and navigate to the keyboards/Bantam44 fold
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,67 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,14 +1,5 @@
SUBPROJECT_DEFAULT = stm32_f072_onekey SUBPROJECT_DEFAULT = stm32_f072_onekey
#BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration ifndef MAKEFILE_INCLUDED
MOUSEKEY_ENABLE ?= yes # Mouse keys
EXTRAKEY_ENABLE ?= yes # Audio control and System control
CONSOLE_ENABLE ?= yes # Console for debug
COMMAND_ENABLE ?= yes # Commands for debug and configuration
SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover
CUSTOM_MATRIX ?= yes # Custom matrix file
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,8 @@
#BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration
MOUSEKEY_ENABLE ?= yes # Mouse keys
EXTRAKEY_ENABLE ?= yes # Audio control and System control
CONSOLE_ENABLE ?= yes # Console for debug
COMMAND_ENABLE ?= yes # Commands for debug and configuration
SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover
CUSTOM_MATRIX ?= yes # Custom matrix file

@ -1,41 +1,3 @@
# project specific files ifndef MAKEFILE_INCLUDED
SRC = matrix.c \
led.c
## chip/board settings
# the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# linker script to use
# it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
MCU_LDSCRIPT = STM32F072xB
# startup code to use
# is should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP = stm32f0xx
# it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
BOARD = ST_STM32F072B_DISCOVERY
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
# If you want to be able to jump to bootloader from firmware on STM32 MCUs,
# set the correct BOOTLOADER_ADDRESS. Either set it here, or define it in
# ./bootloader_defs.h or in ./boards/<FOO>/bootloader_defs.h (if you have
# a custom board definition that you plan to reuse).
# If you're not setting it here, leave it commented out.
# It is chip dependent, the correct number can be looked up here (page 175):
# http://www.st.com/web/en/resource/technical/document/application_note/CD00167594.pdf
# This also requires a patch to chibios:
# <tmk_dir>/tmk_core/tool/chibios/ch-bootloader-jump.patch
#STM32_BOOTLOADER_ADDRESS = 0x1FFFC800
# Build Options
# comment out to disable the options.
#
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,41 @@
# project specific files
SRC = matrix.c \
led.c
## chip/board settings
# the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# linker script to use
# it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
MCU_LDSCRIPT = STM32F072xB
# startup code to use
# is should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP = stm32f0xx
# it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
BOARD = ST_STM32F072B_DISCOVERY
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
# If you want to be able to jump to bootloader from firmware on STM32 MCUs,
# set the correct BOOTLOADER_ADDRESS. Either set it here, or define it in
# ./bootloader_defs.h or in ./boards/<FOO>/bootloader_defs.h (if you have
# a custom board definition that you plan to reuse).
# If you're not setting it here, leave it commented out.
# It is chip dependent, the correct number can be looked up here (page 175):
# http://www.st.com/web/en/resource/technical/document/application_note/CD00167594.pdf
# This also requires a patch to chibios:
# <tmk_dir>/tmk_core/tool/chibios/ch-bootloader-jump.patch
#STM32_BOOTLOADER_ADDRESS = 0x1FFFC800
# Build Options
# comment out to disable the options.
#
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,52 +1,3 @@
# project specific files ifndef MAKEFILE_INCLUDED
SRC = matrix.c \
led.c
# GENERIC STM32F103C8T6 board - stm32duino bootloader
OPT_DEFS = -DCORTEX_VTOR_INIT=0x2000
MCU_LDSCRIPT = STM32F103x8_stm32duino_bootloader
BOARD = GENERIC_STM32_F103
# GENERIC STM32F103C8T6 board - no bootloader (programmer over serial or SWD)
# OPT_DEFS =
# MCU_LDSCRIPT = STM32F103x8
# BOARD = GENERIC_STM32_F103
# MAPLE MINI
# OPT_DEFS = -DCORTEX_VTOR_INIT=0x5000
# MCU_LDSCRIPT = STM32F103xB_maplemini_bootloader
# BOARD = MAPLEMINI_STM32_F103
## chip/board settings
# the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F1xx
# linker script to use
# it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# startup code to use
# is should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP = stm32f1xx
# it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m3
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
# If you want to be able to jump to bootloader from firmware on STM32 MCUs,
# set the correct BOOTLOADER_ADDRESS. Either set it here, or define it in
# ./bootloader_defs.h or in ./boards/<FOO>/bootloader_defs.h (if you have
# a custom board definition that you plan to reuse).
# If you're not setting it here, leave it commented out.
# It is chip dependent, the correct number can be looked up here (page 175):
# http://www.st.com/web/en/resource/technical/document/application_note/CD00167594.pdf
# This also requires a patch to chibios:
# <tmk_dir>/tmk_core/tool/chibios/ch-bootloader-jump.patch
#STM32_BOOTLOADER_ADDRESS = 0x1FFFC800
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,52 @@
# project specific files
SRC = matrix.c \
led.c
# GENERIC STM32F103C8T6 board - stm32duino bootloader
OPT_DEFS = -DCORTEX_VTOR_INIT=0x2000
MCU_LDSCRIPT = STM32F103x8_stm32duino_bootloader
BOARD = GENERIC_STM32_F103
# GENERIC STM32F103C8T6 board - no bootloader (programmer over serial or SWD)
# OPT_DEFS =
# MCU_LDSCRIPT = STM32F103x8
# BOARD = GENERIC_STM32_F103
# MAPLE MINI
# OPT_DEFS = -DCORTEX_VTOR_INIT=0x5000
# MCU_LDSCRIPT = STM32F103xB_maplemini_bootloader
# BOARD = MAPLEMINI_STM32_F103
## chip/board settings
# the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F1xx
# linker script to use
# it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# startup code to use
# is should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP = stm32f1xx
# it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m3
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
# If you want to be able to jump to bootloader from firmware on STM32 MCUs,
# set the correct BOOTLOADER_ADDRESS. Either set it here, or define it in
# ./bootloader_defs.h or in ./boards/<FOO>/bootloader_defs.h (if you have
# a custom board definition that you plan to reuse).
# If you're not setting it here, leave it commented out.
# It is chip dependent, the correct number can be looked up here (page 175):
# http://www.st.com/web/en/resource/technical/document/application_note/CD00167594.pdf
# This also requires a patch to chibios:
# <tmk_dir>/tmk_core/tool/chibios/ch-bootloader-jump.patch
#STM32_BOOTLOADER_ADDRESS = 0x1FFFC800
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,49 +1,3 @@
# project specific files ifndef MAKEFILE_INCLUDED
SRC = matrix.c \
led.c
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
# - For Teensies, FAMILY = KINETIS and SERIES is either
# KL2x (LC) or K20x (3.0,3.1,3.2).
MCU_FAMILY = KINETIS
MCU_SERIES = KL2x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# - NOTE: a custom ld script is needed for EEPROM on Teensy LC
# - LDSCRIPT =
# - MKL26Z64 for Teensy LC
# - MK20DX128 for Teensy 3.0
# - MK20DX256 for Teensy 3.1 and 3.2
MCU_LDSCRIPT = MKL26Z64
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
# - STARTUP =
# - kl2x for Teensy LC
# - k20x5 for Teensy 3.0
# - k20x7 for Teensy 3.1 and 3.2
MCU_STARTUP = kl2x
# Board: it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# - BOARD =
# - PJRC_TEENSY_LC for Teensy LC
# - PJRC_TEENSY_3 for Teensy 3.0
# - PJRC_TEENSY_3_1 for Teensy 3.1 or 3.2
BOARD = PJRC_TEENSY_LC
# Cortex version
# Teensy LC is cortex-m0plus; Teensy 3.x are cortex-m4
MCU = cortex-m0plus
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
# I.e. 6 for Teensy LC; 7 for Teensy 3.x
ARMV = 6
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,49 @@
# project specific files
SRC = matrix.c \
led.c
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
# - For Teensies, FAMILY = KINETIS and SERIES is either
# KL2x (LC) or K20x (3.0,3.1,3.2).
MCU_FAMILY = KINETIS
MCU_SERIES = KL2x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# - NOTE: a custom ld script is needed for EEPROM on Teensy LC
# - LDSCRIPT =
# - MKL26Z64 for Teensy LC
# - MK20DX128 for Teensy 3.0
# - MK20DX256 for Teensy 3.1 and 3.2
MCU_LDSCRIPT = MKL26Z64
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
# - STARTUP =
# - kl2x for Teensy LC
# - k20x5 for Teensy 3.0
# - k20x7 for Teensy 3.1 and 3.2
MCU_STARTUP = kl2x
# Board: it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# - BOARD =
# - PJRC_TEENSY_LC for Teensy LC
# - PJRC_TEENSY_3 for Teensy 3.0
# - PJRC_TEENSY_3_1 for Teensy 3.1 or 3.2
BOARD = PJRC_TEENSY_LC
# Cortex version
# Teensy LC is cortex-m0plus; Teensy 3.x are cortex-m4
MCU = cortex-m0plus
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
# I.e. 6 for Teensy LC; 7 for Teensy 3.x
ARMV = 6
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,109 +1,5 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
SUBPROJECT_DEFAULT = rev2 SUBPROJECT_DEFAULT = rev2
# MCU name ifndef MAKEFILE_INCLUDED
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to no to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
AUDIO_ENABLE ?= no
RGBLIGHT_ENABLE ?= no # Enable keyboard underlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -31,36 +31,36 @@ If you would like to use one of the alternative keymaps, or create your own, see
## Clueboard 1.0 ## Clueboard 1.0
If you have a first generation Clueboard (one with a black PCB) you will need to use the revision 1 code. To do so add `SUBPROJECT=rev1` to your make command, like this: If you have a first generation Clueboard (one with a black PCB) you will need to use the revision 1 code. To do so add `rev1` to your make command, like this:
``` ```
$ make SUBPROJECT=rev1 $ make rev1
``` ```
And when flashing your keyboard: And when flashing your keyboard:
``` ```
$ make SUBPROJECT=rev1 dfu $ make rev1-dfu
``` ```
If you are flashing an alternative layout to your rev1, include both `SUBPROJECT=rev1` and `KEYMAP=<keymap>` in your command, for example when flashing max: If you are flashing an alternative layout to your rev1, include both `rev1` and `<keymap>` in your command, for example when flashing max:
``` ```
$ make SUBPROJECT=rev1 KEYMAP=max dfu $ make rev1-max-dfu
``` ```
## Alternate Keymaps ## Alternate Keymaps
There are many alternative and user-contributed layouts available in the [keymaps/](keymaps/) directory. To compile and flash an alternative you will want to add `KEYMAP=<keymap>` to your command: There are many alternative and user-contributed layouts available in the [keymaps/](keymaps/) directory. To compile and flash an alternative you will want to add `<keymap>` to your command:
``` ```
$ make KEYMAP=skully $ make skully
``` ```
And when flashing your keyboard, put `KEYMAP=<keymap>` between "make" and "dfu": And when flashing your keyboard, put `<keymap>` between "make" and "dfu":
``` ```
$ make KEYMAP=skully dfu $ make skully-dfu
``` ```
### Notable Layouts ### Notable Layouts
@ -76,15 +76,15 @@ These layouts are notable for one reason or another. If you are looking for idea
There are a lot of possibilities when creating your own keymap, and the primary documentation for doing that is [Customizing Your Keymap](/readme.md##customizing-your-keymap) in the main readme.md. As a way to get started, here is the procedure I recommend: There are a lot of possibilities when creating your own keymap, and the primary documentation for doing that is [Customizing Your Keymap](/readme.md##customizing-your-keymap) in the main readme.md. As a way to get started, here is the procedure I recommend:
* Copy `[keymaps/default](keymaps/default/)` to `keymaps/<your_layout>`. * Copy `[keymaps/default](keymaps/default/)` to `keymaps/<your_layout>`.
* Compile the firmware (`$ make KEYMAP=<your_layout>`) * Compile the firmware (`$ make <your_layout>`)
* Flash the firmware (`$ make KEYMAP=<your_layout> dfu`) * Flash the firmware (`$ make <your_layout>-dfu`)
* Make sure everything works like the default keyboard * Make sure everything works like the default keyboard
* Modify `keymaps/<your_layout>/readme.md` to tell others about your layout. * Modify `keymaps/<your_layout>/readme.md` to tell others about your layout.
* Modify `keymaps/<your_layout>/keymap.c` to reflect your desired layout. * Modify `keymaps/<your_layout>/keymap.c` to reflect your desired layout.
* Compile your new custom firmware (`$ make KEYMAP=<your_layout>`) * Compile your new custom firmware (`$ make <your_layout>`)
** If you have warnings you may flash without fixing them, but something may not work right. ** If you have warnings you may flash without fixing them, but something may not work right.
** If you have any errors you must fix them before continuing. ** If you have any errors you must fix them before continuing.
* Flash the firmware (`$ make KEYMAP=<your_layout> dfu`) * Flash the firmware (`$ make <your_layout>-dfu`)
## Share Your Keymap ## Share Your Keymap

@ -1,5 +1,3 @@
BACKLIGHT_ENABLE = no ifndef MAKEFILE_INCLUDED
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,5 @@
BACKLIGHT_ENABLE = no
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,5 +1,3 @@
BACKLIGHT_ENABLE = yes ifndef MAKEFILE_INCLUDED
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,5 @@
BACKLIGHT_ENABLE = yes
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -0,0 +1,103 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
AUDIO_ENABLE ?= no
RGBLIGHT_ENABLE ?= no # Enable keyboard underlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,76 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= yes # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -13,16 +13,16 @@ Depending on which keymap you would like to use, you will have to compile slight
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files.
To build the firmware binary hex file with a keymap just do `make` with `keymap` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make keymap=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/` Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/`

@ -0,0 +1,70 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= yes # Audio output on port C6

@ -1,70 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
# MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
# EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
# CONSOLE_ENABLE ?= yes # Console for debug(+400)
# COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable numpad's backlight functionality
RGBLIGHT_ENABLE ?= yes
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,65 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
# MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
# EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
# CONSOLE_ENABLE ?= yes # Console for debug(+400)
# COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable numpad's backlight functionality
RGBLIGHT_ENABLE ?= yes
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,34 +1,5 @@
#----------------------------------------------------------------------------
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
SUBPROJECT_DEFAULT = ez SUBPROJECT_DEFAULT = ez
# Build Options ifndef MAKEFILE_INCLUDED
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
CUSTOM_MATRIX ?= yes # Custom matrix file for the ErgoDox EZ
SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= yes # Unicode
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -1,76 +1,3 @@
#---------------------------------------------------------------------------- ifndef MAKEFILE_INCLUDED
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
# # project specific files
SRC = twimaster.c \
matrix.c
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,76 @@
#----------------------------------------------------------------------------
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
# # project specific files
SRC = twimaster.c \
matrix.c
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,77 +1,3 @@
# project specific files ifndef MAKEFILE_INCLUDED
SRC = matrix.c \
led.c
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
# - For Teensies, FAMILY = KINETIS and SERIES is either
# KL2x (LC) or K20x (3.0,3.1,3.2).
# - For Infinity KB, SERIES = K20x
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# - NOTE: a custom ld script is needed for EEPROM on Teensy LC
# - LDSCRIPT =
# - MKL26Z64 for Teensy LC
# - MK20DX128 for Teensy 3.0
# - MK20DX256 for Teensy 3.1 and 3.2
# - MK20DX128BLDR4 for Infinity 60% with Kiibohd bootloader
# - MK20DX256BLDR8 for Infinity ErgoDox with Kiibohd bootloader
MCU_LDSCRIPT = MK20DX256BLDR8
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
# - STARTUP =
# - kl2x for Teensy LC
# - k20x5 for Teensy 3.0 and Infinity 60%
# - k20x7 for Teensy 3.1, 3.2 and Infinity ErgoDox
MCU_STARTUP = k20x7
# Board: it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# - BOARD =
# - PJRC_TEENSY_LC for Teensy LC
# - PJRC_TEENSY_3 for Teensy 3.0
# - PJRC_TEENSY_3_1 for Teensy 3.1 or 3.2
# - MCHCK_K20 for Infinity KB
#BOARD = MCHCK_K20
BOARD = PJRC_TEENSY_3_1
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
# I.e. 6 for Teensy LC; 7 for Teensy 3.x
ARMV = 7
# Vector table for application
# 0x00000000-0x00001000 area is occupied by bootlaoder.*/
# The CORTEX_VTOR... is needed only for MCHCK/Infinity KB
OPT_DEFS += -DCORTEX_VTOR_INIT=0x00002000
# Build Options
# comment out to disable the options.
#
CUSTOM_MATRIX ?= yes # Custom matrix file
SERIAL_LINK_ENABLE = yes
VISUALIZER_ENABLE ?= no #temporarily disabled to make everything compile
LCD_ENABLE ?= yes
LED_ENABLE ?= yes
LCD_BACKLIGHT_ENABLE ?= yes
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif
ifdef LCD_ENABLE
include $(SUBPROJECT_PATH)/drivers/gdisp/st7565ergodox/driver.mk
endif
ifdef LED_ENABLE
include $(SUBPROJECT_PATH)/drivers/gdisp/IS31FL3731C/driver.mk
endif

@ -0,0 +1,77 @@
# project specific files
SRC = matrix.c \
led.c
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
# - For Teensies, FAMILY = KINETIS and SERIES is either
# KL2x (LC) or K20x (3.0,3.1,3.2).
# - For Infinity KB, SERIES = K20x
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <this_dir>/ld/
# - NOTE: a custom ld script is needed for EEPROM on Teensy LC
# - LDSCRIPT =
# - MKL26Z64 for Teensy LC
# - MK20DX128 for Teensy 3.0
# - MK20DX256 for Teensy 3.1 and 3.2
# - MK20DX128BLDR4 for Infinity 60% with Kiibohd bootloader
# - MK20DX256BLDR8 for Infinity ErgoDox with Kiibohd bootloader
MCU_LDSCRIPT = MK20DX256BLDR8
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
# - STARTUP =
# - kl2x for Teensy LC
# - k20x5 for Teensy 3.0 and Infinity 60%
# - k20x7 for Teensy 3.1, 3.2 and Infinity ErgoDox
MCU_STARTUP = k20x7
# Board: it should exist either in <chibios>/os/hal/boards/
# or <this_dir>/boards
# - BOARD =
# - PJRC_TEENSY_LC for Teensy LC
# - PJRC_TEENSY_3 for Teensy 3.0
# - PJRC_TEENSY_3_1 for Teensy 3.1 or 3.2
# - MCHCK_K20 for Infinity KB
#BOARD = MCHCK_K20
BOARD = PJRC_TEENSY_3_1
# Cortex version
# Teensy LC is cortex-m0; Teensy 3.x are cortex-m4
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
# I.e. 6 for Teensy LC; 7 for Teensy 3.x
ARMV = 7
# Vector table for application
# 0x00000000-0x00001000 area is occupied by bootlaoder.*/
# The CORTEX_VTOR... is needed only for MCHCK/Infinity KB
OPT_DEFS += -DCORTEX_VTOR_INIT=0x00002000
# Build Options
# comment out to disable the options.
#
CUSTOM_MATRIX ?= yes # Custom matrix file
SERIAL_LINK_ENABLE = yes
VISUALIZER_ENABLE ?= no #temporarily disabled to make everything compile
LCD_ENABLE ?= yes
LED_ENABLE ?= yes
LCD_BACKLIGHT_ENABLE ?= yes
ifndef QUANTUM_DIR
include ../../../Makefile
endif
ifdef LCD_ENABLE
include $(SUBPROJECT_PATH)/drivers/gdisp/st7565ergodox/driver.mk
endif
ifdef LED_ENABLE
include $(SUBPROJECT_PATH)/drivers/gdisp/IS31FL3731C/driver.mk
endif

@ -1,33 +1,137 @@
# Getting started # The Easy Way
There are two main ways you could customize the ErgoDox (EZ and Infinity) If you can find firmware someone else has made that does what you want, that
is the easiest way to customize your ErgoDox. It requires no programming
experience or the setup of a build environment.
## The Easy Way: Use an existing firmware file and just flash it (ErgoDox EZ only) Quickstart:
1. Download and install the [Teensy Loader](https://www.pjrc.com/teensy/loader.html). Some Linux distributions already provide a binary (may be called `teensy-loader-cli`), so you may prefer to use this. - Find and download an existing firmware
2. Find a firmware file you like. There are [dozens of community-contributed keymaps](http://qmk.fm/keyboards/ergodox/) you can browse and download. You can also use the [Massdrop configurator](https://keyboard-configurator.massdrop.com/ext/ergodox) to create a firmware Hex file you like. [from Other Firmware Options](#other-firmware-options)
3. Download the firmware file
4. Connect the keyboard, press its Reset button (gently insert a paperclip into the hole in the top-right corner) and flash it using the Teensy loader you installed on step 1 and the firmware you downloaded.
## More technical: compile an existing keymap, or create your own totally custom firmware by editing the source files. - Then flash the firmware to your [ErgoDox Ez](#ergodox-ez)
or [ErgoDox Infinity](#ergodox-infinity)
This requires a little bit of familiarity with coding. # Customizing Keymaps
If you are just compiling an existing keymap and don't want to create your own, you can skip step 4, 5 and 8.
1. Go to https://github.com/jackhumbert/qmk_firmware and read the readme at the base of this repository, top to bottom. Then come back here :) There are many existing keymaps in the "keymaps" directory. If you just want
2. Clone the repository (download it) to use one of them, you don't need to modify keymaps and can just build and
3. Set up a build environment as per the readme. flash the firmware as described below. These directories each have a
4. Copy `keyboards/ergodox/keymaps/default/keymap.c` into `keymaps/your_name/keymap.c` (for example, `keymaps/german/keymap.c`) "readme.md" file which describe them.
5. Edit this file, changing keycodes to your liking (see "Finding the keycodes you need" below). Try to edit the comments as well, so the "text graphics" represent your layout correctly. See below for more tips on sharing your work.
6. Compile your firmware by running `make keymap=keymap_name`. For example, `make keymap=german`. This will result in a hex file, which will be called `ergodox_ez_keymap_name.hex`, e.g. `ergodox_ez_german.hex`. For **Infinity ErgoDox** you need to add `subproject=infinity` to the make command.
7. **ErgoDox EZ** - Flash this hex file using the [Teensy loader](https://www.pjrc.com/teensy/loader.html) as described in step 4 in the "Easy Way" above. If you prefer you can automatically flash the hex file after successful build by running `make teensy keymap=keymap_name`.
**Infinity ErgoDox** - Flash the firmware by running `make dfu-util keymap=keymap_name subproject=infinity` If none of the existing keymaps suit you, you can create your own custom
8. Submit your work as a pull request to this repository, so others can also use it. :) See below on specifics. keymap. This will require some experience with coding. Follow these steps
to customize a keymap:
Good luck! :) - Read the [qmk firmware README](https://github.com/jackhumbert/qmk_firmware) from top to bottom. Then come back here. :)
## Contributing your keymap - Clone the qmk_firmware repository
- Set up your build environment (see below).
- Make a new directory under "keymaps" to hold your customizations.
- Copy an existing keymap that is close to what you want, such as
"keymaps/default/keymap.c".
- Use an editor to modify the new "keymap.c". See "Finding the keycodes you
need" below). Try to edit the comments as well, so the "text graphics"
represent your layout correctly.
- Compile your new firmware (see below)
- Flash your firmware (see below)
- Test the changes.
- Submit your keymap as a pull request to the qmk_firmware repository so
others can use it. You will want to add a "readme.md" that describes the
keymap.
# Build Dependencies
Before you can build, you will need the build dependencies. There is a script
to try to do this for Linux:
- Run the `util/install_dependencies.sh` script as root.
For the Infinity, you need the chibios submodules to be checked out or you
will receive errors about the build process being unable to find the chibios
files. Check them out with:
- Go to the top level repo directory and run: `git submodule update --init --recursive`
# Flashing Firmware
## ErgoDox Ez
The Ez uses the [Teensy Loader](https://www.pjrc.com/teensy/loader.html).
Linux users need to modify udev rules as described on the Teensy Linux page.
Some distributions provide a binary, maybe called `teensy-loader-cli`).
To flash the firmware:
- Build the firmware with `make keymapname`, for example `make default`
- This will result in a hex file called `ergodox_ez_keymapname.hex`, e.g.
`ergodox_ez_default.hex`
- Start the teensy loader.
- Load the .hex file into it.
- Press the Reset button by inserting a paperclip gently into the reset hole
in the top right corder.
- Click the button in the Teensy app to download the firmware.
## ErgoDox Infinity
The Infinity is two completely independent keyboards, and needs to be flashed
for the left and right halves seperately. To flash them:
- Build the firmware with `make infinity-keymapname`
- Plug in the left hand keyboard only.
- Press the program button (back of keyboard, above thumb pad).
- Install the firmware with `sudo make infinity-keymapname-dfu-util`
- Build left hand firmware with `make infinity-keymapname MASTER=right`
- Plug in the right hand keyboard only.
- Press the program button (back of keyboard, above thumb pad).
- Install the firmware with `sudo make infinity-keymapname-dfu-util MASTER=right`
More information on the Infinity firmware is available in the [TMK/chibios for
Input Club Infinity Ergodox](https://github.com/fredizzimo/infinity_ergodox/blob/master/README.md)
### Infinity Master/Two Halves
The Infinity is two completely independent keyboards, that can connect together.
You have a few options in how you flash the firmware:
- Flash the left half, rebuild the firmware with "MASTER=right" and then flash
the right half. This allows you to plug in either half directly to the
computer and is what the above instructions do.
- Flash the left half, then flash the same firmware on the right. This only
works when the left half is plugged directly to the computer and the keymap
is mirrored. It saves the small extra step of rebuilding with
"MASTER=right".
- The same as the previous one but with "MASTER=right" when you build the
firmware, then flash the same firmware to both halves. You just have to
directly connect the right half to the computer.
- For minor changes such as changing only the keymap without having updated
any part of the firmware code itself, you can program only the MASTER half.
It is safest to program both halves though.
# Contributing your keymap
The QMK firmware is open-source, so it would be wonderful to have your contribution! Within a very short time after launching we already amassed dozens of user-contributed keymaps, with all sorts of creative improvements and tweaks. This is very valuable for people who aren't comfortable coding, but do want to customize their ErgoDox. To make it easy for these people to use your layout, I recommend submitting your PR in the following format. The QMK firmware is open-source, so it would be wonderful to have your contribution! Within a very short time after launching we already amassed dozens of user-contributed keymaps, with all sorts of creative improvements and tweaks. This is very valuable for people who aren't comfortable coding, but do want to customize their ErgoDox. To make it easy for these people to use your layout, I recommend submitting your PR in the following format.
@ -36,11 +140,26 @@ The QMK firmware is open-source, so it would be wonderful to have your contribut
3. `readme.md` - a readme file, which GitHub would display by default when people go to your directory. Explain what's different about your keymap, what you tweaked or how it works. No specific format to follow, just communicate what you did. :) 3. `readme.md` - a readme file, which GitHub would display by default when people go to your directory. Explain what's different about your keymap, what you tweaked or how it works. No specific format to follow, just communicate what you did. :)
4. Any graphics you wish to add. This is absolutely not a must. If you feel like it, you can use [Keyboard Layout Editor](http://keyboard-layout-editor.com) to make something and grab a screenshot, but it's really not a must. If you do have graphics, your readme can just embed the graphic as a link, just like I did with the default layout. 4. Any graphics you wish to add. This is absolutely not a must. If you feel like it, you can use [Keyboard Layout Editor](http://keyboard-layout-editor.com) to make something and grab a screenshot, but it's really not a must. If you do have graphics, your readme can just embed the graphic as a link, just like I did with the default layout.
# Finding the keycodes you need
## Finding the keycodes you need
Let's say you want a certain key in your layout to send a colon; to figure out what keycode to use to make it do that, you're going to need `quantum/keymap_common.h`. Let's say you want a certain key in your layout to send a colon; to figure out what keycode to use to make it do that, you're going to need `quantum/keymap_common.h`.
That file contains a big list of all of the special, fancy keys (like, being able to send % on its own and whatnot). That file contains a big list of all of the special, fancy keys (like, being able to send % on its own and whatnot).
If you want to send a plain vanilla key, you can look up its code under `doc/keycode.txt`. That's where all the boring keys hang out. If you want to send a plain vanilla key, you can look up its code under `doc/keycode.txt`. That's where all the boring keys hang out.
# Other Firmware Options
There are external tools for customizing the layout, but those do not use
the featurs of this qmk firmware. These sites include:
- [Massdrop configurator](https://keyboard-configurator.massdrop.com/ext/ergodox) for Ez
- [Input Club configurator](https://input.club/configurator-ergodox) for Infinity, provides left and right files
You can also find an existing firmware that you like, for example from:
- [Dozens of community-contributed keymaps](http://qmk.fm/keyboards/ergodox/)
This qmk firmware also provides the ability to customize keymaps, but requires
a toolchain to build the firmware. See below for instructions on building
firmware and customizing keymaps.

@ -0,0 +1,28 @@
#----------------------------------------------------------------------------
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
CUSTOM_MATRIX ?= yes # Custom matrix file for the ErgoDox EZ
SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= yes # Unicode

@ -1,74 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
# CONSOLE_ENABLE ?= yes # Console for debug(+400)
# COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -48,13 +48,15 @@ Download or clone the whole firmware and navigate to the keyboards/gh60_rev_c fo
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,66 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
# CONSOLE_ENABLE ?= yes # Console for debug(+400)
# COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,73 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,73 @@
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,3 +1,3 @@
ifndef QUANTUM_DIR ifndef MAKEFILE_INCLUDED
include ../../Makefile include ../../Makefile
endif endif

@ -1,73 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,73 @@
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,71 +1,3 @@
# MCU name ifndef MAKEFILE_INCLUDED
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= yes # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,67 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= yes # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend

@ -1,65 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
#NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,65 @@
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
#SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
#NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,89 +1,3 @@
ifndef MAKEFILE_INCLUDED
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
# for avr upload
USB ?= /dev/cu.usbmodem1421
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
ifdef TEENSY2
OPT_DEFS += -DATREUS_TEENSY2
ATREUS_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex
else
OPT_DEFS += -DATREUS_ASTAR
OPT_DEFS += -DCATERINA_BOOTLOADER
ATREUS_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)
endif
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# MCU name
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
RGBLIGHT_ENABLE = yes
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif
upload: build
$(ATREUS_UPLOAD_COMMAND)

@ -0,0 +1,89 @@
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
# for avr upload
USB ?= /dev/cu.usbmodem1421
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
ifdef TEENSY2
OPT_DEFS += -DATREUS_TEENSY2
ATREUS_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex
else
OPT_DEFS += -DATREUS_ASTAR
OPT_DEFS += -DCATERINA_BOOTLOADER
ATREUS_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)
endif
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# MCU name
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
RGBLIGHT_ENABLE = yes
ifndef QUANTUM_DIR
include ../../../Makefile
endif
upload: build
$(ATREUS_UPLOAD_COMMAND)

@ -1,90 +1,3 @@
ifndef MAKEFILE_INCLUDED
# project specific files
SRC = matrix.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
#OPT_DEFS += -DBOOTLOADER_SIZE=4096
# as per original hasu settings
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
CUSTOM_MATRIX ?= yes # Custom matrix file for the HHKB
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif
ifneq (, $(findstring yes, $(HHKB_JP)))
OPT_DEFS += -DHHKB_JP
endif
debug-on: EXTRAFLAGS += -DDEBUG -DDEBUG_ACTION
debug-on: all
debug-off: EXTRAFLAGS += -DNO_DEBUG -DNO_PRINT
debug-off: OPT_DEFS := $(filter-out -DCONSOLE_ENABLE,$(OPT_DEFS))
debug-off: all

@ -168,13 +168,15 @@ Download or clone the whole firmware and navigate to the keyboards/planck folder
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,84 @@
# project specific files
SRC = matrix.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
#OPT_DEFS += -DBOOTLOADER_SIZE=4096
# as per original hasu settings
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
CUSTOM_MATRIX ?= yes # Custom matrix file for the HHKB
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifneq (, $(findstring yes, $(HHKB_JP)))
OPT_DEFS += -DHHKB_JP
endif
debug-on: EXTRAFLAGS += -DDEBUG -DDEBUG_ACTION
debug-on: all
debug-off: EXTRAFLAGS += -DNO_DEBUG -DNO_PRINT
debug-off: OPT_DEFS := $(filter-out -DCONSOLE_ENABLE,$(OPT_DEFS))
debug-off: all

@ -0,0 +1,3 @@
ifndef MAKEFILE_INCLUDED
include ../../Makefile
endif

@ -26,11 +26,10 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define DEVICE_VER 0x0001 #define DEVICE_VER 0x0001
/* in python2: list(u"whatever".encode('utf-16-le')) */ /* in python2: list(u"whatever".encode('utf-16-le')) */
/* at most 32 characters or the ugly hack in usb_main.c borks */ /* at most 32 characters or the ugly hack in usb_main.c borks */
#define MANUFACTURER "TMK" #define MANUFACTURER "Input Club"
#define USBSTR_MANUFACTURER 'T', '\x00', 'M', '\x00', 'K', '\x00', ' ', '\x00', '\xc6', '\x00' #define USBSTR_MANUFACTURER 'I', '\x00', 'n', '\x00', 'p', '\x00', 'u', '\x00', 't', '\x00', ' ', '\x00', 'C', '\x00', 'l', '\x00', 'u', '\x00', 'b', '\x00'
#define PRODUCT "Infinity keyboard/TMK" #define PRODUCT "Infinity keyboard/QMK"
#define USBSTR_PRODUCT 'I', '\x00', 'n', '\x00', 'f', '\x00', 'i', '\x00', 'n', '\x00', 'i', '\x00', 't', '\x00', 'y', '\x00', ' ', '\x00', 'k', '\x00', 'e', '\x00', 'y', '\x00', 'b', '\x00', 'o', '\x00', 'a', '\x00', 'r', '\x00', 'd', '\x00', '/', '\x00', 'T', '\x00', 'M', '\x00', 'K', '\x00' #define USBSTR_PRODUCT 'I', '\x00', 'n', '\x00', 'f', '\x00', 'i', '\x00', 'n', '\x00', 'i', '\x00', 't', '\x00', 'y', '\x00', ' ', '\x00', 'k', '\x00', 'e', '\x00', 'y', '\x00', 'b', '\x00', 'o', '\x00', 'a', '\x00', 'r', '\x00', 'd', '\x00', '/', '\x00', 'Q', '\x00', 'M', '\x00', 'K', '\x00'
/* key matrix size */ /* key matrix size */
#define MATRIX_ROWS 9 #define MATRIX_ROWS 9
#define MATRIX_COLS 7 #define MATRIX_COLS 7

@ -14,4 +14,4 @@ GNU General Public License for more details.
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "infinity_chibios.h" #include "infinity60.h"

@ -1,4 +1,4 @@
#include "infinity_chibios.h" #include "infinity60.h"
const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS] = { const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Layer 0: Default Layer /* Layer 0: Default Layer

@ -1,4 +1,4 @@
#include "infinity_chibios.h" #include "infinity60.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = { const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Layer 0: Default Layer /* Layer 0: Default Layer

@ -1,4 +1,4 @@
#include "infinity_chibios.h" #include "infinity60.h"
const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS] = { const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Layer 0: Default Layer /* Layer 0: Default Layer

@ -0,0 +1,29 @@
Infinity 60% keyboard firmware
======================
## Quantum MK Firmware
For the full Quantum feature list, see [the parent readme](/).
## Keymaps
Several versions of keymaps are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files.
Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/`
## Compiling
Download or clone the whole firmware and navigate to the keyboards/infinity60 folder. Once your dev env is setup, you'll be able to use the `make` command to both compile your keymap and flash it to your keyboard.
To just compile, which generates the output files in the `.build` folder at the root of the repository, run `make keymap`, where keymap is the name of the keymap that you want to compile.
## Flashing
To flash the firmware to the keyboard
1. First press the flash button on the bottom of the keyboard. If you already have a flah button mapped in a keyboard layout running on the keyboard, you can also use that.
2. Then run `make keymap-dfu-util`, where keymap is the name of the keymap you want to flash. On Linux based operating systems you might need to run the comamnd as root, for example `sudo make keymap-dfu-util` on Ubuntu.
**Tip** `make keymap-dfu-util` will also compile the keymap if needed, so you can skip the compilation step if you want to.

@ -64,7 +64,3 @@ COMMAND_ENABLE ?= yes # Commands for debug and configuration
SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover NKRO_ENABLE ?= yes # USB Nkey Rollover
CUSTOM_MATRIX ?= yes # Custom matrix file CUSTOM_MATRIX ?= yes # Custom matrix file
ifndef QUANTUM_DIR
include ../../Makefile
endif

@ -1,71 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - not yet supported in LUFA
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,67 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
# NKRO_ENABLE ?= yes # USB Nkey Rollover - not yet supported in LUFA
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,77 +1,3 @@
# project specific files ifndef MAKEFILE_INCLUDED
SRC = led.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -56,7 +56,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_TABM, KC_Q, KC_D, KC_R, KC_W, KC_B, KC_J, KC_F, KC_U, KC_P, KC_SCLN, KC_LBRC, KC_RBRC, KC_BSLS, \ KC_TABM, KC_Q, KC_D, KC_R, KC_W, KC_B, KC_J, KC_F, KC_U, KC_P, KC_SCLN, KC_LBRC, KC_RBRC, KC_BSLS, \
KC_LCTL, KC_A, KC_S, KC_H, KC_T, KC_G, KC_Y, KC_N, KC_E, KC_O, KC_I, KC_QUOT, _______, KC_ENT, \ KC_LCTL, KC_A, KC_S, KC_H, KC_T, KC_G, KC_Y, KC_N, KC_E, KC_O, KC_I, KC_QUOT, _______, KC_ENT, \
KC_LSFT, _______, KC_Z, KC_X, KC_M, KC_C, KC_V, KC_K, KC_L, DK_ACT, KC_DOT, KC_SLSH, _______, KC_RSFT, \ KC_LSFT, _______, KC_Z, KC_X, KC_M, KC_C, KC_V, KC_K, KC_L, DK_ACT, KC_DOT, KC_SLSH, _______, KC_RSFT, \
KC_LCTL, KC_LALT, KC_LGUI, KC_SPFN, KC_NO, KC_RALT, KC_RGUI, KC_RCTL, KC_DFQW), KC_LCTL, KC_LALT, KC_LGUI, KC_SPFN, _______, KC_RALT, KC_RGUI, KC_RCTL, KC_DFQW),
// QWERTY // QWERTY
/* /*
@ -77,7 +77,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_TABM, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, \ KC_TABM, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, \
KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, _______, KC_ENT, \ KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, _______, KC_ENT, \
KC_LSFT, _______, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, DK_ACT, KC_DOT, KC_SLSH, _______, KC_RSFT, \ KC_LSFT, _______, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, DK_ACT, KC_DOT, KC_SLSH, _______, KC_RSFT, \
KC_LCTL, KC_LALT, KC_LGUI, KC_SPFN, KC_NO, KC_RALT, KC_RGUI, KC_RCTL, KC_DOWN), KC_LCTL, KC_LALT, KC_LGUI, KC_SPFN, _______, KC_RALT, KC_RGUI, KC_RCTL, KC_DFWM),
// dead key layer // dead key layer
/* /*
@ -98,7 +98,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
XXXXXXX, KC_PERC, KC_AMPR, KC_QUES, KC_PLUS, KC_AT, KC_DLR, KC_UNDS, KC_LBRC, KC_RBRC, KC_EXLM, KC_TILD, KC_CIRC, _______, \ XXXXXXX, KC_PERC, KC_AMPR, KC_QUES, KC_PLUS, KC_AT, KC_DLR, KC_UNDS, KC_LBRC, KC_RBRC, KC_EXLM, KC_TILD, KC_CIRC, _______, \
_______, KC_HASH, KC_LPRN, KC_EQL, KC_0, KC_LCBR, KC_RCBR, KC_1, KC_ASTR, KC_RPRN, KC_MINS, KC_GRV, _______, KC_CENT, \ _______, KC_HASH, KC_LPRN, KC_EQL, KC_0, KC_LCBR, KC_RCBR, KC_1, KC_ASTR, KC_RPRN, KC_MINS, KC_GRV, _______, KC_CENT, \
_______, _______, KC_6, KC_7, KC_8, KC_9, KC_PIPE, KC_BSLS, KC_2, DK_REL, KC_4, KC_5, _______, _______, \ _______, _______, KC_6, KC_7, KC_8, KC_9, KC_PIPE, KC_BSLS, KC_2, DK_REL, KC_4, KC_5, _______, _______, \
KC_LCTL, KC_LALT, KC_LGUI, KC_COMS, KC_NO, KC_RALT, KC_RGUI, KC_RCTL, _______), KC_LCTL, KC_LALT, KC_LGUI, KC_COMS, _______, KC_RALT, KC_RGUI, KC_RCTL, _______),
// function layer // function layer
/* /*
@ -119,7 +119,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_ESC, KC_CMDQ, KC_CMDD, KC_CSTB, KC_C_TB, _______, _______, KC_PGDN, KC_UP, KC_PGUP, _______, _______, _______, KC_INS, \ KC_ESC, KC_CMDQ, KC_CMDD, KC_CSTB, KC_C_TB, _______, _______, KC_PGDN, KC_UP, KC_PGUP, _______, _______, _______, KC_INS, \
KC_LSFT, KC_CMDA, KC_CMDS, KC_C_LF, KC_C_RT, _______, _______, KC_LEFT, KC_DOWN, KC_RGHT, KC_HOME, KC_END, _______, KC_BSPC, \ KC_LSFT, KC_CMDA, KC_CMDS, KC_C_LF, KC_C_RT, _______, _______, KC_LEFT, KC_DOWN, KC_RGHT, KC_HOME, KC_END, _______, KC_BSPC, \
KC_LSFT, _______, KC_CMDZ, KC_CMDX, _______, KC_CMDC, KC_CMDV, KC_VOLD, KC_VOLU, KC_MUTE, _______, _______, _______, _______, \ KC_LSFT, _______, KC_CMDZ, KC_CMDX, _______, KC_CMDC, KC_CMDV, KC_VOLD, KC_VOLU, KC_MUTE, _______, _______, _______, _______, \
KC_LCTL, KC_LALT, KC_LGUI, KC_TRNS, KC_NO, KC_RALT, KC_RGUI, KC_RCTL, RESET), KC_LCTL, KC_LALT, KC_LGUI, KC_TRNS, _______, KC_RALT, KC_RGUI, KC_RCTL, RESET),
// mouse layer // mouse layer
/* /*

@ -10,21 +10,23 @@ Download or clone the whole firmware and navigate to the keyboards/kc60 folder.
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.
## WS2812 Support ## WS2812 Support
![Image of KC60 with RGB Underglow](keymaps/ws2812/ws2812_example.jpg) ![Image of KC60 with RGB Underglow](keymaps/ws2812/ws2812_example.jpg)
Build with WS2812 Support by running `make KEYMAP=ws2812`. Build with WS2812 Support by running `make ws2812`.
## Warning ## Warning
For those who want to use 2x1U instead of classic backspace you need to use K0D and K49 like this: For those who want to use 2x1U instead of classic backspace you need to use K0D and K49 like this:

@ -0,0 +1,71 @@
# project specific files
SRC = led.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -1,79 +1,3 @@
ifndef MAKEFILE_INCLUDED
## Project specific files
SRC= matrix.c
# MCU name
MCU = at90usb1286
#MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output should be port E6, current quantum library hardcodes C6, which we use for programming
CUSTOM_MATRIX=yes # need to do our own thing with the matrix
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -27,16 +27,16 @@ Depending on which keymap you would like to use, you will have to compile slight
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files.
To build the firmware binary hex file with a keymap just do `make` with `keymap` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make keymap=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/` Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/`

@ -0,0 +1,73 @@
## Project specific files
SRC= matrix.c
# MCU name
MCU = at90usb1286
#MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output should be port E6, current quantum library hardcodes C6, which we use for programming
CUSTOM_MATRIX=yes # need to do our own thing with the matrix

@ -1,77 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
CUSTOM_MATRIX = yes
SRC += matrix.c
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,72 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
CUSTOM_MATRIX = yes
SRC += matrix.c

@ -1,78 +1,3 @@
SRC += matrix.c \ ifndef MAKEFILE_INCLUDED
i2c.c \
split_util.c \
serial.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= yes # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
CUSTOM_MATRIX = yes
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,74 @@
SRC += matrix.c \
i2c.c \
split_util.c \
serial.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= yes # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
CUSTOM_MATRIX = yes

@ -1,74 +1,3 @@
ifndef MAKEFILE_INCLUDED
SRC = led.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?=yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,69 @@
SRC = led.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?=yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,74 +1,5 @@
SUBPROJECT_DEFAULT = rev4 SUBPROJECT_DEFAULT = rev4
# MCU name ifndef MAKEFILE_INCLUDED
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -13,15 +13,17 @@ Download or clone the whole firmware and navigate to the keyboards/planck folder
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` in the keymaps folder, and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.
### Notable forks (which some of the keymap files are from) ### Notable forks (which some of the keymap files are from)

@ -1,5 +1,3 @@
AUDIO_ENABLE ?= no # Audio output on port C6 ifndef MAKEFILE_INCLUDED
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,5 @@
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -1,5 +1,3 @@
AUDIO_ENABLE ?= yes # Audio output on port C6 ifndef MAKEFILE_INCLUDED
ifndef QUANTUM_DIR
include ../../../Makefile include ../../../Makefile
endif endif

@ -0,0 +1,5 @@
AUDIO_ENABLE ?= yes # Audio output on port C6
ifndef QUANTUM_DIR
include ../../../Makefile
endif

@ -0,0 +1,67 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend

@ -1,73 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -13,13 +13,15 @@ Download or clone the whole firmware and navigate to the keyboards/preonic folde
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap, create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap, create a file in the keymaps folder named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,69 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no # Audio output on port C6
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE ?= no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend

@ -9,38 +9,47 @@ These keyboards are manufactured by the maintainers of QMK.
What makes OLKB keyboards shine is a combo of lean aesthetics, compact size, and killer tactile feel. These are available through [olkb.com](http://olkb.com) as well as through [Massdrop](http://massdrop.com) from time to time, as easy to assemble kits. What makes OLKB keyboards shine is a combo of lean aesthetics, compact size, and killer tactile feel. These are available through [olkb.com](http://olkb.com) as well as through [Massdrop](http://massdrop.com) from time to time, as easy to assemble kits.
* [Planck](/keyboards/planck/) - A 40% DIY powerhouse of customizability and modification capability. It's a lean, mean, typing machine. * [Planck](/keyboards/planck/) &mdash; A 40% DIY powerhouse of customizability and modification capability. It's a lean, mean, typing machine.
* [Preonic](/keyboards/preonic/) - Like the Planck, but bigger. 50%. * [Preonic](/keyboards/preonic/) &mdash; Like the Planck, but bigger. 50%.
* [Atomic](/keyboards/atomic/) - Imagine the size of the Planck. Now imagine the size of the Preonic. Now imagine _bigger_. That is the Atomic. A 60% keyboard. * [Atomic](/keyboards/atomic/) &mdash; Imagine the size of the Planck. Now imagine the size of the Preonic. Now imagine _bigger_. That is the Atomic. A 60% keyboard.
### ErgoDox EZ - Erez Zukerman ### ErgoDox EZ - Erez Zukerman
Made in Taiwan using advanced robotic manufacturing, the ErgoDox EZ is a fully-assembled, premium ergonomic keyboard. Its split design allows you to place both halves shoulder width, and its custom-made wrist rests and tilt/tent kit make for incredibly comfortable typing. Available on [ergodox-ez.com](https://ergodox-ez.com). Made in Taiwan using advanced robotic manufacturing, the ErgoDox EZ is a fully-assembled, premium ergonomic keyboard. Its split design allows you to place both halves shoulder width, and its custom-made wrist rests and tilt/tent kit make for incredibly comfortable typing. Available on [ergodox-ez.com](https://ergodox-ez.com).
* [ErgoDox EZ](/keyboards/ergodox/) - Our one and only product. Yes, it's that awesome. Comes with either printed or blank keycaps, and 7 different keyswitch types. * [ErgoDox EZ](/keyboards/ergodox/) &mdash; Our one and only product. Yes, it's that awesome. Comes with either printed or blank keycaps, and 7 different keyswitch types.
### Clueboard - Zach White ### Clueboard - Zach White
Designed and built in Felton, CA, Clueboards keyboard emphasize quality and locally sourced components, available on [clueboard.co](http://clueboard.co) Designed and built in Felton, CA, Clueboards keyboard emphasize quality and locally sourced components, available on [clueboard.co](http://clueboard.co)
* [Clueboard](/keyboards/clueboard/) - The 66% custom keyboard. * [Clueboard](/keyboards/clueboard/) &mdash; The 66% custom keyboard.
* [Cluepad](/keyboards/cluepad/) - A mechanical numpad with QMK superpowers. * [Cluecard](/keyboards/cluecard/) &mdash; A small board to help you hack on QMK.
* [Cluepad](/keyboards/cluepad/) &mdash; A mechanical numpad with QMK superpowers.
## Community-supported QMK Keyboards ## Community-supported QMK Keyboards
These keyboards are part of the QMK repository, but their manufacturers are not official maintainers of the repository. These keyboards are part of the QMK repository, but their manufacturers are not official maintainers of the repository.
* [alps64](/keyboards/alps64/) &mdash; A 60% keyboard for Alps keyswitches. * [Alps64](/keyboards/alps64) &mdash; A 60% keyboard for Alps keyswitches.
* [arrow_pad](/keyboards/arrow_pad) &mdash; A custom creation by IBNobody. * [AMJ60](/keyboards/amj60) &mdash; DIY/Assembled compact 60% keyboard.
* [atreus](/keyboards/atreus) &mdash; Made by Technomancy. * [Arrow Pad](/keyboards/arrow_pad) &mdash; A custom creation by IBNobody.
* [bantam44](/keyboards/bantam44) &mdash; It is a 44-key 40% staggered keyboard. * [Atreus](/keyboards/atreus) &mdash; Made by Technomancy.
* [gh60](/keyboards/gh60) &mdash; A 60% Geekhack community-driven project. * [Bantam44](/keyboards/bantam44) &mdash; It is a 44-key 40% staggered keyboard.
* [hhkb](/keyboards/hhkb) &mdash; The Happy Hacking keyboard can be hacked with a custom controller to run QMK. * [Ergodox Infinity](/keyboards/ergodox) - Ergonomic Split Keyboard by Input Club.
* [jd45](/keyboards/jd45) &mdash; Another Geekhack community project, designed by jdcarpe. * [GH60](/keyboards/gh60) &mdash; A 60% Geekhack community-driven project.
* [kc60](/keyboards/kc60) &mdash; A programmable Chinese-made keyboard, lost in the mists of time. * [Happy Hacking Keyboard](/keyboards/hhkb) &mdash; The Happy Hacking keyboard can be hacked with a custom controller to run QMK.
* [kitten_paw](/keyboards/kitten_paw) &mdash; A replacement controller (2016 revision) for the Filco Majestouch by [Bathroom Epiphanies](https://github.com/BathroomEpiphanies) * [Infinity 60%](/keyboards/infinity60) - &mdash; Compact community keyboard by Input Club.
* [phantom](/keyboards/phantom) &mdash; A tenkeyless kit by Teel, also from Geekhack. * [JD45](/keyboards/jd45) &mdash; Another Geekhack community project, designed by jdcarpe.
* [retro_refit](/keyboards/retro_refit) &mdash; Another creation by IBNobody. * [KC60](/keyboards/kc60) &mdash; A programmable Chinese-made keyboard, lost in the mists of time.
* [satan](/keyboards/satan) &mdash; A GH60 variant. * [Kinesis Advantage](/keyboards/kinesis) &mdash; Contoured ergonomic keyboard by Kinesis Computer Ergonomics.
* [sixkeyboard](/keyboards/sixkeyboard) &mdash; A 6-key keyboard made by TechKeys. * [The Kitten Paw](/keyboards/kitten_paw) &mdash; A replacement controller (2016 revision) for the Filco Majestouch by [Bathroom Epiphanies](https://github.com/BathroomEpiphanies).
* [Lets Split](/keyboards/lets_split) - Split ortholinear 40% keyboard.
* [Phantom](/keyboards/phantom) &mdash; A tenkeyless kit by Teel, also from Geekhack.
* [Retro Refit](/keyboards/retro_refit) &mdash; Another creation by IBNobody.
* [S60-x](/keyboards/s60-x) &mdash; DIY compact keyboard designed by VinnyCordeiro for Sentraq.
* [Satan](/keyboards/satan) &mdash; A GH60 variant.
* [SixKeyBoard](/keyboards/sixkeyboard) &mdash; A 6-key keyboard made by TechKeys.
* [TheVan 44](/keyboars/tv44) &mdash; A 44-key staggered keybard by Evangs.
* [Vision Division](/keyboards/vision_division) &mdash; Full Size / Split Linear Keyboard by IBNobody.

@ -1,74 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -12,13 +12,15 @@ Download or clone the whole firmware and navigate to the keyboards/retro_refit f
Depending on which keymap you would like to use, you will have to compile slightly differently. Depending on which keymap you would like to use, you will have to compile slightly differently.
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top readme.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make KEYMAP=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,68 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
KEYBOARD_LOCK_ENABLE ?= yes # Allow locking of keyboard via magic key
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
# SLEEP_LED_ENABLE ?= yes # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
# BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality
# MIDI_ENABLE ?= YES # MIDI controls
# UNICODE_ENABLE ?= YES # Unicode
# BLUETOOTH_ENABLE ?= yes # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,75 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -42,9 +42,9 @@ The recommended programs for flashing your keyboard are [Atmel FLIP](http://www.
## Building the firmware ## Building the firmware
To build firmware binary hex file with a certain keymap just run `make` with the `keymap` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
$ make keymap=[custom|poker|poker_set|poker_bit|plain|hasu|spacefn|hhkb|<name>] $ make [custom|poker|poker_set|poker_bit|plain|hasu|spacefn|hhkb|<name>]
For a more detailed explanation of the build process and the environment setup, see the ["Getting Started" section](/readme.md#getting-started). For a more detailed explanation of the build process and the environment setup, see the ["Getting Started" section](/readme.md#getting-started).

@ -0,0 +1,69 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -1,70 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,66 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
RGBLIGHT_ENABLE ?= yes # Enable keyboard underlight functionality (+4870)
BACKLIGHT_ENABLE ?= yes # Enable keyboard backlight functionality (+1150)
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID

@ -1,75 +1,3 @@
ifndef MAKEFILE_INCLUDED
SRC = matrix.c
# MCU name
#MCU = at90usb1287
MCU = atmega16u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= no # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no # Commands for debug and configuration
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= no # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
CUSTOM_MATRIX = yes
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,70 @@
SRC = matrix.c
# MCU name
#MCU = at90usb1287
MCU = atmega16u2
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= no # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= no # Audio control and System control(+450)
CONSOLE_ENABLE ?= no # Console for debug(+400)
COMMAND_ENABLE ?= no # Commands for debug and configuration
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= no # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality
MIDI_ENABLE ?= no # MIDI controls
AUDIO_ENABLE ?= no
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
CUSTOM_MATRIX = yes

@ -1,75 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,21 @@
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
NKRO_ENABLE = yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
ifndef QUANTUM_DIR
include ../../../../Makefile
endif

@ -0,0 +1,21 @@
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "../../config.h"
/**
*TV44 keymap definition macro
*/
#define KEYMAP_TV44( \
K01, K02, K03, K04, K05, K06, K07, K08, K09, K10, K11, K12, \
K13, K14, K15, K16, K17, K18, K19, K20, K21, K22, K23, K24, \
K25, K26, K27, K28, K29, K30, K31, K32, K33, K34, K35, K36, \
K37, K38, K39, K40, K41, K42, K43, K44 \
) { \
{ K01, K02, K03, K04, K05, K06, K07, K08, K09, K10, K11, K12, }, \
{ K13, K14, K15, K16, K17, K18, K19, K20, K21, K22, K23, K24, }, \
{ K25, K26, K27, K28, K29, K30, K31, K32, K33, K34, K35, K36, }, \
{ K37, K38, K39, K40, KC_NO, KC_NO, KC_NO, K41, K42, K43, KC_NO, K44 } \
}
#endif

@ -0,0 +1,425 @@
#include "tv44.h"
#include "action_layer.h"
#include "eeconfig.h"
extern keymap_config_t keymap_config;
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
#define _QWERTY 0
#define _COLEMAK 1
#define _DVORAK 2
#define _LOWER 3
#define _RAISE 4
#define _PLOVER 5
#define _TOUCHCURSOR 6
#define _MOUSECURSOR 7
#define _ADJUST 16
// Keycodes
enum planck_keycodes {
QWERTY = SAFE_RANGE,
COLEMAK,
DVORAK,
PLOVER,
LOWER,
RAISE,
BACKLIT,
EXT_PLV
};
enum macro_keycodes {
KC_ALT_TAB,
KC_CMD_TAB,
KC_CTL_TAB,
KC_CMD_SLSH,
KC_AG_FIND,
KC_AG_AGAIN,
KC_AG_UNDO,
KC_AG_CUT,
KC_AG_COPY,
KC_AG_PASTE,
KC_AG_DESK_L,
KC_AG_DESK_R,
KC_AG_TAB_C,
KC_AG_TAB_N,
KC_AG_TAB_R,
};
// Fillers to make layering more clear
#define _______ KC_TRNS
#define XXXXXXX KC_NO
// Custom macros
#define CTL_ESC CTL_T(KC_ESC) // Tap for Esc, hold for Ctrl
#define SFT_ENT SFT_T(KC_ENT) // Tap for Enter, hold for Shift
#define HPR_TAB ALL_T(KC_TAB) // Tap for Tab, hold for Hyper
#define GUI_SEM GUI_T(KC_SCLN) // Tap for Semicolon, hold for GUI
#define ALT_QUO ALT_T(KC_QUOT) // Tap for Quote, hold for Alt
// Requires KC_TRNS/_______ for the trigger key in the destination layer
#define LT_TC LT(_TOUCHCURSOR, KC_SPC) // L-ayer T-ap T-ouch C-ursor
#define LT_MC(kc) LT(_MOUSECURSOR, kc) // L-ayer T-ap M-ouse C-ursor
#define ALT_TAB M(KC_ALT_TAB) // Macro for Alt-Tab
#define CMD_TAB M(KC_CMD_TAB) // Macro for Cmd-Tab
#define CTL_TAB M(KC_CTL_TAB) // Macro for Ctl-Tab
#define CMD_SLSH M(KC_CMD_SLSH) // Macro for Cmd-Slash (personal shortcut to toggle iTerm2 visibility)
#define AG_FIND M(KC_AG_FIND) // Macros for Cmd-[x] vs Ctrl-[x] based on current AG_NORM or AG_SWAP settings
#define AG_AGAIN M(KC_AG_AGAIN)
#define AG_UNDO M(KC_AG_UNDO)
#define AG_CUT M(KC_AG_CUT)
#define AG_COPY M(KC_AG_COPY)
#define AG_PASTE M(KC_AG_PASTE)
#define AG_D_L M(KC_AG_DESK_L) // For Virtual Desktop Switching: Left, and
#define AG_D_R M(KC_AG_DESK_R) // Right
#define AG_T_C M(KC_AG_TAB_C) // For Chrome, etc. Tab Close,
#define AG_T_N M(KC_AG_TAB_N) // Tab New, and
#define AG_T_R M(KC_AG_TAB_R) // Tab Reopen Closed
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Qwerty
*
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* |Hyper/Tab| Q | W | E | R | T | Y | U | I | O | P | Bksp |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | Ctrl/Esc | A | S | MC/D | F | G | H | J | K | L |GUI/; | Alt/" |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | Shift | Z | X | C | V | B | N | M | , | . | / | Sft/Ent |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Alt | GUI | Lower | TC/Space | TC/Space | Raise | Vol+ | Play |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_QWERTY] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
HPR_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSPC ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
CTL_ESC , KC_A, KC_S,LT_MC(KC_D), KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, GUI_SEM, ALT_QUO ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
KC_LSFT , KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, SFT_ENT ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
KC_LALT , KC_LGUI , LOWER , LT_TC , LT_TC , RAISE , KC_VOLU , KC_MPLY ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Colemak
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* |Hyper/Tab| Q | W | F | P | G | J | L | U | Y | ; | Bksp |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | Ctrl/Esc | A | R | MC/S | T | D | H | N | E | I | O | " |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | Shift | Z | X | C | V | B | K | M | , | . | / | Sft/Ent |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Alt | GUI | Lower | TC/Space | TC/Space | Raise | Vol+ | Play |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_COLEMAK] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
HPR_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
CTL_ESC , KC_A, KC_R,LT_MC(KC_S), KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
KC_LSFT , KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, SFT_ENT ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
KC_LALT , KC_LGUI , LOWER , LT_TC , LT_TC , RAISE , KC_VOLU , KC_MPLY ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Dvorak
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* |Hyper/Tab| " | , | . | P | Y | F | G | C | R | L | Bksp |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | Ctrl/Esc | A | O | MC/E | U | I | D | H | T | N | S | / |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | Shift | ; | Q | J | K | X | B | M | W | V | Z | Sft/Ent |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Alt | GUI | Lower | TC/Space | TC/Space | Raise | Vol+ | Play |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_DVORAK] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
HPR_TAB,KC_QUOT, KC_COMM, KC_DOT, KC_P, KC_Y, KC_F, KC_G, KC_C, KC_R, KC_L, KC_BSPC ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
CTL_ESC , KC_A, KC_O,LT_MC(KC_E), KC_U, KC_I, KC_D, KC_H, KC_T, KC_N, KC_S, KC_SLSH ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
KC_LSFT , KC_SCLN, KC_Q, KC_J, KC_K, KC_X, KC_B, KC_M, KC_W, KC_V, KC_Z, SFT_ENT ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
KC_LALT , KC_LGUI , LOWER , LT_TC , LT_TC , RAISE , KC_VOLU , KC_MPLY ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Lower
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | ~ | ! | @ | # | $ | % | ^ | & | * | ( | ) | Bksp |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | [ | F1 | F2 | F3 | F4 | F5 | F6 | _ | + | { | } | "|" |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | ] | F7 | F8 | F9 | F10 | F11 | F12 | - | = | [ | ] | \ |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Brite | | | | | | Vol- | Mute |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_LOWER] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
KC_TILD,KC_EXLM, KC_AT, KC_HASH, KC_DLR, KC_PERC, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_BSPC ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
KC_LBRC , KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_UNDS, KC_PLUS, KC_LCBR, KC_RCBR, KC_PIPE ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
KC_RBRC , KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_MINS, KC_EQL, KC_LBRC, KC_RBRC, KC_BSLS ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
BACKLIT , _______ , _______ , _______ , _______ , _______ , KC_VOLD , KC_MUTE ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Raise
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | Bksp |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | $ | 4 | 5 | 6 | . | + | . | 4 | 5 | 6 | * | "|" |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | = | 7 | 8 | 9 | 0 | - | . | 1 | 2 | 3 | / | \ |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Brite | | | | | | Vol- | Mute |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_RAISE] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
KC_0 , KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
KC_DLR , KC_4, KC_5, KC_6, KC_DOT, KC_PLUS, KC_DOT, KC_4, KC_5, KC_6, KC_ASTR, KC_PIPE ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
KC_EQL , KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_DOT, KC_1, KC_2, KC_3, KC_SLSH, KC_BSLS ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
BACKLIT , _______ , _______ , _______ , _______ , _______ , KC_VOLD , KC_MUTE ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* TouchCursor layer (http://martin-stone.github.io/touchcursor/) plus personal customizations
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | AltTab |CmdTab|CtlTab| GUI |Shift | ~ |Insert| Home | Up | End | Bksp | |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | | Alt |Space |Tab_C | Find |Again | PgUp | Left | Down |Right |Desk_L| Desk_R |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | | Undo | Cut | Copy |Paste | ` | PgDn | Del |Tab_N |Tab_R |iTerm2| |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | | | | | | | | |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*
* The KC_UNDO, KC_CUT, KC_COPY, KC_PASTE, KC_FIND, and KC_AGAIN keycodes don't
* seem to work on Mac. Presumably they'll work under Windows.
*/
[_TOUCHCURSOR] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
ALT_TAB,CMD_TAB, CTL_TAB, KC_LGUI, KC_LSFT, KC_TILD, KC_INS, KC_HOME, KC_UP, KC_END, KC_BSPC, _______ ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
_______ ,KC_LALT, KC_SPC, AG_T_C, AG_FIND,AG_AGAIN, KC_PGUP, KC_LEFT, KC_DOWN, KC_RGHT, AG_D_L, AG_D_R ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
_______ ,AG_UNDO, AG_CUT, AG_COPY,AG_PASTE, KC_GRV, KC_PGDN, KC_DEL, AG_T_N, AG_T_R,CMD_SLSH, _______ ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
_______ , _______ , _______ , _______ , _______ , _______ , _______ , _______ ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Mouse Layer
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | | |ACCL0 | | | | |WHL_L | Up |WHL_R | BTN2 | |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | |ACCL2 | BTN2 | | BTN1 |ACCL1 |WHL_Up| Left | Down |Right | BTN4 | BTN5 |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | | | | | BTN3 | |WHL_Dn| BTN1 | | | BTN3 | |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | | | | | | | | |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_MOUSECURSOR] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
_______,_______, KC_ACL0, _______, _______, _______, _______, KC_WH_L, KC_MS_U, KC_WH_R, KC_BTN2, _______ ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
_______ ,KC_ACL2, KC_BTN2, _______, KC_BTN1, KC_ACL1, KC_WH_U, KC_MS_L, KC_MS_D, KC_MS_R, KC_BTN4, KC_BTN5 ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
_______ ,_______, _______, _______, KC_BTN3, _______, KC_WH_D, KC_BTN1, _______, _______, KC_BTN3, _______ ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
_______ , _______ , _______ , _______ , _______ , _______ , _______ , _______ ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Plover layer (http://opensteno.org)
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | # | # | # | # | # | # | # | # | # | # | # | # |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | | S | T | P | H | * | * | F | P | L | T | D |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | TogOut | S | K | W | R | * | * | R | B | G | S | Z |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | Exit | A | O | | | E | U | |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_PLOVER] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
KC_1 , KC_1, KC_1, KC_1, KC_1, KC_1, KC_1, KC_1, KC_1, KC_1, KC_1, KC_1 ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
XXXXXXX , KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
XXXXXXX , KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
EXT_PLV , KC_C , KC_V , XXXXXXX , XXXXXXX , KC_N , KC_M , XXXXXXX ),
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
/* Adjust (Lower + Raise)
* ,---------+------+------+------+------+------+------+------+------+------+------+-------------.
* | | | | | | | | | | | | Del |
* |---------`------`------`------`------`------`------`------`------`------`------`-------------|
* | | | | | |AGnorm|AGswap|Qwerty|Colemk|Dvorak|Plover| |
* |----------`------`------`------`------`------`------`------`------`------`------`------------|
* | | | | | | | | | | | | |
* |-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
* | | | | | | | | Reset |
* `--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
*/
[_ADJUST] = KEYMAP_TV44(
/*,--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------.*/
_______,_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_DEL ,
/*|--------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`-----------------|*/
_______ ,_______, _______, _______, _______, AG_NORM, AG_SWAP, QWERTY, COLEMAK, DVORAK, PLOVER, _______ ,
/*|---------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`----------------|*/
_______ ,_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ ,
/*|----------`-------`--------`--------`--------`--------`--------`--------`--------`--------`--------`---------------|*/
_______ , _______ , _______ , _______ , _______ , _______ , _______ , RESET )
/*`-----------+---------------+---------+-------^^^------+-------^^^-------+---------+-----------------+--------------'*/
};
void persistant_default_layer_set(uint16_t default_layer) {
eeconfig_update_default_layer(default_layer);
default_layer_set(default_layer);
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case QWERTY:
if (record->event.pressed) {
default_layer_set(1UL<<_QWERTY);
}
return false;
break;
case COLEMAK:
if (record->event.pressed) {
default_layer_set(1UL<<_COLEMAK);
}
return false;
break;
case DVORAK:
if (record->event.pressed) {
default_layer_set(1UL<<_DVORAK);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case BACKLIT:
if (record->event.pressed) {
register_code(KC_RSFT);
#ifdef BACKLIGHT_ENABLE
backlight_step();
#endif
} else {
unregister_code(KC_RSFT);
}
return false;
break;
case PLOVER:
if (record->event.pressed) {
layer_off(_RAISE);
layer_off(_LOWER);
layer_off(_ADJUST);
layer_on(_PLOVER);
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
keymap_config.raw = eeconfig_read_keymap();
keymap_config.nkro = 1;
eeconfig_update_keymap(keymap_config.raw);
}
return false;
break;
case EXT_PLV:
if (record->event.pressed) {
layer_off(_PLOVER);
}
return false;
break;
}
return true;
}
/*
* Macro definition
*/
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
bool use_cmd = true; // Use, for example, Cmd-Tab, Cmd-C, Cmd-V, etc.
// Compare to MAGIC_SWAP_ALT_GUI and MAGIC_UNSWAP_ALT_GUI configs, set in:
// quantum/quantum.c
if(keymap_config.swap_lalt_lgui == 1 && keymap_config.swap_ralt_rgui == 1) {
use_cmd = false; // ... or, Alt-Tab, Ctrl-C, Ctrl-V, etc.
}
switch (id) {
case KC_ALT_TAB:
if(use_cmd) { return (record->event.pressed ? MACRO( D(LALT), D(TAB), END ) : MACRO( U(TAB), END )); }
else { return (record->event.pressed ? MACRO( D(LGUI), D(TAB), END ) : MACRO( U(TAB), END )); }
case KC_CMD_TAB:
if(use_cmd) { return (record->event.pressed ? MACRO( D(LGUI), D(TAB), END ) : MACRO( U(TAB), END )); }
else { return (record->event.pressed ? MACRO( D(LALT), D(TAB), END ) : MACRO( U(TAB), END )); }
case KC_CTL_TAB:
return (record->event.pressed ? MACRO( D(LCTRL), D(TAB), END ) : MACRO( U(TAB), END ));
case KC_CMD_SLSH:
return (record->event.pressed ? MACRO( D(LGUI), D(SLSH),END ) : MACRO( U(SLSH),END ));
case KC_AG_FIND:
return use_cmd ? MACRODOWN( D(LGUI), T(F), END ) : MACRODOWN( D(LCTRL), T(F), END );
case KC_AG_AGAIN:
return use_cmd ? MACRODOWN( D(LGUI), T(G), END ) : MACRODOWN( D(LCTRL), T(G), END );
case KC_AG_UNDO:
return use_cmd ? MACRODOWN( D(LGUI), T(Z), END ) : MACRODOWN( D(LCTRL), T(Z), END );
case KC_AG_CUT:
return use_cmd ? MACRODOWN( D(LGUI), T(X), END ) : MACRODOWN( D(LCTRL), T(X), END );
case KC_AG_COPY:
return use_cmd ? MACRODOWN( D(LGUI), T(C), END ) : MACRODOWN( D(LCTRL), T(C), END );
case KC_AG_PASTE:
return use_cmd ? MACRODOWN( D(LGUI), T(V), END ) : MACRODOWN( D(LCTRL), T(V), END );
case KC_AG_DESK_L:
return use_cmd ? MACRODOWN( D(LGUI), D(LCTRL), T(SCLN), END ) : MACRODOWN( D(LALT), D(LCTRL), T(SCLN), END );
case KC_AG_DESK_R:
return use_cmd ? MACRODOWN( D(LGUI), D(LCTRL), T(QUOT), END ) : MACRODOWN( D(LALT), D(LCTRL), T(QUOT), END );
case KC_AG_TAB_C:
return use_cmd ? MACRODOWN( D(LGUI), T(W), END ) : MACRODOWN( D(LCTRL), T(W), END );
case KC_AG_TAB_N:
return use_cmd ? MACRODOWN( D(LGUI), T(T), END ) : MACRODOWN( D(LCTRL), T(T), END );
case KC_AG_TAB_R:
return use_cmd ? MACRODOWN( D(LGUI), D(LSHIFT), T(T), END ) : MACRODOWN( D(LCTRL), D(LSHIFT), T(T), END );
}
return MACRO_NONE;
}

@ -0,0 +1,129 @@
jeebak's TV44 layout
=======================
NOTE: This is a port of jeebak's planck layout, for tv44.
This WIP keymap attempts to minimize fingers straying away from the home row.
To aid in this endeavor, when additional modifyer keys to switch layers are
needed, they will be mapped to home row keys. The `keymap.c` file will contain
the exact changes. The diagrams in this README shows the highlights of the
changes from the default mappings.
I also decided to change all calls to `persistant_default_layer_set()` to
`default_layer_set()` since this is my personal perference.
## Macros
```
#define ALT_TAB M(KC_ALT_TAB)
```
## Base Layers (Qwerty/Colemak/Dvorak)
These base layers are mostly the same as the default mappings. The interesting
changes are shown below.
- The `Ctrl/Esc`, will emit an `Escape` when tapped, and act as a `Control` key when held,
- `GUI/;` as `;` and `GUI`,
- `Alt/"` as `"` and `Alt`,
- `Sft/Ent` as `Enter` and `Shift`, and
- `Hyper/Tab` as `Tab` and `Hyper`
A `TODO` item is to see if it can also act as a `CapsLock` when double-tapped.
The arrow keys, which have been moved to the
[TouchCursor](http://martin-stone.github.io/touchcursor/) layer, have been
replaced with the Media keys as shown. The `MC/kc` key activates the
`MouseCursor` layer when held, and emits the corresponding `kc` for its layer,
when tapped.
```
,---------+------+------+------+------+------+------+------+------+------+------+-------------.
|Hyper/Tab| Q | W | E | R | T | Y | U | I | O | P | Bksp |
|---------`------`------`------`------`------`------`------`------`------`------`-------------|
| Ctrl/Esc | A | S | MC/D | F | G | H | J | K | L |GUI/; | Alt/" |
|----------`------`------`------`------`------`------`------`------`------`------`------------|
| Shift | Z | X | C | V | B | N | M | , | . | / | Sft/Ent |
|-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
| Alt | GUI | Lower | TC/Space | TC/Space | Raise | Vol+ | Play |
`--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
```
## Lower Layer (Symbols and Function Keys)
The symbols and functions keys are essentially the same as the default mapping.
The most notable changes are that the symbol keys from the `RAISE` layer have
been moved here. The remaining Media keys replace those that are now on the
base layers. The `BACKLIT` key has also been moved here.
```
,---------+------+------+------+------+------+------+------+------+------+------+-------------.
| ~ | ! | @ | # | $ | % | ^ | & | * | ( | ) | Bksp |
|---------`------`------`------`------`------`------`------`------`------`------`-------------|
| [ | F1 | F2 | F3 | F4 | F5 | F6 | _ | + | { | } | "|" |
|----------`------`------`------`------`------`------`------`------`------`------`------------|
| ] | F7 | F8 | F9 | F10 | F11 | F12 | - | = | [ | ] | \ |
|-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
| Brite | | | | | | Vol- | Mute |
`--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
```
## Raise Layer (Numbers and Arithmetic Operators)
All of the numbers and arithmetic operators are available on this layer. Some
keys are duplicated for the convenience of their positions. The `0` and `$`
keys at the far left are for quick access to beginning and end of line in vim.
```
,---------+------+------+------+------+------+------+------+------+------+------+-------------.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | Bksp |
|---------`------`------`------`------`------`------`------`------`------`------`-------------|
| $ | 4 | 5 | 6 | . | + | . | 4 | 5 | 6 | * | "|" |
|----------`------`------`------`------`------`------`------`------`------`------`------------|
| = | 7 | 8 | 9 | 0 | - | . | 1 | 2 | 3 | / | \ |
|-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
| Brite | | | | | | Vol- | Mute |
`--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
```
## TouchCursor layer plus personal customizations
[TouchCursor](http://martin-stone.github.io/touchcursor/) uses the `Space` key
as the modifier, with the `IJKL` home row keys representing the inverted-T of
the arrow keys. All of the default TouchCursor keymappings for the right hand
are represented below. My personalizations include all of the keys shown for
the left hand. Having the `Alt` and `Shift` keys (as well as the `Control` key
from the base layers) readily accessible from the home row allows quick word
jumps and highlighting when used in conjunction with the arrow keys. The
`Alt-Tab` macro is not only useful under Windows, but also under Mac when used
with alternative switchers like [HyperSwitch](https://bahoom.com/hyperswitch).
The `Cmd-Tab` and `Ctrl-Tab` sequences are duplicated for easy access while in
this layer. The `KC_UNDO, KC_CUT, KC_COPY, KC_PASTE, KC_FIND,` and `KC_AGAIN`
keycodes do not seem to work. There are macros in place that'll "automatically"
choose the correct version (`Cmd-Tab` vs. `Alt-Tab`, `Cmd-C` vs. `Ctrl-C`,
etc.) depending on which layout you've currently selected (`AG_NORM` or
`AG_SWAP`) in the `_ADJUST` layer. The `Desk_L` and `Desk_R` macros are what I
use to switch between Virtual Desktops Left/Right. The `Tab_C`, `Tab_N` and
`Tab_R` are for "Close Tab," "New Tab" and "Reopen Closed Tab" for apps such as
Google Chrome.
```
,---------+------+------+------+------+------+------+------+------+------+------+-------------.
| AltTab |CmdTab|CtlTab| GUI |Shift | ~ |Insert| Home | Up | End | Bksp | |
|---------`------`------`------`------`------`------`------`------`------`------`-------------|
| | Alt |Space |Tab_C | Find |Again | PgUp | Left | Down |Right |Desk_L| Desk_R |
|----------`------`------`------`------`------`------`------`------`------`------`------------|
| | Undo | Cut | Copy |Paste | ` | PgDn | Del |Tab_N |Tab_R |iTerm2| |
|-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
| | | | | | | | |
`--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
```
## Mouse Layer
The Mouse layer, closely mimics the layout/behaviour of the TouchCursor layer.
The `D` key (on QWERTY) is used to activate this layer. All 16 keycodes for the
mouse from the `doc/keycode.txt` file are represented, and logically located,
IMHO. The left and right click buttons are duplicated; on the right hand side,
for a quick click here and there, and again on the left hand side for when the
buttons need to be held for dragging things or highlighting text, thus allowing
the right hand to be free to use the up/down/left/right actions.
```
,---------+------+------+------+------+------+------+------+------+------+------+-------------.
| | |ACCL0 | | | | |WHL_L | Up |WHL_R | BTN2 | |
|---------`------`------`------`------`------`------`------`------`------`------`-------------|
| |ACCL2 | BTN2 | | BTN1 |ACCL1 |WHL_Up| Left | Down |Right | BTN4 | BTN5 |
|----------`------`------`------`------`------`------`------`------`------`------`------------|
| | | | | BTN3 | |WHL_Dn| BTN1 | | | BTN3 | |
|-----------`------`------`------`------`-----'-------`------`------`------`------`-----------|
| | | | | | | | |
`--------+---------+---------+------^^^-------+-----^^^--------+---------+---------+---------'
```

@ -13,16 +13,16 @@ Depending on which keymap you would like to use, you will have to compile slight
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files.
To build the firmware binary hex file with a keymap just do `make` with `keymap` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make keymap=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/` Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/`

@ -0,0 +1,69 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -1,76 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
MCU = at90usb1286
# MCU = at90usb1287
# MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -0,0 +1,70 @@
# MCU name
MCU = at90usb1286
# MCU = at90usb1287
# MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= yes # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -0,0 +1 @@
Subproject commit ec44c6c1675c25b9827aacd08c02433cccde7780

@ -0,0 +1,79 @@
COLOR ?= true
ifeq ($(COLOR),true)
NO_COLOR=\033[0m
OK_COLOR=\033[32;01m
ERROR_COLOR=\033[31;01m
WARN_COLOR=\033[33;01m
BLUE=\033[0;34m
BOLD=\033[1m
endif
ifneq ($(shell awk --version 2>/dev/null),)
AWK=awk
else
AWK=cat && test
endif
ON_ERROR ?= exit 1
OK_STRING=$(OK_COLOR)[OK]$(NO_COLOR)\n
ERROR_STRING=$(ERROR_COLOR)[ERRORS]$(NO_COLOR)\n
WARN_STRING=$(WARN_COLOR)[WARNINGS]$(NO_COLOR)\n
TAB_LOG = printf "\n$$LOG\n\n" | $(AWK) '{ sub(/^/," | "); print }'
TAB_LOG_PLAIN = printf "$$LOG\n"
AWK_STATUS = $(AWK) '{ printf " %-10s\n", $$1; }'
AWK_CMD = $(AWK) '{ printf "%-99s", $$0; }'
PRINT_ERROR = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG) && $(ON_ERROR)
PRINT_WARNING = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG)
PRINT_ERROR_PLAIN = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN) && $(ON_ERROR)
PRINT_WARNING_PLAIN = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN)
PRINT_OK = $(SILENT) || printf " $(OK_STRING)" | $(AWK_STATUS)
BUILD_CMD = LOG=$$($(CMD) 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING); else $(PRINT_OK); fi;
MAKE_MSG_FORMAT = $(AWK) '{ printf "%-118s", $$0;}'
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_ERRORS = $(ERROR_COLOR)Make finished with errors\n$(NO_COLOR)
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_BIN = Creating binary load file for Flash:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_COMPILING_CPP = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
MSG_SUBMODULE_DIRTY = $(WARN_COLOR)WARNING:$(NO_COLOR)\n \
Some git sub-modules are out of date or modified, please consider runnning:$(BOLD)\n\
git submodule sync --recursive\n\
git submodule update --init --recursive$(NO_COLOR)\n\n\
You can ignore this warning if you are not compiling any ChibiOS keyboards,\n\
or if you have modified the ChibiOS libraries yourself. \n\n
MSG_NO_CMP = $(ERROR_COLOR)Error:$(NO_COLOR)$(BOLD) cmp command not found, please install diffutils\n$(NO_COLOR)
define GENERATE_MSG_MAKE_KB
MSG_MAKE_KB_ACTUAL := Making $$(KB_SP) with keymap $(BOLD)$$(CURRENT_KM)$(NO_COLOR)
ifneq ($$(MAKE_TARGET),)
MSG_MAKE_KB_ACTUAL += and target $(BOLD)$$(MAKE_TARGET)$(NO_COLOR)
endif
endef
MSG_MAKE_KB = $(eval $(call GENERATE_MSG_MAKE_KB))$(MSG_MAKE_KB_ACTUAL)
define GENERATE_MSG_MAKE_TEST
MSG_MAKE_TEST_ACTUAL := Making test $(BOLD)$(TEST_NAME)$(NO_COLOR)
ifneq ($$(MAKE_TARGET),)
MSG_MAKE_TEST_ACTUAL += with target $(BOLD)$$(MAKE_TARGET)$(NO_COLOR)
endif
endef
MSG_MAKE_TEST = $(eval $(call GENERATE_MSG_MAKE_TEST))$(MSG_MAKE_TEST_ACTUAL)
MSG_TEST = Testing $(BOLD)$(TEST_NAME)$(NO_COLOR)

@ -31,9 +31,6 @@ SOFTWARE.
// https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing // https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing
// http://www.stuartcheshire.org/papers/COBSforToN.pdf // http://www.stuartcheshire.org/papers/COBSforToN.pdf
#define MAX_FRAME_SIZE 1024
#define NUM_LINKS 2
typedef struct byte_stuffer_state { typedef struct byte_stuffer_state {
uint16_t next_zero; uint16_t next_zero;
uint16_t data_pos; uint16_t data_pos;

@ -27,6 +27,9 @@ SOFTWARE.
#include <stdint.h> #include <stdint.h>
#define MAX_FRAME_SIZE 1024
#define NUM_LINKS 2
void init_byte_stuffer(void); void init_byte_stuffer(void);
void byte_stuffer_recv_byte(uint8_t link, uint8_t data); void byte_stuffer_recv_byte(uint8_t link, uint8_t data);
void byte_stuffer_send_frame(uint8_t link, uint8_t* data, uint16_t size); void byte_stuffer_send_frame(uint8_t link, uint8_t* data, uint16_t size);

@ -31,6 +31,10 @@ SOFTWARE.
static remote_object_t* remote_objects[MAX_REMOTE_OBJECTS]; static remote_object_t* remote_objects[MAX_REMOTE_OBJECTS];
static uint32_t num_remote_objects = 0; static uint32_t num_remote_objects = 0;
void reinitialize_serial_link_transport(void) {
num_remote_objects = 0;
}
void add_remote_objects(remote_object_t** _remote_objects, uint32_t _num_remote_objects) { void add_remote_objects(remote_object_t** _remote_objects, uint32_t _num_remote_objects) {
unsigned int i; unsigned int i;
for(i=0;i<_num_remote_objects;i++) { for(i=0;i<_num_remote_objects;i++) {

@ -82,7 +82,7 @@ typedef struct { \
remote_object_t* obj = (remote_object_t*)&remote_object_##name; \ remote_object_t* obj = (remote_object_t*)&remote_object_##name; \
uint8_t* start = obj->buffer + LOCAL_OBJECT_SIZE(obj->object_size);\ uint8_t* start = obj->buffer + LOCAL_OBJECT_SIZE(obj->object_size);\
triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \ triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \
return triple_buffer_read_internal(obj->object_size, tb); \ return (type*)triple_buffer_read_internal(obj->object_size, tb); \
} }
#define MASTER_TO_SINGLE_SLAVE_OBJECT(name, type) \ #define MASTER_TO_SINGLE_SLAVE_OBJECT(name, type) \
@ -112,7 +112,7 @@ typedef struct { \
remote_object_t* obj = (remote_object_t*)&remote_object_##name; \ remote_object_t* obj = (remote_object_t*)&remote_object_##name; \
uint8_t* start = obj->buffer + NUM_SLAVES * LOCAL_OBJECT_SIZE(obj->object_size);\ uint8_t* start = obj->buffer + NUM_SLAVES * LOCAL_OBJECT_SIZE(obj->object_size);\
triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \ triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \
return triple_buffer_read_internal(obj->object_size, tb); \ return (type*)triple_buffer_read_internal(obj->object_size, tb); \
} }
#define SLAVE_TO_MASTER_OBJECT(name, type) \ #define SLAVE_TO_MASTER_OBJECT(name, type) \
@ -139,12 +139,13 @@ typedef struct { \
uint8_t* start = obj->buffer + LOCAL_OBJECT_SIZE(obj->object_size);\ uint8_t* start = obj->buffer + LOCAL_OBJECT_SIZE(obj->object_size);\
start+=slave * REMOTE_OBJECT_SIZE(obj->object_size); \ start+=slave * REMOTE_OBJECT_SIZE(obj->object_size); \
triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \ triple_buffer_object_t* tb = (triple_buffer_object_t*)start; \
return triple_buffer_read_internal(obj->object_size, tb); \ return (type*)triple_buffer_read_internal(obj->object_size, tb); \
} }
#define REMOTE_OBJECT(name) (remote_object_t*)&remote_object_##name #define REMOTE_OBJECT(name) (remote_object_t*)&remote_object_##name
void add_remote_objects(remote_object_t** remote_objects, uint32_t num_remote_objects); void add_remote_objects(remote_object_t** remote_objects, uint32_t num_remote_objects);
void reinitialize_serial_link_transport(void);
void transport_recv_frame(uint8_t from, uint8_t* data, uint16_t size); void transport_recv_frame(uint8_t from, uint8_t* data, uint16_t size);
void update_transport(void); void update_transport(void);

@ -22,70 +22,90 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
*/ */
#include <cgreen/cgreen.h> #include "gtest/gtest.h"
#include <cgreen/mocks.h> #include "gmock/gmock.h"
#include <vector>
#include <algorithm>
extern "C" {
#include "serial_link/protocol/byte_stuffer.h" #include "serial_link/protocol/byte_stuffer.h"
#include "serial_link/protocol/byte_stuffer.c"
#include "serial_link/protocol/frame_validator.h" #include "serial_link/protocol/frame_validator.h"
#include "serial_link/protocol/physical.h" #include "serial_link/protocol/physical.h"
}
static uint8_t sent_data[MAX_FRAME_SIZE*2]; using testing::_;
static uint16_t sent_data_size; using testing::ElementsAreArray;
using testing::Args;
Describe(ByteStuffer); class ByteStuffer : public ::testing::Test{
BeforeEach(ByteStuffer) { public:
ByteStuffer() {
Instance = this;
init_byte_stuffer(); init_byte_stuffer();
sent_data_size = 0; }
}
AfterEach(ByteStuffer) {}
void validator_recv_frame(uint8_t link, uint8_t* data, uint16_t size) { ~ByteStuffer() {
mock(data, size); Instance = nullptr;
} }
MOCK_METHOD3(validator_recv_frame, void (uint8_t link, uint8_t* data, uint16_t size));
void send_data(uint8_t link, const uint8_t* data, uint16_t size) {
std::copy(data, data + size, std::back_inserter(sent_data));
}
std::vector<uint8_t> sent_data;
void send_data(uint8_t link, const uint8_t* data, uint16_t size) { static ByteStuffer* Instance;
memcpy(sent_data + sent_data_size, data, size); };
sent_data_size += size;
ByteStuffer* ByteStuffer::Instance = nullptr;
extern "C" {
void validator_recv_frame(uint8_t link, uint8_t* data, uint16_t size) {
ByteStuffer::Instance->validator_recv_frame(link, data, size);
}
void send_data(uint8_t link, const uint8_t* data, uint16_t size) {
ByteStuffer::Instance->send_data(link, data, size);
}
} }
Ensure(ByteStuffer, receives_no_frame_for_a_single_zero_byte) { TEST_F(ByteStuffer, receives_no_frame_for_a_single_zero_byte) {
never_expect(validator_recv_frame); EXPECT_CALL(*this, validator_recv_frame(_, _, _))
.Times(0);
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_no_frame_for_a_single_FF_byte) { TEST_F(ByteStuffer, receives_no_frame_for_a_single_FF_byte) {
never_expect(validator_recv_frame); EXPECT_CALL(*this, validator_recv_frame(_, _, _))
.Times(0);
byte_stuffer_recv_byte(0, 0xFF); byte_stuffer_recv_byte(0, 0xFF);
} }
Ensure(ByteStuffer, receives_no_frame_for_a_single_random_byte) { TEST_F(ByteStuffer, receives_no_frame_for_a_single_random_byte) {
never_expect(validator_recv_frame); EXPECT_CALL(*this, validator_recv_frame(_, _, _))
.Times(0);
byte_stuffer_recv_byte(0, 0x4A); byte_stuffer_recv_byte(0, 0x4A);
} }
Ensure(ByteStuffer, receives_no_frame_for_a_zero_length_frame) { TEST_F(ByteStuffer, receives_no_frame_for_a_zero_length_frame) {
never_expect(validator_recv_frame); EXPECT_CALL(*this, validator_recv_frame(_, _, _))
.Times(0);
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_single_byte_valid_frame) { TEST_F(ByteStuffer, receives_single_byte_valid_frame) {
uint8_t expected[] = {0x37}; uint8_t expected[] = {0x37};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(1)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 1))
);
byte_stuffer_recv_byte(0, 2); byte_stuffer_recv_byte(0, 2);
byte_stuffer_recv_byte(0, 0x37); byte_stuffer_recv_byte(0, 0x37);
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
TEST_F(ByteStuffer, receives_three_bytes_valid_frame) {
Ensure(ByteStuffer, receives_three_bytes_valid_frame) {
uint8_t expected[] = {0x37, 0x99, 0xFF}; uint8_t expected[] = {0x37, 0x99, 0xFF};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(3)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 3))
);
byte_stuffer_recv_byte(0, 4); byte_stuffer_recv_byte(0, 4);
byte_stuffer_recv_byte(0, 0x37); byte_stuffer_recv_byte(0, 0x37);
byte_stuffer_recv_byte(0, 0x99); byte_stuffer_recv_byte(0, 0x99);
@ -93,23 +113,19 @@ Ensure(ByteStuffer, receives_three_bytes_valid_frame) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_single_zero_valid_frame) { TEST_F(ByteStuffer, receives_single_zero_valid_frame) {
uint8_t expected[] = {0}; uint8_t expected[] = {0};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(1)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 1))
);
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_valid_frame_with_zeroes) { TEST_F(ByteStuffer, receives_valid_frame_with_zeroes) {
uint8_t expected[] = {5, 0, 3, 0}; uint8_t expected[] = {5, 0, 3, 0};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(4)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 4))
);
byte_stuffer_recv_byte(0, 2); byte_stuffer_recv_byte(0, 2);
byte_stuffer_recv_byte(0, 5); byte_stuffer_recv_byte(0, 5);
byte_stuffer_recv_byte(0, 2); byte_stuffer_recv_byte(0, 2);
@ -118,17 +134,14 @@ Ensure(ByteStuffer, receives_valid_frame_with_zeroes) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_two_valid_frames) {
TEST_F(ByteStuffer, receives_two_valid_frames) {
uint8_t expected1[] = {5, 0}; uint8_t expected1[] = {5, 0};
uint8_t expected2[] = {3}; uint8_t expected2[] = {3};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(2)), .With(Args<1, 2>(ElementsAreArray(expected1)));
when(data, is_equal_to_contents_of(expected1, 2)) EXPECT_CALL(*this, validator_recv_frame(_, _, _))
); .With(Args<1, 2>(ElementsAreArray(expected2)));
expect(validator_recv_frame,
when(size, is_equal_to(1)),
when(data, is_equal_to_contents_of(expected2, 1))
);
byte_stuffer_recv_byte(1, 2); byte_stuffer_recv_byte(1, 2);
byte_stuffer_recv_byte(1, 5); byte_stuffer_recv_byte(1, 5);
byte_stuffer_recv_byte(1, 1); byte_stuffer_recv_byte(1, 1);
@ -138,12 +151,10 @@ Ensure(ByteStuffer, receives_two_valid_frames) {
byte_stuffer_recv_byte(1, 0); byte_stuffer_recv_byte(1, 0);
} }
Ensure(ByteStuffer, receives_valid_frame_after_unexpected_zero) { TEST_F(ByteStuffer, receives_valid_frame_after_unexpected_zero) {
uint8_t expected[] = {5, 7}; uint8_t expected[] = {5, 7};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(2)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 2))
);
byte_stuffer_recv_byte(1, 3); byte_stuffer_recv_byte(1, 3);
byte_stuffer_recv_byte(1, 1); byte_stuffer_recv_byte(1, 1);
byte_stuffer_recv_byte(1, 0); byte_stuffer_recv_byte(1, 0);
@ -153,12 +164,10 @@ Ensure(ByteStuffer, receives_valid_frame_after_unexpected_zero) {
byte_stuffer_recv_byte(1, 0); byte_stuffer_recv_byte(1, 0);
} }
Ensure(ByteStuffer, receives_valid_frame_after_unexpected_non_zero) { TEST_F(ByteStuffer, receives_valid_frame_after_unexpected_non_zero) {
uint8_t expected[] = {5, 7}; uint8_t expected[] = {5, 7};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(2)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 2))
);
byte_stuffer_recv_byte(0, 2); byte_stuffer_recv_byte(0, 2);
byte_stuffer_recv_byte(0, 9); byte_stuffer_recv_byte(0, 9);
byte_stuffer_recv_byte(0, 4); // This should have been zero byte_stuffer_recv_byte(0, 4); // This should have been zero
@ -169,16 +178,14 @@ Ensure(ByteStuffer, receives_valid_frame_after_unexpected_non_zero) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_and_then_end_of_frame) { TEST_F(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_and_then_end_of_frame) {
uint8_t expected[254]; uint8_t expected[254];
int i; int i;
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
expected[i] = i + 1; expected[i] = i + 1;
} }
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(254)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 254))
);
byte_stuffer_recv_byte(0, 0xFF); byte_stuffer_recv_byte(0, 0xFF);
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
byte_stuffer_recv_byte(0, i+1); byte_stuffer_recv_byte(0, i+1);
@ -186,17 +193,15 @@ Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_and_then_end_
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_non_zero) { TEST_F(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_non_zero) {
uint8_t expected[255]; uint8_t expected[255];
int i; int i;
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
expected[i] = i + 1; expected[i] = i + 1;
} }
expected[254] = 7; expected[254] = 7;
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(255)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 255))
);
byte_stuffer_recv_byte(0, 0xFF); byte_stuffer_recv_byte(0, 0xFF);
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
byte_stuffer_recv_byte(0, i+1); byte_stuffer_recv_byte(0, i+1);
@ -206,17 +211,15 @@ Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_zero) { TEST_F(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_zero) {
uint8_t expected[255]; uint8_t expected[255];
int i; int i;
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
expected[i] = i + 1; expected[i] = i + 1;
} }
expected[254] = 0; expected[254] = 0;
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(255)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 255))
);
byte_stuffer_recv_byte(0, 0xFF); byte_stuffer_recv_byte(0, 0xFF);
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
byte_stuffer_recv_byte(0, i+1); byte_stuffer_recv_byte(0, i+1);
@ -226,7 +229,7 @@ Ensure(ByteStuffer, receives_a_valid_frame_with_over254_non_zeroes_next_byte_is_
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_two_long_frames_and_some_more) { TEST_F(ByteStuffer, receives_two_long_frames_and_some_more) {
uint8_t expected[515]; uint8_t expected[515];
int i; int i;
int j; int j;
@ -238,10 +241,8 @@ Ensure(ByteStuffer, receives_two_long_frames_and_some_more) {
for (i=0;i<7;i++) { for (i=0;i<7;i++) {
expected[254*2+i] = i + 1; expected[254*2+i] = i + 1;
} }
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(515)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 510))
);
byte_stuffer_recv_byte(0, 0xFF); byte_stuffer_recv_byte(0, 0xFF);
for (i=0;i<254;i++) { for (i=0;i<254;i++) {
byte_stuffer_recv_byte(0, i+1); byte_stuffer_recv_byte(0, i+1);
@ -261,12 +262,10 @@ Ensure(ByteStuffer, receives_two_long_frames_and_some_more) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, receives_an_all_zeros_frame_that_is_maximum_size) { TEST_F(ByteStuffer, receives_an_all_zeros_frame_that_is_maximum_size) {
uint8_t expected[MAX_FRAME_SIZE] = {}; uint8_t expected[MAX_FRAME_SIZE] = {};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(MAX_FRAME_SIZE)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, MAX_FRAME_SIZE))
);
int i; int i;
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
for(i=0;i<MAX_FRAME_SIZE;i++) { for(i=0;i<MAX_FRAME_SIZE;i++) {
@ -275,9 +274,10 @@ Ensure(ByteStuffer, receives_an_all_zeros_frame_that_is_maximum_size) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, doesnt_recv_a_frame_thats_too_long_all_zeroes) { TEST_F(ByteStuffer, doesnt_recv_a_frame_thats_too_long_all_zeroes) {
uint8_t expected[1] = {0}; uint8_t expected[1] = {0};
never_expect(validator_recv_frame); EXPECT_CALL(*this, validator_recv_frame(_, _, _))
.Times(0);
int i; int i;
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
for(i=0;i<MAX_FRAME_SIZE;i++) { for(i=0;i<MAX_FRAME_SIZE;i++) {
@ -287,12 +287,10 @@ Ensure(ByteStuffer, doesnt_recv_a_frame_thats_too_long_all_zeroes) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, received_frame_is_aborted_when_its_too_long) { TEST_F(ByteStuffer, received_frame_is_aborted_when_its_too_long) {
uint8_t expected[1] = {1}; uint8_t expected[1] = {1};
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(1)), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, 1))
);
int i; int i;
byte_stuffer_recv_byte(0, 1); byte_stuffer_recv_byte(0, 1);
for(i=0;i<MAX_FRAME_SIZE;i++) { for(i=0;i<MAX_FRAME_SIZE;i++) {
@ -303,76 +301,68 @@ Ensure(ByteStuffer, received_frame_is_aborted_when_its_too_long) {
byte_stuffer_recv_byte(0, 0); byte_stuffer_recv_byte(0, 0);
} }
Ensure(ByteStuffer, does_nothing_when_sending_zero_size_frame) { TEST_F(ByteStuffer, does_nothing_when_sending_zero_size_frame) {
assert_that(sent_data_size, is_equal_to(0)); EXPECT_EQ(sent_data.size(), 0);
byte_stuffer_send_frame(0, NULL, 0); byte_stuffer_send_frame(0, NULL, 0);
} }
Ensure(ByteStuffer, send_one_byte_frame) { TEST_F(ByteStuffer, send_one_byte_frame) {
uint8_t data[] = {5}; uint8_t data[] = {5};
byte_stuffer_send_frame(1, data, 1); byte_stuffer_send_frame(1, data, 1);
uint8_t expected[] = {2, 5, 0}; uint8_t expected[] = {2, 5, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_two_byte_frame) { TEST_F(ByteStuffer, sends_two_byte_frame) {
uint8_t data[] = {5, 0x77}; uint8_t data[] = {5, 0x77};
byte_stuffer_send_frame(0, data, 2); byte_stuffer_send_frame(0, data, 2);
uint8_t expected[] = {3, 5, 0x77, 0}; uint8_t expected[] = {3, 5, 0x77, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_one_byte_frame_with_zero) { TEST_F(ByteStuffer, sends_one_byte_frame_with_zero) {
uint8_t data[] = {0}; uint8_t data[] = {0};
byte_stuffer_send_frame(0, data, 1); byte_stuffer_send_frame(0, data, 1);
uint8_t expected[] = {1, 1, 0}; uint8_t expected[] = {1, 1, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_two_byte_frame_starting_with_zero) { TEST_F(ByteStuffer, sends_two_byte_frame_starting_with_zero) {
uint8_t data[] = {0, 9}; uint8_t data[] = {0, 9};
byte_stuffer_send_frame(1, data, 2); byte_stuffer_send_frame(1, data, 2);
uint8_t expected[] = {1, 2, 9, 0}; uint8_t expected[] = {1, 2, 9, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_two_byte_frame_starting_with_non_zero) { TEST_F(ByteStuffer, sends_two_byte_frame_starting_with_non_zero) {
uint8_t data[] = {9, 0}; uint8_t data[] = {9, 0};
byte_stuffer_send_frame(1, data, 2); byte_stuffer_send_frame(1, data, 2);
uint8_t expected[] = {2, 9, 1, 0}; uint8_t expected[] = {2, 9, 1, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_three_byte_frame_zero_in_the_middle) { TEST_F(ByteStuffer, sends_three_byte_frame_zero_in_the_middle) {
uint8_t data[] = {9, 0, 0x68}; uint8_t data[] = {9, 0, 0x68};
byte_stuffer_send_frame(0, data, 3); byte_stuffer_send_frame(0, data, 3);
uint8_t expected[] = {2, 9, 2, 0x68, 0}; uint8_t expected[] = {2, 9, 2, 0x68, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_three_byte_frame_data_in_the_middle) { TEST_F(ByteStuffer, sends_three_byte_frame_data_in_the_middle) {
uint8_t data[] = {0, 0x55, 0}; uint8_t data[] = {0, 0x55, 0};
byte_stuffer_send_frame(0, data, 3); byte_stuffer_send_frame(0, data, 3);
uint8_t expected[] = {1, 2, 0x55, 1, 0}; uint8_t expected[] = {1, 2, 0x55, 1, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_three_byte_frame_with_all_zeroes) { TEST_F(ByteStuffer, sends_three_byte_frame_with_all_zeroes) {
uint8_t data[] = {0, 0, 0}; uint8_t data[] = {0, 0, 0};
byte_stuffer_send_frame(0, data, 3); byte_stuffer_send_frame(0, data, 3);
uint8_t expected[] = {1, 1, 1, 1, 0}; uint8_t expected[] = {1, 1, 1, 1, 0};
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_frame_with_254_non_zeroes) { TEST_F(ByteStuffer, sends_frame_with_254_non_zeroes) {
uint8_t data[254]; uint8_t data[254];
int i; int i;
for(i=0;i<254;i++) { for(i=0;i<254;i++) {
@ -385,11 +375,10 @@ Ensure(ByteStuffer, sends_frame_with_254_non_zeroes) {
expected[i] = i; expected[i] = i;
} }
expected[255] = 0; expected[255] = 0;
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_frame_with_255_non_zeroes) { TEST_F(ByteStuffer, sends_frame_with_255_non_zeroes) {
uint8_t data[255]; uint8_t data[255];
int i; int i;
for(i=0;i<255;i++) { for(i=0;i<255;i++) {
@ -404,17 +393,16 @@ Ensure(ByteStuffer, sends_frame_with_255_non_zeroes) {
expected[255] = 2; expected[255] = 2;
expected[256] = 255; expected[256] = 255;
expected[257] = 0; expected[257] = 0;
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_frame_with_254_non_zeroes_followed_by_zero) { TEST_F(ByteStuffer, sends_frame_with_254_non_zeroes_followed_by_zero) {
uint8_t data[255]; uint8_t data[255];
int i; int i;
for(i=0;i<254;i++) { for(i=0;i<254;i++) {
data[i] = i + 1; data[i] = i + 1;
} }
data[255] = 0; data[254] = 0;
byte_stuffer_send_frame(0, data, 255); byte_stuffer_send_frame(0, data, 255);
uint8_t expected[258]; uint8_t expected[258];
expected[0] = 0xFF; expected[0] = 0xFF;
@ -424,53 +412,46 @@ Ensure(ByteStuffer, sends_frame_with_254_non_zeroes_followed_by_zero) {
expected[255] = 1; expected[255] = 1;
expected[256] = 1; expected[256] = 1;
expected[257] = 0; expected[257] = 0;
assert_that(sent_data_size, is_equal_to(sizeof(expected))); EXPECT_THAT(sent_data, ElementsAreArray(expected));
assert_that(sent_data, is_equal_to_contents_of(expected, sizeof(expected)));
} }
Ensure(ByteStuffer, sends_and_receives_full_roundtrip_small_packet) { TEST_F(ByteStuffer, sends_and_receives_full_roundtrip_small_packet) {
uint8_t original_data[] = { 1, 2, 3}; uint8_t original_data[] = { 1, 2, 3};
byte_stuffer_send_frame(0, original_data, sizeof(original_data)); byte_stuffer_send_frame(0, original_data, sizeof(original_data));
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(sizeof(original_data))), .With(Args<1, 2>(ElementsAreArray(original_data)));
when(data, is_equal_to_contents_of(original_data, sizeof(original_data)))
);
int i; int i;
for(i=0;i<sent_data_size;i++) { for(auto& d : sent_data) {
byte_stuffer_recv_byte(1, sent_data[i]); byte_stuffer_recv_byte(1, d);
} }
} }
Ensure(ByteStuffer, sends_and_receives_full_roundtrip_small_packet_with_zeros) { TEST_F(ByteStuffer, sends_and_receives_full_roundtrip_small_packet_with_zeros) {
uint8_t original_data[] = { 1, 0, 3, 0, 0, 9}; uint8_t original_data[] = { 1, 0, 3, 0, 0, 9};
byte_stuffer_send_frame(1, original_data, sizeof(original_data)); byte_stuffer_send_frame(1, original_data, sizeof(original_data));
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(sizeof(original_data))), .With(Args<1, 2>(ElementsAreArray(original_data)));
when(data, is_equal_to_contents_of(original_data, sizeof(original_data)))
);
int i; int i;
for(i=0;i<sent_data_size;i++) { for(auto& d : sent_data) {
byte_stuffer_recv_byte(0, sent_data[i]); byte_stuffer_recv_byte(1, d);
} }
} }
Ensure(ByteStuffer, sends_and_receives_full_roundtrip_254_bytes) { TEST_F(ByteStuffer, sends_and_receives_full_roundtrip_254_bytes) {
uint8_t original_data[254]; uint8_t original_data[254];
int i; int i;
for(i=0;i<254;i++) { for(i=0;i<254;i++) {
original_data[i] = i + 1; original_data[i] = i + 1;
} }
byte_stuffer_send_frame(0, original_data, sizeof(original_data)); byte_stuffer_send_frame(0, original_data, sizeof(original_data));
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(sizeof(original_data))), .With(Args<1, 2>(ElementsAreArray(original_data)));
when(data, is_equal_to_contents_of(original_data, sizeof(original_data))) for(auto& d : sent_data) {
); byte_stuffer_recv_byte(1, d);
for(i=0;i<sent_data_size;i++) {
byte_stuffer_recv_byte(1, sent_data[i]);
} }
} }
Ensure(ByteStuffer, sends_and_receives_full_roundtrip_256_bytes) { TEST_F(ByteStuffer, sends_and_receives_full_roundtrip_256_bytes) {
uint8_t original_data[256]; uint8_t original_data[256];
int i; int i;
for(i=0;i<254;i++) { for(i=0;i<254;i++) {
@ -479,16 +460,14 @@ Ensure(ByteStuffer, sends_and_receives_full_roundtrip_256_bytes) {
original_data[254] = 22; original_data[254] = 22;
original_data[255] = 23; original_data[255] = 23;
byte_stuffer_send_frame(0, original_data, sizeof(original_data)); byte_stuffer_send_frame(0, original_data, sizeof(original_data));
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(sizeof(original_data))), .With(Args<1, 2>(ElementsAreArray(original_data)));
when(data, is_equal_to_contents_of(original_data, sizeof(original_data))) for(auto& d : sent_data) {
); byte_stuffer_recv_byte(1, d);
for(i=0;i<sent_data_size;i++) {
byte_stuffer_recv_byte(1, sent_data[i]);
} }
} }
Ensure(ByteStuffer, sends_and_receives_full_roundtrip_254_bytes_and_then_zero) { TEST_F(ByteStuffer, sends_and_receives_full_roundtrip_254_bytes_and_then_zero) {
uint8_t original_data[255]; uint8_t original_data[255];
int i; int i;
for(i=0;i<254;i++) { for(i=0;i<254;i++) {
@ -496,11 +475,9 @@ Ensure(ByteStuffer, sends_and_receives_full_roundtrip_254_bytes_and_then_zero) {
} }
original_data[254] = 0; original_data[254] = 0;
byte_stuffer_send_frame(0, original_data, sizeof(original_data)); byte_stuffer_send_frame(0, original_data, sizeof(original_data));
expect(validator_recv_frame, EXPECT_CALL(*this, validator_recv_frame(_, _, _))
when(size, is_equal_to(sizeof(original_data))), .With(Args<1, 2>(ElementsAreArray(original_data)));
when(data, is_equal_to_contents_of(original_data, sizeof(original_data))) for(auto& d : sent_data) {
); byte_stuffer_recv_byte(1, d);
for(i=0;i<sent_data_size;i++) {
byte_stuffer_recv_byte(1, sent_data[i]);
} }
} }

@ -1,231 +0,0 @@
/*
The MIT License (MIT)
Copyright (c) 2016 Fred Sundvik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <cgreen/cgreen.h>
#include <cgreen/mocks.h>
#include "serial_link/protocol/byte_stuffer.c"
#include "serial_link/protocol/frame_validator.c"
#include "serial_link/protocol/frame_router.c"
#include "serial_link/protocol/transport.h"
static uint8_t received_data[256];
static uint16_t received_data_size;
typedef struct {
uint8_t sent_data[256];
uint16_t sent_data_size;
} receive_buffer_t;
typedef struct {
receive_buffer_t send_buffers[2];
} router_buffer_t;
router_buffer_t router_buffers[8];
router_buffer_t* current_router_buffer;
Describe(FrameRouter);
BeforeEach(FrameRouter) {
init_byte_stuffer();
memset(router_buffers, 0, sizeof(router_buffers));
current_router_buffer = 0;
}
AfterEach(FrameRouter) {}
typedef struct {
uint32_t data;
uint8_t extra[16];
} frame_buffer_t;
void send_data(uint8_t link, const uint8_t* data, uint16_t size) {
receive_buffer_t* buffer = &current_router_buffer->send_buffers[link];
memcpy(buffer->sent_data + buffer->sent_data_size, data, size);
buffer->sent_data_size += size;
}
static void receive_data(uint8_t link, uint8_t* data, uint16_t size) {
int i;
for(i=0;i<size;i++) {
byte_stuffer_recv_byte(link, data[i]);
}
}
static void activate_router(uint8_t num) {
current_router_buffer = router_buffers + num;
router_set_master(num==0);
}
static void simulate_transport(uint8_t from, uint8_t to) {
activate_router(to);
if (from > to) {
receive_data(DOWN_LINK,
router_buffers[from].send_buffers[UP_LINK].sent_data,
router_buffers[from].send_buffers[UP_LINK].sent_data_size);
}
else if(to > from) {
receive_data(UP_LINK,
router_buffers[from].send_buffers[DOWN_LINK].sent_data,
router_buffers[from].send_buffers[DOWN_LINK].sent_data_size);
}
}
void transport_recv_frame(uint8_t from, uint8_t* data, uint16_t size) {
mock(from, data, size);
}
Ensure(FrameRouter, master_broadcast_is_received_by_everyone) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(0);
router_send_frame(0xFF, (uint8_t*)&data, 4);
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(0)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(0, 1);
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(0)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(1, 2);
assert_that(router_buffers[2].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[2].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, master_send_is_received_by_targets) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(0);
router_send_frame((1 << 1) | (1 << 2), (uint8_t*)&data, 4);
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
simulate_transport(0, 1);
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(0)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(1, 2);
assert_that(router_buffers[2].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[2].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(0)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(2, 3);
assert_that(router_buffers[3].send_buffers[DOWN_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[3].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, first_link_sends_to_master) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(1);
router_send_frame(0, (uint8_t*)&data, 4);
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(1)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(1, 0);
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, second_link_sends_to_master) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(2);
router_send_frame(0, (uint8_t*)&data, 4);
assert_that(router_buffers[2].send_buffers[UP_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[2].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
simulate_transport(2, 1);
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
expect(transport_recv_frame,
when(from, is_equal_to(2)),
when(size, is_equal_to(4)),
when(data, is_equal_to_contents_of(&data.data, 4))
);
simulate_transport(1, 0);
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, master_sends_to_master_does_nothing) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(0);
router_send_frame(0, (uint8_t*)&data, 4);
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, link_sends_to_other_link_does_nothing) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(1);
router_send_frame(2, (uint8_t*)&data, 4);
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
}
Ensure(FrameRouter, master_receives_on_uplink_does_nothing) {
frame_buffer_t data;
data.data = 0xAB7055BB;
activate_router(1);
router_send_frame(0, (uint8_t*)&data, 4);
assert_that(router_buffers[1].send_buffers[UP_LINK].sent_data_size, is_greater_than(0));
assert_that(router_buffers[1].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
never_expect(transport_recv_frame);
activate_router(0);
receive_data(UP_LINK,
router_buffers[1].send_buffers[UP_LINK].sent_data,
router_buffers[1].send_buffers[UP_LINK].sent_data_size);
assert_that(router_buffers[0].send_buffers[UP_LINK].sent_data_size, is_equal_to(0));
assert_that(router_buffers[0].send_buffers[DOWN_LINK].sent_data_size, is_equal_to(0));
}

@ -0,0 +1,229 @@
/*
The MIT License (MIT)
Copyright (c) 2016 Fred Sundvik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include <array>
extern "C" {
#include "serial_link/protocol/transport.h"
#include "serial_link/protocol/byte_stuffer.h"
#include "serial_link/protocol/frame_router.h"
}
using testing::_;
using testing::ElementsAreArray;
using testing::Args;
class FrameRouter : public testing::Test {
public:
FrameRouter() :
current_router_buffer(nullptr)
{
Instance = this;
init_byte_stuffer();
}
~FrameRouter() {
Instance = nullptr;
}
void send_data(uint8_t link, const uint8_t* data, uint16_t size) {
auto& buffer = current_router_buffer->send_buffers[link];
std::copy(data, data + size, std::back_inserter(buffer));
}
void receive_data(uint8_t link, uint8_t* data, uint16_t size) {
int i;
for(i=0;i<size;i++) {
byte_stuffer_recv_byte(link, data[i]);
}
}
void activate_router(uint8_t num) {
current_router_buffer = router_buffers + num;
router_set_master(num==0);
}
void simulate_transport(uint8_t from, uint8_t to) {
activate_router(to);
if (from > to) {
receive_data(DOWN_LINK,
router_buffers[from].send_buffers[UP_LINK].data(),
router_buffers[from].send_buffers[UP_LINK].size());
}
else if(to > from) {
receive_data(UP_LINK,
router_buffers[from].send_buffers[DOWN_LINK].data(),
router_buffers[from].send_buffers[DOWN_LINK].size());
}
}
MOCK_METHOD3(transport_recv_frame, void (uint8_t from, uint8_t* data, uint16_t size));
std::vector<uint8_t> received_data;
struct router_buffer {
std::vector<uint8_t> send_buffers[2];
};
router_buffer router_buffers[8];
router_buffer* current_router_buffer;
static FrameRouter* Instance;
};
FrameRouter* FrameRouter::Instance = nullptr;
typedef struct {
std::array<uint8_t, 4> data;
uint8_t extra[16];
} frame_buffer_t;
extern "C" {
void send_data(uint8_t link, const uint8_t* data, uint16_t size) {
FrameRouter::Instance->send_data(link, data, size);
}
void transport_recv_frame(uint8_t from, uint8_t* data, uint16_t size) {
FrameRouter::Instance->transport_recv_frame(from, data, size);
}
}
TEST_F(FrameRouter, master_broadcast_is_received_by_everyone) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(0);
router_send_frame(0xFF, (uint8_t*)&data, 4);
EXPECT_GT(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(0, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(0, 1);
EXPECT_GT(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(0, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(1, 2);
EXPECT_GT(router_buffers[2].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[2].send_buffers[UP_LINK].size(), 0);
}
TEST_F(FrameRouter, master_send_is_received_by_targets) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(0);
router_send_frame((1 << 1) | (1 << 2), (uint8_t*)&data, 4);
EXPECT_GT(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
simulate_transport(0, 1);
EXPECT_GT(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(0, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(1, 2);
EXPECT_GT(router_buffers[2].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[2].send_buffers[UP_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(0, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(2, 3);
EXPECT_GT(router_buffers[3].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[3].send_buffers[UP_LINK].size(), 0);
}
TEST_F(FrameRouter, first_link_sends_to_master) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(1);
router_send_frame(0, (uint8_t*)&data, 4);
EXPECT_GT(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(1, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(1, 0);
EXPECT_EQ(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
}
TEST_F(FrameRouter, second_link_sends_to_master) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(2);
router_send_frame(0, (uint8_t*)&data, 4);
EXPECT_GT(router_buffers[2].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[2].send_buffers[DOWN_LINK].size(), 0);
simulate_transport(2, 1);
EXPECT_GT(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(2, _, _))
.With(Args<1, 2>(ElementsAreArray(data.data)));
simulate_transport(1, 0);
EXPECT_EQ(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
}
TEST_F(FrameRouter, master_sends_to_master_does_nothing) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(0);
router_send_frame(0, (uint8_t*)&data, 4);
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
}
TEST_F(FrameRouter, link_sends_to_other_link_does_nothing) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(1);
router_send_frame(2, (uint8_t*)&data, 4);
EXPECT_EQ(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
}
TEST_F(FrameRouter, master_receives_on_uplink_does_nothing) {
frame_buffer_t data;
data.data = {0xAB, 0x70, 0x55, 0xBB};
activate_router(1);
router_send_frame(0, (uint8_t*)&data, 4);
EXPECT_GT(router_buffers[1].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[1].send_buffers[DOWN_LINK].size(), 0);
EXPECT_CALL(*this, transport_recv_frame(_, _, _))
.Times(0);
activate_router(0);
receive_data(UP_LINK,
router_buffers[1].send_buffers[UP_LINK].data(),
router_buffers[1].send_buffers[UP_LINK].size());
EXPECT_EQ(router_buffers[0].send_buffers[UP_LINK].size(), 0);
EXPECT_EQ(router_buffers[0].send_buffers[DOWN_LINK].size(), 0);
}

@ -22,24 +22,47 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
*/ */
#include <cgreen/cgreen.h> #include "gtest/gtest.h"
#include <cgreen/mocks.h> #include "gmock/gmock.h"
#include "serial_link/protocol/frame_validator.c" extern "C" {
#include "serial_link/protocol/frame_validator.h"
}
using testing::_;
using testing::ElementsAreArray;
using testing::Args;
class FrameValidator : public testing::Test {
public:
FrameValidator() {
Instance = this;
}
~FrameValidator() {
Instance = nullptr;
}
MOCK_METHOD3(route_incoming_frame, void (uint8_t link, uint8_t* data, uint16_t size));
MOCK_METHOD3(byte_stuffer_send_frame, void (uint8_t link, uint8_t* data, uint16_t size));
static FrameValidator* Instance;
};
FrameValidator* FrameValidator::Instance = nullptr;
extern "C" {
void route_incoming_frame(uint8_t link, uint8_t* data, uint16_t size) { void route_incoming_frame(uint8_t link, uint8_t* data, uint16_t size) {
mock(data, size); FrameValidator::Instance->route_incoming_frame(link, data, size);
} }
void byte_stuffer_send_frame(uint8_t link, uint8_t* data, uint16_t size) { void byte_stuffer_send_frame(uint8_t link, uint8_t* data, uint16_t size) {
mock(data, size); FrameValidator::Instance->byte_stuffer_send_frame(link, data, size);
}
} }
Describe(FrameValidator); TEST_F(FrameValidator, doesnt_validate_frames_under_5_bytes) {
BeforeEach(FrameValidator) {} EXPECT_CALL(*this, route_incoming_frame(_, _, _))
AfterEach(FrameValidator) {} .Times(0);
Ensure(FrameValidator, doesnt_validate_frames_under_5_bytes) {
never_expect(route_incoming_frame);
uint8_t data[] = {1, 2}; uint8_t data[] = {1, 2};
validator_recv_frame(0, 0, 1); validator_recv_frame(0, 0, 1);
validator_recv_frame(0, data, 2); validator_recv_frame(0, data, 2);
@ -47,55 +70,46 @@ Ensure(FrameValidator, doesnt_validate_frames_under_5_bytes) {
validator_recv_frame(0, data, 4); validator_recv_frame(0, data, 4);
} }
Ensure(FrameValidator, validates_one_byte_frame_with_correct_crc) { TEST_F(FrameValidator, validates_one_byte_frame_with_correct_crc) {
uint8_t data[] = {0x44, 0x04, 0x6A, 0xB3, 0xA3}; uint8_t data[] = {0x44, 0x04, 0x6A, 0xB3, 0xA3};
expect(route_incoming_frame, EXPECT_CALL(*this, route_incoming_frame(_, _, _))
when(size, is_equal_to(1)), .With(Args<1, 2>(ElementsAreArray(data, 1)));
when(data, is_equal_to_contents_of(data, 1))
);
validator_recv_frame(0, data, 5); validator_recv_frame(0, data, 5);
} }
Ensure(FrameValidator, does_not_validate_one_byte_frame_with_incorrect_crc) { TEST_F(FrameValidator, does_not_validate_one_byte_frame_with_incorrect_crc) {
uint8_t data[] = {0x44, 0, 0, 0, 0}; uint8_t data[] = {0x44, 0, 0, 0, 0};
never_expect(route_incoming_frame); EXPECT_CALL(*this, route_incoming_frame(_, _, _))
.Times(0);
validator_recv_frame(1, data, 5); validator_recv_frame(1, data, 5);
} }
Ensure(FrameValidator, validates_four_byte_frame_with_correct_crc) { TEST_F(FrameValidator, validates_four_byte_frame_with_correct_crc) {
uint8_t data[] = {0x44, 0x10, 0xFF, 0x00, 0x74, 0x4E, 0x30, 0xBA}; uint8_t data[] = {0x44, 0x10, 0xFF, 0x00, 0x74, 0x4E, 0x30, 0xBA};
expect(route_incoming_frame, EXPECT_CALL(*this, route_incoming_frame(_, _, _))
when(size, is_equal_to(4)), .With(Args<1, 2>(ElementsAreArray(data, 4)));
when(data, is_equal_to_contents_of(data, 4))
);
validator_recv_frame(1, data, 8); validator_recv_frame(1, data, 8);
} }
Ensure(FrameValidator, validates_five_byte_frame_with_correct_crc) { TEST_F(FrameValidator, validates_five_byte_frame_with_correct_crc) {
uint8_t data[] = {1, 2, 3, 4, 5, 0xF4, 0x99, 0x0B, 0x47}; uint8_t data[] = {1, 2, 3, 4, 5, 0xF4, 0x99, 0x0B, 0x47};
expect(route_incoming_frame, EXPECT_CALL(*this, route_incoming_frame(_, _, _))
when(size, is_equal_to(5)), .With(Args<1, 2>(ElementsAreArray(data, 5)));
when(data, is_equal_to_contents_of(data, 5))
);
validator_recv_frame(0, data, 9); validator_recv_frame(0, data, 9);
} }
Ensure(FrameValidator, sends_one_byte_with_correct_crc) { TEST_F(FrameValidator, sends_one_byte_with_correct_crc) {
uint8_t original[] = {0x44, 0, 0, 0, 0}; uint8_t original[] = {0x44, 0, 0, 0, 0};
uint8_t expected[] = {0x44, 0x04, 0x6A, 0xB3, 0xA3}; uint8_t expected[] = {0x44, 0x04, 0x6A, 0xB3, 0xA3};
expect(byte_stuffer_send_frame, EXPECT_CALL(*this, byte_stuffer_send_frame(_, _, _))
when(size, is_equal_to(sizeof(expected))), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, sizeof(expected)))
);
validator_send_frame(0, original, 1); validator_send_frame(0, original, 1);
} }
Ensure(FrameValidator, sends_five_bytes_with_correct_crc) { TEST_F(FrameValidator, sends_five_bytes_with_correct_crc) {
uint8_t original[] = {1, 2, 3, 4, 5, 0, 0, 0, 0}; uint8_t original[] = {1, 2, 3, 4, 5, 0, 0, 0, 0};
uint8_t expected[] = {1, 2, 3, 4, 5, 0xF4, 0x99, 0x0B, 0x47}; uint8_t expected[] = {1, 2, 3, 4, 5, 0xF4, 0x99, 0x0B, 0x47};
expect(byte_stuffer_send_frame, EXPECT_CALL(*this, byte_stuffer_send_frame(_, _, _))
when(size, is_equal_to(sizeof(expected))), .With(Args<1, 2>(ElementsAreArray(expected)));
when(data, is_equal_to_contents_of(expected, sizeof(expected)))
);
validator_send_frame(0, original, 5); validator_send_frame(0, original, 5);
} }

@ -0,0 +1,22 @@
serial_link_byte_stuffer_SRC :=\
$(SERIAL_PATH)/tests/byte_stuffer_tests.cpp \
$(SERIAL_PATH)/protocol/byte_stuffer.c
serial_link_frame_validator_SRC := \
$(SERIAL_PATH)/tests/frame_validator_tests.cpp \
$(SERIAL_PATH)/protocol/frame_validator.c
serial_link_frame_router_SRC := \
$(SERIAL_PATH)/tests/frame_router_tests.cpp \
$(SERIAL_PATH)/protocol/byte_stuffer.c \
$(SERIAL_PATH)/protocol/frame_validator.c \
$(SERIAL_PATH)/protocol/frame_router.c
serial_link_triple_buffered_object_SRC := \
$(SERIAL_PATH)/tests/triple_buffered_object_tests.cpp \
$(SERIAL_PATH)/protocol/triple_buffered_object.c
serial_link_transport_SRC := \
$(SERIAL_PATH)/tests/transport_tests.cpp \
$(SERIAL_PATH)/protocol/transport.c \
$(SERIAL_PATH)/protocol/triple_buffered_object.c

@ -0,0 +1,6 @@
TEST_LIST +=\
serial_link_byte_stuffer\
serial_link_frame_validator\
serial_link_frame_router\
serial_link_triple_buffered_object\
serial_link_transport

@ -1,168 +0,0 @@
/*
The MIT License (MIT)
Copyright (c) 2016 Fred Sundvik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <cgreen/cgreen.h>
#include <cgreen/mocks.h>
#include "serial_link/protocol/transport.c"
#include "serial_link/protocol/triple_buffered_object.c"
void signal_data_written(void) {
mock();
}
static uint8_t sent_data[2048];
static uint16_t sent_data_size;
void router_send_frame(uint8_t destination, uint8_t* data, uint16_t size) {
mock(destination);
memcpy(sent_data + sent_data_size, data, size);
sent_data_size += size;
}
typedef struct {
uint32_t test;
} test_object1_t;
typedef struct {
uint32_t test1;
uint32_t test2;
} test_object2_t;
MASTER_TO_ALL_SLAVES_OBJECT(master_to_slave, test_object1_t);
MASTER_TO_SINGLE_SLAVE_OBJECT(master_to_single_slave, test_object1_t);
SLAVE_TO_MASTER_OBJECT(slave_to_master, test_object1_t);
static remote_object_t* test_remote_objects[] = {
REMOTE_OBJECT(master_to_slave),
REMOTE_OBJECT(master_to_single_slave),
REMOTE_OBJECT(slave_to_master),
};
Describe(Transport);
BeforeEach(Transport) {
add_remote_objects(test_remote_objects, sizeof(test_remote_objects) / sizeof(remote_object_t*));
sent_data_size = 0;
}
AfterEach(Transport) {}
Ensure(Transport, write_to_local_signals_an_event) {
begin_write_master_to_slave();
expect(signal_data_written);
end_write_master_to_slave();
begin_write_slave_to_master();
expect(signal_data_written);
end_write_slave_to_master();
begin_write_master_to_single_slave(1);
expect(signal_data_written);
end_write_master_to_single_slave(1);
}
Ensure(Transport, writes_from_master_to_all_slaves) {
update_transport();
test_object1_t* obj = begin_write_master_to_slave();
obj->test = 5;
expect(signal_data_written);
end_write_master_to_slave();
expect(router_send_frame,
when(destination, is_equal_to(0xFF)));
update_transport();
transport_recv_frame(0, sent_data, sent_data_size);
test_object1_t* obj2 = read_master_to_slave();
assert_that(obj2, is_not_equal_to(NULL));
assert_that(obj2->test, is_equal_to(5));
}
Ensure(Transport, writes_from_slave_to_master) {
update_transport();
test_object1_t* obj = begin_write_slave_to_master();
obj->test = 7;
expect(signal_data_written);
end_write_slave_to_master();
expect(router_send_frame,
when(destination, is_equal_to(0)));
update_transport();
transport_recv_frame(3, sent_data, sent_data_size);
test_object1_t* obj2 = read_slave_to_master(2);
assert_that(read_slave_to_master(0), is_equal_to(NULL));
assert_that(obj2, is_not_equal_to(NULL));
assert_that(obj2->test, is_equal_to(7));
}
Ensure(Transport, writes_from_master_to_single_slave) {
update_transport();
test_object1_t* obj = begin_write_master_to_single_slave(3);
obj->test = 7;
expect(signal_data_written);
end_write_master_to_single_slave(3);
expect(router_send_frame,
when(destination, is_equal_to(4)));
update_transport();
transport_recv_frame(0, sent_data, sent_data_size);
test_object1_t* obj2 = read_master_to_single_slave();
assert_that(obj2, is_not_equal_to(NULL));
assert_that(obj2->test, is_equal_to(7));
}
Ensure(Transport, ignores_object_with_invalid_id) {
update_transport();
test_object1_t* obj = begin_write_master_to_single_slave(3);
obj->test = 7;
expect(signal_data_written);
end_write_master_to_single_slave(3);
expect(router_send_frame,
when(destination, is_equal_to(4)));
update_transport();
sent_data[sent_data_size - 1] = 44;
transport_recv_frame(0, sent_data, sent_data_size);
test_object1_t* obj2 = read_master_to_single_slave();
assert_that(obj2, is_equal_to(NULL));
}
Ensure(Transport, ignores_object_with_size_too_small) {
update_transport();
test_object1_t* obj = begin_write_master_to_slave();
obj->test = 7;
expect(signal_data_written);
end_write_master_to_slave();
expect(router_send_frame);
update_transport();
sent_data[sent_data_size - 2] = 0;
transport_recv_frame(0, sent_data, sent_data_size - 1);
test_object1_t* obj2 = read_master_to_slave();
assert_that(obj2, is_equal_to(NULL));
}
Ensure(Transport, ignores_object_with_size_too_big) {
update_transport();
test_object1_t* obj = begin_write_master_to_slave();
obj->test = 7;
expect(signal_data_written);
end_write_master_to_slave();
expect(router_send_frame);
update_transport();
sent_data[sent_data_size + 21] = 0;
transport_recv_frame(0, sent_data, sent_data_size + 22);
test_object1_t* obj2 = read_master_to_slave();
assert_that(obj2, is_equal_to(NULL));
}

@ -0,0 +1,188 @@
/*
The MIT License (MIT)
Copyright (c) 2016 Fred Sundvik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "gtest/gtest.h"
#include "gmock/gmock.h"
using testing::_;
using testing::ElementsAreArray;
using testing::Args;
extern "C" {
#include "serial_link/protocol/transport.h"
}
struct test_object1 {
uint32_t test;
};
struct test_object2 {
uint32_t test1;
uint32_t test2;
};
MASTER_TO_ALL_SLAVES_OBJECT(master_to_slave, test_object1);
MASTER_TO_SINGLE_SLAVE_OBJECT(master_to_single_slave, test_object1);
SLAVE_TO_MASTER_OBJECT(slave_to_master, test_object1);
static remote_object_t* test_remote_objects[] = {
REMOTE_OBJECT(master_to_slave),
REMOTE_OBJECT(master_to_single_slave),
REMOTE_OBJECT(slave_to_master),
};
class Transport : public testing::Test {
public:
Transport() {
Instance = this;
add_remote_objects(test_remote_objects, sizeof(test_remote_objects) / sizeof(remote_object_t*));
}
~Transport() {
Instance = nullptr;
reinitialize_serial_link_transport();
}
MOCK_METHOD0(signal_data_written, void ());
MOCK_METHOD1(router_send_frame, void (uint8_t destination));
void router_send_frame(uint8_t destination, uint8_t* data, uint16_t size) {
router_send_frame(destination);
std::copy(data, data + size, std::back_inserter(sent_data));
}
static Transport* Instance;
std::vector<uint8_t> sent_data;
};
Transport* Transport::Instance = nullptr;
extern "C" {
void signal_data_written(void) {
Transport::Instance->signal_data_written();
}
void router_send_frame(uint8_t destination, uint8_t* data, uint16_t size) {
Transport::Instance->router_send_frame(destination, data, size);
}
}
TEST_F(Transport, write_to_local_signals_an_event) {
begin_write_master_to_slave();
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_slave();
begin_write_slave_to_master();
EXPECT_CALL(*this, signal_data_written());
end_write_slave_to_master();
begin_write_master_to_single_slave(1);
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_single_slave(1);
}
TEST_F(Transport, writes_from_master_to_all_slaves) {
update_transport();
test_object1* obj = begin_write_master_to_slave();
obj->test = 5;
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_slave();
EXPECT_CALL(*this, router_send_frame(0xFF));
update_transport();
transport_recv_frame(0, sent_data.data(), sent_data.size());
test_object1* obj2 = read_master_to_slave();
EXPECT_NE(obj2, nullptr);
EXPECT_EQ(obj2->test, 5);
}
TEST_F(Transport, writes_from_slave_to_master) {
update_transport();
test_object1* obj = begin_write_slave_to_master();
obj->test = 7;
EXPECT_CALL(*this, signal_data_written());
end_write_slave_to_master();
EXPECT_CALL(*this, router_send_frame(0));
update_transport();
transport_recv_frame(3, sent_data.data(), sent_data.size());
test_object1* obj2 = read_slave_to_master(2);
EXPECT_EQ(read_slave_to_master(0), nullptr);
EXPECT_NE(obj2, nullptr);
EXPECT_EQ(obj2->test, 7);
}
TEST_F(Transport, writes_from_master_to_single_slave) {
update_transport();
test_object1* obj = begin_write_master_to_single_slave(3);
obj->test = 7;
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_single_slave(3);
EXPECT_CALL(*this, router_send_frame(4));
update_transport();
transport_recv_frame(0, sent_data.data(), sent_data.size());
test_object1* obj2 = read_master_to_single_slave();
EXPECT_NE(obj2, nullptr);
EXPECT_EQ(obj2->test, 7);
}
TEST_F(Transport, ignores_object_with_invalid_id) {
update_transport();
test_object1* obj = begin_write_master_to_single_slave(3);
obj->test = 7;
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_single_slave(3);
EXPECT_CALL(*this, router_send_frame(4));
update_transport();
sent_data[sent_data.size() - 1] = 44;
transport_recv_frame(0, sent_data.data(), sent_data.size());
test_object1* obj2 = read_master_to_single_slave();
EXPECT_EQ(obj2, nullptr);
}
TEST_F(Transport, ignores_object_with_size_too_small) {
update_transport();
test_object1* obj = begin_write_master_to_slave();
obj->test = 7;
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_slave();
EXPECT_CALL(*this, router_send_frame(_));
update_transport();
sent_data[sent_data.size() - 2] = 0;
transport_recv_frame(0, sent_data.data(), sent_data.size() - 1);
test_object1* obj2 = read_master_to_slave();
EXPECT_EQ(obj2, nullptr);
}
TEST_F(Transport, ignores_object_with_size_too_big) {
update_transport();
test_object1* obj = begin_write_master_to_slave();
obj->test = 7;
EXPECT_CALL(*this, signal_data_written());
end_write_master_to_slave();
EXPECT_CALL(*this, router_send_frame(_));
update_transport();
sent_data.resize(sent_data.size() + 22);
sent_data[sent_data.size() - 1] = 0;
transport_recv_frame(0, sent_data.data(), sent_data.size());
test_object1* obj2 = read_master_to_slave();
EXPECT_EQ(obj2, nullptr);
}

@ -22,53 +22,55 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
*/ */
#include <cgreen/cgreen.h> #include "gtest/gtest.h"
#include "serial_link/protocol/triple_buffered_object.c" extern "C" {
#include "serial_link/protocol/triple_buffered_object.h"
}
typedef struct { struct test_object{
uint8_t state; uint8_t state;
uint32_t buffer[3]; uint32_t buffer[3];
}test_object_t; };
test_object_t test_object; test_object test_object;
Describe(TripleBufferedObject); class TripleBufferedObject : public testing::Test {
BeforeEach(TripleBufferedObject) { public:
TripleBufferedObject() {
triple_buffer_init((triple_buffer_object_t*)&test_object); triple_buffer_init((triple_buffer_object_t*)&test_object);
} }
AfterEach(TripleBufferedObject) {} };
Ensure(TripleBufferedObject, writes_and_reads_object) { TEST_F(TripleBufferedObject, writes_and_reads_object) {
*triple_buffer_begin_write(&test_object) = 0x3456ABCC; *triple_buffer_begin_write(&test_object) = 0x3456ABCC;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
assert_that(*triple_buffer_read(&test_object), is_equal_to(0x3456ABCC)); EXPECT_EQ(*triple_buffer_read(&test_object), 0x3456ABCC);
} }
Ensure(TripleBufferedObject, does_not_read_empty) { TEST_F(TripleBufferedObject, does_not_read_empty) {
assert_that(triple_buffer_read(&test_object), is_equal_to(NULL)); EXPECT_EQ(triple_buffer_read(&test_object), nullptr);
} }
Ensure(TripleBufferedObject, writes_twice_and_reads_object) { TEST_F(TripleBufferedObject, writes_twice_and_reads_object) {
*triple_buffer_begin_write(&test_object) = 0x3456ABCC; *triple_buffer_begin_write(&test_object) = 0x3456ABCC;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
*triple_buffer_begin_write(&test_object) = 0x44778899; *triple_buffer_begin_write(&test_object) = 0x44778899;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
assert_that(*triple_buffer_read(&test_object), is_equal_to(0x44778899)); EXPECT_EQ(*triple_buffer_read(&test_object), 0x44778899);
} }
Ensure(TripleBufferedObject, performs_another_write_in_the_middle_of_read) { TEST_F(TripleBufferedObject, performs_another_write_in_the_middle_of_read) {
*triple_buffer_begin_write(&test_object) = 1; *triple_buffer_begin_write(&test_object) = 1;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
uint32_t* read = triple_buffer_read(&test_object); uint32_t* read = triple_buffer_read(&test_object);
*triple_buffer_begin_write(&test_object) = 2; *triple_buffer_begin_write(&test_object) = 2;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
assert_that(*read, is_equal_to(1)); EXPECT_EQ(*read, 1);
assert_that(*triple_buffer_read(&test_object), is_equal_to(2)); EXPECT_EQ(*triple_buffer_read(&test_object), 2);
assert_that(triple_buffer_read(&test_object), is_equal_to(NULL)); EXPECT_EQ(triple_buffer_read(&test_object), nullptr);
} }
Ensure(TripleBufferedObject, performs_two_writes_in_the_middle_of_read) { TEST_F(TripleBufferedObject, performs_two_writes_in_the_middle_of_read) {
*triple_buffer_begin_write(&test_object) = 1; *triple_buffer_begin_write(&test_object) = 1;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
uint32_t* read = triple_buffer_read(&test_object); uint32_t* read = triple_buffer_read(&test_object);
@ -76,7 +78,7 @@ Ensure(TripleBufferedObject, performs_two_writes_in_the_middle_of_read) {
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
*triple_buffer_begin_write(&test_object) = 3; *triple_buffer_begin_write(&test_object) = 3;
triple_buffer_end_write(&test_object); triple_buffer_end_write(&test_object);
assert_that(*read, is_equal_to(1)); EXPECT_EQ(*read, 1);
assert_that(*triple_buffer_read(&test_object), is_equal_to(3)); EXPECT_EQ(*triple_buffer_read(&test_object), 3);
assert_that(triple_buffer_read(&test_object), is_equal_to(NULL)); EXPECT_EQ(triple_buffer_read(&test_object), nullptr);
} }

@ -1,75 +1,3 @@
ifndef MAKEFILE_INCLUDED
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
ifndef QUANTUM_DIR
include ../../Makefile include ../../Makefile
endif endif

@ -3,7 +3,7 @@
## Quantum MK Firmware ## Quantum MK Firmware
For the full Quantum feature list, see [the parent readme.md](/doc/readme.md). For the full Quantum feature list, see [the parent readme](/).
## Building ## Building
@ -13,16 +13,16 @@ Depending on which keymap you would like to use, you will have to compile slight
### Default ### Default
To build with the default keymap, simply run `make`. To build with the default keymap, simply run `make default`.
### Other Keymaps ### Other Keymaps
Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files. Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create a folder with the name of your keymap in the keymaps folder, and see keymap documentation (you can find in top readme.md) and existant keymap files.
To build the firmware binary hex file with a keymap just do `make` with `keymap` option like: To build the firmware binary hex file with a keymap just do `make` with a keymap like this:
``` ```
$ make keymap=[default|jack|<name>] $ make [default|jack|<name>]
``` ```
Keymaps follow the format **__keymap.c__** and are stored in folders in the `keymaps` folder, eg `keymaps/my_keymap/` Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder.

@ -0,0 +1,67 @@
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE ?= no # USB Nkey Rollover
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6

@ -54,10 +54,10 @@ Here are the steps
1. Install the Windows 10 subsystem for Linux, following [these instructions](http://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/). 1. Install the Windows 10 subsystem for Linux, following [these instructions](http://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/).
2. If you have previously cloned the repository using the normal Git bash, you will need to clean up the line endings. If you have cloned it after 20th of August 2016, you are likely fine. To clean up the line endings do the following 2. If you have previously cloned the repository using the normal Git bash, you will need to clean up the line endings. If you have cloned it after 20th of August 2016, you are likely fine. To clean up the line endings do the following
1. Make sure that you have no changes you haven't committed by running `git status`, if you do commit them first 1. Make sure that you have no changes you haven't committed by running `git status`, if you do commit them first
2. From within the Git bash run ´git rm --cached -r .` 2. From within the Git bash run `git rm --cached -r .`
3. Followed by `git reset --hard` 3. Followed by `git reset --hard`
3. Start the "Bash On Ubuntu On Windows" from the start menu 3. Start the "Bash On Ubuntu On Windows" from the start menu
4. With the bash open, navigate to your git checkout. The harddisk can be accessed from `/mnt` for example `/mnt/c` for the `c:\` drive. 4. With the bash open, navigate to your Git checkout. The harddisk can be accessed from `/mnt` for example `/mnt/c` for the `c:\` drive.
5. Run `sudo util/install_dependencies.sh`. 5. Run `sudo util/install_dependencies.sh`.
6. After a while the installation will finish, and you are good to go 6. After a while the installation will finish, and you are good to go
@ -69,11 +69,12 @@ Here are the steps
### Windows (Vista and later) ### Windows (Vista and later)
1. If you have ever installed WinAVR, uninstall it. 1. If you have ever installed WinAVR, uninstall it.
2. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**. 2. Install [MHV AVR Tools](https://infernoembedded.com/sites/default/files/project/MHV_AVR_Tools_20131101.exe). Disable smatch, but **be sure to leave the option to add the tools to the PATH checked**.
3. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location. 3. If you are going to flash Infinity based keyboards you will need to install dfu-util, refer to the instructions by [Input Club](https://github.com/kiibohd/controller/wiki/Loading-DFU-Firmware).
4. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/jackhumbert/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer. 4. Install [MinGW](https://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download). During installation, uncheck the option to install a graphical user interface. **DO NOT change the default installation folder.** The scripts depend on the default location.
5. Double-click on the 1-setup-path-win batch script to run it. You'll need to accept a User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up. 5. Clone this repository. [This link will download it as a zip file, which you'll need to extract.](https://github.com/jackhumbert/qmk_firmware/archive/master.zip) Open the extracted folder in Windows Explorer.
6. Right-click on the 2-setup-environment-win batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete! 6. Double-click on the 1-setup-path-win batch script to run it. You'll need to accept a User Account Control prompt. Press the spacebar to dismiss the success message in the command prompt that pops up.
7. Future build commands should be run from the MHV AVR Shell, which sets up an environment compatible with colorful build output. The standard Command Prompt will also work, but add `COLOR=false` to the end of all make commands when using it. 7. Right-click on the 2-setup-environment-win batch script, select "Run as administrator", and accept the User Account Control prompt. This part may take a couple of minutes, and you'll need to approve a driver installation, but once it finishes, your environment is complete!
8. Future build commands should be run from the MHV AVR Shell, which sets up an environment compatible with colorful build output. The standard Command Prompt will also work, but add `COLOR=false` to the end of all make commands when using it.
### Mac ### Mac
If you're using [homebrew,](http://brew.sh/) you can use the following commands: If you're using [homebrew,](http://brew.sh/) you can use the following commands:
@ -90,6 +91,10 @@ You can also try these instructions:
2. Install the Command Line Tools from `Xcode->Preferences->Downloads`. 2. Install the Command Line Tools from `Xcode->Preferences->Downloads`.
3. Install [DFU-Programmer][dfu-prog]. 3. Install [DFU-Programmer][dfu-prog].
If you are going to flash Infinity based keyboards you will also need dfu-util
brew install dfu-util
### Linux ### Linux
To ensure you are always up to date, you can just run `sudo utils/install_dependencies.sh`. That should always install all the dependencies needed. To ensure you are always up to date, you can just run `sudo utils/install_dependencies.sh`. That should always install all the dependencies needed.
@ -157,43 +162,103 @@ In every keymap folder, the following files are recommended:
## The `make` command ## The `make` command
The `make` command is how you compile the firmware into a .hex file, which can be loaded by a dfu programmer (like dfu-progammer via `make dfu`) or the [Teensy loader](https://www.pjrc.com/teensy/loader.html) (only used with Teensys). You can run `make` from the root (`/`), your keyboard folder (`/keyboards/<keyboard>/`), or your keymap folder (`/keyboards/<keyboard>/keymaps/<keymap>/`) if you have a `Makefile` there (see the example [here](/doc/keymap_makefile_example.mk)). The `make` command is how you compile the firmware into a .hex file, which can be loaded by a dfu programmer (like dfu-progammer via `make dfu`) or the [Teensy loader](https://www.pjrc.com/teensy/loader.html) (only used with Teensys).
**NOTE:** To abort a make command press `Ctrl-c`
The following instruction refers to these folders.
* The `root` (`/`) folder is the qmk_firmware folder, in which are `doc`, `keyboard`, `quantum`, etc.
* The `keyboard` folder is any keyboard project's folder, like `/keyboards/planck`.
* The `keymap` folder is any keymap's folder, like `/keyboards/planck/keymaps/default`.
* The `subproject` folder is the subproject folder of a keyboard, like `/keyboards/ergodox/ez`
### Simple instructions for building and uploading a keyboard
**Most keyboards have more specific instructions in the keyboard specific readme.md file, so please check that first**
If the `keymap` folder contains a file name `Makefile`
1. Change the directory to the `keymap` folder
2. Run `make <subproject>-<programmer>`
Otherwise, if there's no `Makefile` in the `keymap` folder
1. Enter the `keyboard` folder
2. Run `make <subproject>-<keymap>-<programmer>`
By default, this will generate a `<keyboard>_<keymap>.hex` file in whichever folder you run `make` from. These files are ignored by git, so don't worry about deleting them when committing/creating pull requests. In the above commands, replace:
Below are some definitions that will be useful: * `<keymap>` with the name of your keymap
* `<subproject>` with the name of the subproject (revision or sub-model of your keyboard). For example, for Ergodox it can be `ez` or `infinity`, and for Planck `rev3` or `rev4`.
* If the keyboard doesn't have a subproject, or if you are happy with the default (defined in `rules.mk` file of the `keyboard` folder), you can leave it out. But remember to also remove the dash (`-`) from the command.
* `<programmer>` The programmer to use. Most keyboards use `dfu`, but some use `teensy`. Infinity keyboards use `dfu-util`. Check the readme file in the keyboard folder to find out which programmer to use.
* If you don't add `-<programmer` to the command line, the firmware will be still be compiled into a hex file, but the upload will be skipped.
* The "root" (`/`) folder is the qmk_firmware folder, in which are `doc`, `keyboard`, `quantum`, etc. **NOTE:** Some operating systems will refuse to program unless you run the make command as root for example `sudo make dfu`
* The "keyboard" folder is any keyboard project's folder, like `/keyboards/planck`.
* The "keymap" folder is any keymap's folder, like `/keyboards/planck/keymaps/default`.
Below is a list of the useful `make` commands in QMK: ### More detailed make instruction
* `make` - builds your keyboard and keymap depending on which folder you're in. This defaults to the "default" layout (unless in a keymap folder), and Planck keyboard in the root folder The full syntax of the `make` command is the following, but parts of the command can be left out if you run it from other directories than the `root` (as you might already have noticed by reading the simple instructions).
* `make keyboard=<keyboard>` - specifies the keyboard (only to be used in root)
* `make keymap=<keymap>` - specifies the keymap (only to be used in root and keyboard folder - not needed when in keymap folder) `<keyboard>-<subproject>-<keymap>-<target>`, where:
* `make clean` - cleans the `.build` folder, ensuring that everything is re-built
* `make dfu` - (requires dfu-programmer) builds and flashes the keymap to your keyboard once placed in reset/dfu mode (button or press `KC_RESET`). This does not work for Teensy-based keyboards like the ErgoDox EZ. * `<keyboard>` is the name of the keyboard, for example `planck`
* `keyboard=` and `keymap=` are compatible with this * Use `allkb` to compile all keyboards
* `make all-keyboards` - builds all keymaps for all keyboards and outputs status of each (use in root) * `<subproject>` is the name of the subproject (revision or sub-model of the keyboard). For example, for Ergodox it can be `ez` or `infinity`, and for Planck `rev3` or `rev4`.
* `make all-keyboards-default` - builds all default keymaps for all keyboards and outputs status of each (use in root) * If the keyboard doesn't have any subprojects, it can be left out
* `make all-keymaps [keyboard=<keyboard>]` - builds all of the keymaps for whatever keyboard folder you're in, or specified by `<keyboard>` * To compile the default subproject, you can leave it out, or specify `defaultsp`
* `make all-keyboards-*`, `make all-keyboards-default-*` and `make all-keymaps-* [keyboard=<keyboard>]` - like the normal "make-all-*" commands, but the last string aftter the `-` (for example clean) is passed to the keyboard make command. * Use `allsp` to compile all subprojects
Other, less useful functionality: * `<keymap>` is the name of the keymap, for example `algernon`
* Use `allkm` to compile all keymaps
* `<target>` will be explained in more detail below.
**Note:** When you leave some parts of the command out, you should also remove the dash (`-`).
As mentioned above, there are some shortcuts, when you are in a:
* `keyboard` folder, the command will automatically fill the `<keyboard>` part. So you only need to type `<subproject>-<keymap>-<target>`
* `subproject` folder, it will fill in both `<keyboard>` and `<subproject>`
* `keymap` folder, then `<keyboard>` and `<keymap>` will be filled in. If you need to specify the `<subproject>` use the following syntax `<subproject>-<target>`
* Note in order to support this shortcut, the keymap needs its own Makefile (see the example [here](/doc/keymap_makefile_example.mk))
* `keymap` folder of a `subproject`, then everything except the `<target>` will be filled in
The `<target>` means the following
* If no target is given, then it's the same as `all` below
* `all` compiles the keyboard and generates a `<keyboard>_<keymap>.hex` file in whichever folder you run `make` from. These files are ignored by git, so don't worry about deleting them when committing/creating pull requests.
* `dfu`, `teensy` or `dfu-util`, compile and upload the firmware to the keyboard. If the compilation fails, then nothing will be uploaded. The programmer to use depends on the keyboard. For most keyboards it's `dfu`, but for Infinity keyboards you should use `dfu-util`, and `teensy` for standard Teensys. To find out which command you should use for your keyboard, check the keyboard specific readme. **Note** that some operating systems needs root access for these commands to work, so in that case you need to run for example `sudo make dfu`.
* `clean`, cleans the build output folders to make sure that everything is built from scratch. Run this before normal compilation if you have some unexplainable problems.
Some other targets are supported but, but not important enough to be documented here. Check the source code of the make files for more information.
You can also add extra options at the end of the make command line, after the target
* `make COLOR=false` - turns off color output * `make COLOR=false` - turns off color output
* `make SILENT=true` - turns off output besides errors/warnings * `make SILENT=true` - turns off output besides errors/warnings
* `make VERBOSE=true` - outputs all of the avr-gcc stuff (not interesting) * `make VERBOSE=true` - outputs all of the gcc stuff (not interesting, unless you need to debug)
The make command itself also has some additional options, type `make --help` for more information. The most useful is probably `-jx`, which specifies that you want to compile using more than one CPU, the `x` represents the number of CPUs that you want to use. Setting that can greatly reduce the compile times, especially if you are compiling many keyboards/keymaps. I usually set it to one less than the number of CPUs that I have, so that I have some left for doing other things while it's compiling. Note that not all operating systems and make versions supports that option.
Here are some examples commands
* `make allkb-allsp-allkm` builds everything (all keyboards, all subprojects, all keymaps). Running just `make` from the `root` will also run this.
* `make` from within a `keyboard` directory, is the same as `make keyboard-allsp-allkm`, which compiles all subprojects and keymaps of the keyboard. **NOTE** that this behaviour has changed. Previously it compiled just the default keymap.
* `make ergodox-infinity-algernon-clean` will clean the build output of the Ergodox Infinity keyboard. This example uses the full syntax and can be run from any folder with a `Makefile`
* `make dfu COLOR=false` from within a keymap folder, builds and uploads the keymap, but without color output.
## The `Makefile` ## The `Makefile`
There are 3 different `make` and `Makefile` locations: There are 5 different `make` and `Makefile` locations:
* root (`/`) * root (`/`)
* keyboard (`/keyboards/<keyboard>/`) * keyboard (`/keyboards/<keyboard>/`)
* keymap (`/keyboards/<keyboard>/keymaps/<keymap>/`) * keymap (`/keyboards/<keyboard>/keymaps/<keymap>/`)
* subproject (`/keyboards/<keyboard>/<subproject>`)
* subproject keymap (`/keyboards/<keyboard>/<subproject>/keymaps/<keymap>`)
The root contains the code used to automatically figure out which keymap or keymaps to compile based on your current directory and commandline arguments. It's considered stable, and shouldn't be modified. The keyboard one will contain the MCU set-up and default settings for your keyboard, and shouldn't be modified unless you are the producer of that keyboard. The keymap Makefile can be modified by users, and is optional. It is included automatically if it exists. You can see an example [here](/doc/keymap_makefile_example.mk) - the last few lines are the most important. The settings you set here will override any defaults set in the keyboard Makefile. **It is required if you want to run `make` in the keymap folder.** The root contains the code used to automatically figure out which keymap or keymaps to compile based on your current directory and commandline arguments. It's considered stable, and shouldn't be modified. The keyboard one will contain the MCU set-up and default settings for your keyboard, and shouldn't be modified unless you are the producer of that keyboard. The keymap Makefile can be modified by users, and is optional. It is included automatically if it exists. You can see an example [here](/doc/keymap_makefile_example.mk) - the last few lines are the most important. The settings you set here will override any defaults set in the keyboard Makefile. **The file is required if you want to run `make` in the keymap folder.**
For keyboards and subprojects, the make files are split in two parts `Makefile` and `rules.mk`. All settings can be found in the `rules.mk` file, while the `Makefile` is just there for support and including the root `Makefile`. Keymaps contain just one `Makefile` for simplicity.
### Makefile options ### Makefile options
@ -1077,3 +1142,54 @@ Here is where you can (optionally) define your `KEYMAP` function to remap your m
``` ```
Each of the `kxx` variables needs to be unique, and usually follows the format `k<row><col>`. You can place `KC_NO` where your dead keys are in your matrix. Each of the `kxx` variables needs to be unique, and usually follows the format `k<row><col>`. You can place `KC_NO` where your dead keys are in your matrix.
# Unit Testing
If you are new to unit testing, then you can find many good resources on internet. However most of it is scattered around in small pieces here and there, and there's also many different opinions, so I won't give any recommendations.
Instead I recommend these two books, explaining two different styles of Unit Testing in detail.
* "Test Driven Development: By Example: Kent Beck"
* "Growing Object-Oriented Software, Guided By Tests: Steve Freeman, Nat Pryce"
If you prefer videos there are Uncle Bob's [Clean Coders Videos](https://cleancoders.com/), which unfortunately cost quite a bit, especially if you want to watch many of them. But James Shore has a free [Let's Play](http://www.jamesshore.com/Blog/Lets-Play) video series.
## Google Test and Google Mock
It's possible to Unit Test your code using [Google Test](https://github.com/google/googletest). The Google Test framework also includes another component for writing testing mocks and stubs, called "Google Mock". For information how to write the actual tests, please refer to the documentation on that site.
## Use of C++
Note that Google Test and therefore any test has to be written in C++, even if the rest of the QMK codebases is written in C. This should hopefully not be a problem even if you don't know any C++, since there's quite clear documentation and examples of the required C++ features, and you can write the rest of the test code almost as you would write normal C. Note that some compiler errors which you might get can look quite scary, but just read carefully what it says, and you should be ok.
One thing to remember, is that you have to append `extern "C"` around all of your C file includes.
## Adding tests for new or existing features
If you want to unit test some feature, then take a look at the existing serial_link tests, in the `quantum/serial_link/tests folder`, and follow the steps below to create a similar structure.
1. If it doesn't already exist, add a test subfolder to the folder containing the feature.
2. Create a `testlist.mk` and a `rules.mk` file in that folder.
3. Include those files from the root folder `testlist.mk`and `build_test.mk` respectively.
4. Add a new name for your testgroup to the `testlist.mk` file. Each group defined there will be a separate executable. And that's how you can support mocking out different parts. Note that it's worth adding some common prefix, just like it's done for the serial_link tests. The reason for that is that the make command allows substring filtering, so this way you can easily run a subset of the tests.
5. Define the source files and required options in the `rules.mk` file.
* `_SRC` for source files
* `_DEFS` for additional defines
* `_INC` for additional include folders
6. Write the tests in a new cpp file inside the test folder you created. That file has to be one of the files included from the `rules.mk` file.
Note how there's several different tests, each mocking out a separate part. Also note that each of them only compiles the very minimum that's needed for the tests. It's recommend that you try to do the same. For a relevant video check out [Matt Hargett "Advanced Unit Testing in C & C++](https://www.youtube.com/watch?v=Wmy6g-aVgZI)
## Running the tests
To run all the tests in the codebase, type `make test`. You can also run test matching a substring by typing `make test-matchingsubstring` Note that the tests are always compiled with the native compiler of your platform, so they are also run like any other program on your computer.
## Debugging the tests
If there are problems with the tests, you can find the executable in the `./build/test` folder. You should be able to run those with GDB or a similar debugger.
## Full Integration tests
It's not yet possible to do a full integration test, where you would compile the whole firmware and define a keymap that you are going to test. However there are plans for doing that, because writing tests that way would probably be easier, at least for people that are not used to unit testing.
In that model you would emulate the input, and expect a certain output from the emulated keyboard.

@ -0,0 +1,13 @@
include $(ROOT_DIR)/quantum/serial_link/tests/testlist.mk
define VALIDATE_TEST_LIST
ifneq ($1,)
ifeq ($$(findstring -,$1),-)
$$(error Test names can't contain '-', but '$1' does)
else
$$(eval $$(call VALIDATE_TEST_LIST,$$(firstword $2),$$(wordlist 2,9999,$2)))
endif
endif
endef
$(eval $(call VALIDATE_TEST_LIST,$(firstword $(TEST_LIST)),$(wordlist 2,9999,$(TEST_LIST))))

@ -90,7 +90,7 @@ CHIBISRC = $(STARTUPSRC) \
$(PORTASM) \ $(PORTASM) \
$(OSALASM) $(OSALASM)
SRC += $(patsubst $(TOP_DIR)/%,%,$(CHIBISRC)) CHIBISRC := $(patsubst $(TOP_DIR)/%,%,$(CHIBISRC))
EXTRAINCDIRS += $(CHIBIOS)/os/license \ EXTRAINCDIRS += $(CHIBIOS)/os/license \
$(STARTUPINC) $(KERNINC) $(PORTINC) $(OSALINC) \ $(STARTUPINC) $(KERNINC) $(PORTINC) $(OSALINC) \
@ -143,14 +143,6 @@ MCUFLAGS = -mcpu=$(MCU)
DEBUG = gdb DEBUG = gdb
# Define ASM defines here
# bootloader definitions may be used in the startup .s file
ifneq ("$(wildcard $(KEYBOARD_PATH)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH)/boards/$(BOARD)/bootloader_defs.h
endif
# List any extra directories to look for libraries here. # List any extra directories to look for libraries here.
EXTRALIBDIRS = $(RULESPATH)/ld EXTRALIBDIRS = $(RULESPATH)/ld

@ -5,7 +5,7 @@ else ifeq ($(PLATFORM),CHIBIOS)
PLATFORM_COMMON_DIR = $(COMMON_DIR)/chibios PLATFORM_COMMON_DIR = $(COMMON_DIR)/chibios
endif endif
SRC += $(COMMON_DIR)/host.c \ TMK_COMMON_SRC += $(COMMON_DIR)/host.c \
$(COMMON_DIR)/keyboard.c \ $(COMMON_DIR)/keyboard.c \
$(COMMON_DIR)/action.c \ $(COMMON_DIR)/action.c \
$(COMMON_DIR)/action_tapping.c \ $(COMMON_DIR)/action_tapping.c \
@ -21,101 +21,89 @@ SRC += $(COMMON_DIR)/host.c \
$(PLATFORM_COMMON_DIR)/bootloader.c \ $(PLATFORM_COMMON_DIR)/bootloader.c \
ifeq ($(PLATFORM),AVR) ifeq ($(PLATFORM),AVR)
SRC += $(PLATFORM_COMMON_DIR)/xprintf.S TMK_COMMON_SRC += $(PLATFORM_COMMON_DIR)/xprintf.S
endif endif
ifeq ($(PLATFORM),CHIBIOS) ifeq ($(PLATFORM),CHIBIOS)
SRC += $(PLATFORM_COMMON_DIR)/printf.c TMK_COMMON_SRC += $(PLATFORM_COMMON_DIR)/printf.c
SRC += $(PLATFORM_COMMON_DIR)/eeprom.c TMK_COMMON_SRC += $(PLATFORM_COMMON_DIR)/eeprom.c
endif endif
# Option modules # Option modules
ifeq ($(strip $(BOOTMAGIC_ENABLE)), yes) ifeq ($(strip $(BOOTMAGIC_ENABLE)), yes)
OPT_DEFS += -DBOOTMAGIC_ENABLE TMK_COMMON_DEFS += -DBOOTMAGIC_ENABLE
SRC += $(COMMON_DIR)/bootmagic.c TMK_COMMON_SRC += $(COMMON_DIR)/bootmagic.c
else else
OPT_DEFS += -DMAGIC_ENABLE TMK_COMMON_DEFS += -DMAGIC_ENABLE
SRC += $(COMMON_DIR)/magic.c TMK_COMMON_SRC += $(COMMON_DIR)/magic.c
endif endif
ifeq ($(strip $(MOUSEKEY_ENABLE)), yes) ifeq ($(strip $(MOUSEKEY_ENABLE)), yes)
SRC += $(COMMON_DIR)/mousekey.c TMK_COMMON_SRC += $(COMMON_DIR)/mousekey.c
OPT_DEFS += -DMOUSEKEY_ENABLE TMK_COMMON_DEFS += -DMOUSEKEY_ENABLE
OPT_DEFS += -DMOUSE_ENABLE TMK_COMMON_DEFS += -DMOUSE_ENABLE
endif endif
ifeq ($(strip $(EXTRAKEY_ENABLE)), yes) ifeq ($(strip $(EXTRAKEY_ENABLE)), yes)
OPT_DEFS += -DEXTRAKEY_ENABLE TMK_COMMON_DEFS += -DEXTRAKEY_ENABLE
endif endif
ifeq ($(strip $(CONSOLE_ENABLE)), yes) ifeq ($(strip $(CONSOLE_ENABLE)), yes)
OPT_DEFS += -DCONSOLE_ENABLE TMK_COMMON_DEFS += -DCONSOLE_ENABLE
else else
OPT_DEFS += -DNO_PRINT TMK_COMMON_DEFS += -DNO_PRINT
OPT_DEFS += -DNO_DEBUG TMK_COMMON_DEFS += -DNO_DEBUG
endif endif
ifeq ($(strip $(COMMAND_ENABLE)), yes) ifeq ($(strip $(COMMAND_ENABLE)), yes)
SRC += $(COMMON_DIR)/command.c TMK_COMMON_SRC += $(COMMON_DIR)/command.c
OPT_DEFS += -DCOMMAND_ENABLE TMK_COMMON_DEFS += -DCOMMAND_ENABLE
endif endif
ifeq ($(strip $(NKRO_ENABLE)), yes) ifeq ($(strip $(NKRO_ENABLE)), yes)
OPT_DEFS += -DNKRO_ENABLE TMK_COMMON_DEFS += -DNKRO_ENABLE
endif endif
ifeq ($(strip $(USB_6KRO_ENABLE)), yes) ifeq ($(strip $(USB_6KRO_ENABLE)), yes)
OPT_DEFS += -DUSB_6KRO_ENABLE TMK_COMMON_DEFS += -DUSB_6KRO_ENABLE
endif endif
ifeq ($(strip $(SLEEP_LED_ENABLE)), yes) ifeq ($(strip $(SLEEP_LED_ENABLE)), yes)
SRC += $(PLATFORM_COMMON_DIR)/sleep_led.c TMK_COMMON_SRC += $(PLATFORM_COMMON_DIR)/sleep_led.c
OPT_DEFS += -DSLEEP_LED_ENABLE TMK_COMMON_DEFS += -DSLEEP_LED_ENABLE
OPT_DEFS += -DNO_SUSPEND_POWER_DOWN TMK_COMMON_DEFS += -DNO_SUSPEND_POWER_DOWN
endif endif
ifeq ($(strip $(BACKLIGHT_ENABLE)), yes) ifeq ($(strip $(BACKLIGHT_ENABLE)), yes)
SRC += $(COMMON_DIR)/backlight.c TMK_COMMON_SRC += $(COMMON_DIR)/backlight.c
OPT_DEFS += -DBACKLIGHT_ENABLE TMK_COMMON_DEFS += -DBACKLIGHT_ENABLE
endif endif
ifeq ($(strip $(BLUETOOTH_ENABLE)), yes) ifeq ($(strip $(BLUETOOTH_ENABLE)), yes)
OPT_DEFS += -DBLUETOOTH_ENABLE TMK_COMMON_DEFS += -DBLUETOOTH_ENABLE
endif endif
ifeq ($(strip $(ONEHAND_ENABLE)), yes) ifeq ($(strip $(ONEHAND_ENABLE)), yes)
OPT_DEFS += -DONEHAND_ENABLE TMK_COMMON_DEFS += -DONEHAND_ENABLE
endif endif
ifeq ($(strip $(KEYMAP_SECTION_ENABLE)), yes) ifeq ($(strip $(KEYMAP_SECTION_ENABLE)), yes)
OPT_DEFS += -DKEYMAP_SECTION_ENABLE TMK_COMMON_DEFS += -DKEYMAP_SECTION_ENABLE
ifeq ($(strip $(MCU)),atmega32u2) ifeq ($(strip $(MCU)),atmega32u2)
EXTRALDFLAGS = -Wl,-L$(TMK_DIR),-Tldscript_keymap_avr35.x TMK_COMMON_LDFLAGS = -Wl,-L$(TMK_DIR),-Tldscript_keymap_avr35.x
else ifeq ($(strip $(MCU)),atmega32u4) else ifeq ($(strip $(MCU)),atmega32u4)
EXTRALDFLAGS = -Wl,-L$(TMK_DIR),-Tldscript_keymap_avr5.x TMK_COMMON_LDFLAGS = -Wl,-L$(TMK_DIR),-Tldscript_keymap_avr5.x
else else
EXTRALDFLAGS = $(error no ldscript for keymap section) TMK_COMMON_LDFLAGS = $(error no ldscript for keymap section)
endif endif
endif endif
ifeq ($(MASTER),right)
OPT_DEFS += -DMASTER_IS_ON_RIGHT
else
ifneq ($(MASTER),left)
$(error MASTER does not have a valid value(left/right))
endif
endif
# Version string
OPT_DEFS += -DVERSION=$(GIT_VERSION)
# Bootloader address # Bootloader address
ifdef STM32_BOOTLOADER_ADDRESS ifdef STM32_BOOTLOADER_ADDRESS
OPT_DEFS += -DSTM32_BOOTLOADER_ADDRESS=$(STM32_BOOTLOADER_ADDRESS) TMK_COMMON_DEFS += -DSTM32_BOOTLOADER_ADDRESS=$(STM32_BOOTLOADER_ADDRESS)
endif endif
# Search Path # Search Path

@ -34,6 +34,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "command.h" #include "command.h"
#include "backlight.h" #include "backlight.h"
#include "quantum.h" #include "quantum.h"
#include "version.h"
#ifdef MOUSEKEY_ENABLE #ifdef MOUSEKEY_ENABLE
#include "mousekey.h" #include "mousekey.h"
@ -180,7 +181,7 @@ static void print_version(void)
print("VID: " STR(VENDOR_ID) "(" STR(MANUFACTURER) ") " print("VID: " STR(VENDOR_ID) "(" STR(MANUFACTURER) ") "
"PID: " STR(PRODUCT_ID) "(" STR(PRODUCT) ") " "PID: " STR(PRODUCT_ID) "(" STR(PRODUCT) ") "
"VER: " STR(DEVICE_VER) "\n"); "VER: " STR(DEVICE_VER) "\n");
print("BUILD: " STR(VERSION) " (" __TIME__ " " __DATE__ ")\n"); print("BUILD: " STR(QMK_VERSION) " (" __TIME__ " " __DATE__ ")\n");
/* build options */ /* build options */
print("OPTIONS:" print("OPTIONS:"

@ -0,0 +1,24 @@
CC = gcc
OBJCOPY =
OBJDUMP =
SIZE =
AR =
NM =
HEX =
EEP =
BIN =
COMPILEFLAGS += -funsigned-char
COMPILEFLAGS += -funsigned-bitfields
COMPILEFLAGS += -ffunction-sections
COMPILEFLAGS += -fdata-sections
COMPILEFLAGS += -fshort-enums
CFLAGS += $(COMPILEFLAGS)
CFLAGS += -fno-inline-small-functions
CFLAGS += -fno-strict-aliasing
CPPFLAGS += $(COMPILEFLAGS)
CPPFLAGS += -fno-exceptions
CPPFLAGS += -std=gnu++11

@ -21,10 +21,23 @@ VPATH_SRC := $(VPATH)
vpath %.c $(VPATH_SRC) vpath %.c $(VPATH_SRC)
vpath %.h $(VPATH_SRC) vpath %.h $(VPATH_SRC)
vpath %.cpp $(VPATH_SRC) vpath %.cpp $(VPATH_SRC)
vpath %.cc $(VPATH_SRC)
vpath %.hpp $(VPATH_SRC) vpath %.hpp $(VPATH_SRC)
vpath %.S $(VPATH_SRC) vpath %.S $(VPATH_SRC)
VPATH := VPATH :=
# Convert all SRC to OBJ
define OBJ_FROM_SRC
$(patsubst %.c,$1/%.o,$(patsubst %.cpp,$1/%.o,$(patsubst %.cc,$1/%.o,$(patsubst %.S,$1/%.o,$($1_SRC)))))
endef
$(foreach OUTPUT,$(OUTPUTS),$(eval $(OUTPUT)_OBJ +=$(call OBJ_FROM_SRC,$(OUTPUT))))
# Define a list of all objects
OBJ := $(foreach OUTPUT,$(OUTPUTS),$($(OUTPUT)_OBJ))
MASTER_OUTPUT := $(firstword $(OUTPUTS))
# Output format. (can be srec, ihex, binary) # Output format. (can be srec, ihex, binary)
FORMAT = ihex FORMAT = ihex
@ -34,50 +47,8 @@ FORMAT = ihex
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.) # (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s OPT = s
COLOR ?= true
ifeq ($(COLOR),true)
NO_COLOR=\033[0m
OK_COLOR=\033[32;01m
ERROR_COLOR=\033[31;01m
WARN_COLOR=\033[33;01m
BLUE=\033[0;34m
BOLD=\033[1m
endif
AUTOGEN ?= false AUTOGEN ?= false
ifneq ($(shell awk --version 2>/dev/null),)
AWK=awk
else
AWK=cat && test
endif
OK_STRING=$(OK_COLOR)[OK]$(NO_COLOR)\n
ERROR_STRING=$(ERROR_COLOR)[ERRORS]$(NO_COLOR)\n
WARN_STRING=$(WARN_COLOR)[WARNINGS]$(NO_COLOR)\n
ifndef $(SILENT)
SILENT = false
endif
TAB_LOG = printf "\n$$LOG\n\n" | $(AWK) '{ sub(/^/," | "); print }'
TAB_LOG_PLAIN = printf "$$LOG\n"
AWK_STATUS = $(AWK) '{ printf " %-10s\n", $$1; }'
AWK_CMD = $(AWK) '{ printf "%-99s", $$0; }'
PRINT_ERROR = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG) && exit 1
PRINT_WARNING = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG)
PRINT_ERROR_PLAIN = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN) && exit 1
PRINT_WARNING_PLAIN = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN)
PRINT_OK = $(SILENT) || printf " $(OK_STRING)" | $(AWK_STATUS)
BUILD_CMD = LOG=$$($(CMD) 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING); else $(PRINT_OK); fi;
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS += $(subst :, ,$(VPATH_SRC))
# Compiler flag to set the C Standard level. # Compiler flag to set the C Standard level.
# c89 = "ANSI" C # c89 = "ANSI" C
@ -88,17 +59,18 @@ CSTANDARD = -std=gnu99
# Place -D or -U options here for C sources # Place -D or -U options here for C sources
CDEFS += $(OPT_DEFS) #CDEFS +=
# Place -D or -U options here for ASM sources # Place -D or -U options here for ASM sources
ADEFS += $(OPT_DEFS) #ADEFS +=
# Place -D or -U options here for C++ sources # Place -D or -U options here for C++ sources
#CPPDEFS += -D__STDC_LIMIT_MACROS #CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS #CPPDEFS += -D__STDC_CONSTANT_MACROS
CPPDEFS += $(OPT_DEFS) #CPPDEFS +=
@ -126,11 +98,7 @@ CFLAGS += -Wstrict-prototypes
#CFLAGS += -Wunreachable-code #CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare #CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(@:%.o=%.lst) CFLAGS += -Wa,-adhlns=$(@:%.o=%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD) CFLAGS += $(CSTANDARD)
ifdef CONFIG_H
CFLAGS += -include $(CONFIG_H)
endif
#---------------- Compiler Options C++ ---------------- #---------------- Compiler Options C++ ----------------
@ -153,12 +121,7 @@ CPPFLAGS += -Wundef
#CPPFLAGS += -Wunreachable-code #CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare #CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(@:%.o=%.lst) CPPFLAGS += -Wa,-adhlns=$(@:%.o=%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD) #CPPFLAGS += $(CSTANDARD)
ifdef CONFIG_H
CPPFLAGS += -include $(CONFIG_H)
endif
#---------------- Assembler Options ---------------- #---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler. # -Wa,...: tell GCC to pass this to the assembler.
@ -169,11 +132,8 @@ endif
# files -- see avr-libc docs [FIXME: not yet described there] # files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex # -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input. # dump that will be displayed for a given single line of source input.
ASFLAGS += $(ADEFS) -Wa,-adhlns=$(@:%.o=%.lst),-gstabs,--listing-cont-lines=100 ASFLAGS += $(ADEFS)
ASFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS)) ASFLAGS += -Wa,-adhlns=$(@:%.o=%.lst),-gstabs,--listing-cont-lines=100
ifdef CONFIG_H
ASFLAGS += -include $(CONFIG_H)
endif
#---------------- Library Options ---------------- #---------------- Library Options ----------------
# Minimalistic printf version # Minimalistic printf version
@ -201,6 +161,7 @@ SCANF_LIB =
MATH_LIB = -lm MATH_LIB = -lm
CREATE_MAP ?= yes
#---------------- Linker Options ---------------- #---------------- Linker Options ----------------
@ -211,7 +172,10 @@ MATH_LIB = -lm
# Comennt out "--relax" option to avoid a error such: # Comennt out "--relax" option to avoid a error such:
# (.vectors+0x30): relocation truncated to fit: R_AVR_13_PCREL against symbol `__vector_12' # (.vectors+0x30): relocation truncated to fit: R_AVR_13_PCREL against symbol `__vector_12'
# #
LDFLAGS += -Wl,-Map=$(BUILD_DIR)/$(TARGET).map,--cref
ifeq ($(CREATE_MAP),yes)
LDFLAGS += -Wl,-Map=$(BUILD_DIR)/$(TARGET).map,--cref
endif
#LDFLAGS += -Wl,--relax #LDFLAGS += -Wl,--relax
LDFLAGS += $(EXTMEMOPTS) LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS)) LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
@ -228,48 +192,6 @@ COPY = cp
WINSHELL = cmd WINSHELL = cmd
SECHO = $(SILENT) || echo SECHO = $(SILENT) || echo
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_BIN = Creating binary load file for Flash:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_COMPILING_CPP = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
MSG_SUBMODULE_DIRTY = $(WARN_COLOR)WARNING:$(NO_COLOR)\n \
Some git sub-modules are out of date or modified, please consider runnning:$(BOLD)\n\
git submodule sync --recursive\n\
git submodule update --init --recursive$(NO_COLOR)\n\n\
You can ignore this warning if you are not compiling any ChibiOS keyboards,\n\
or if you have modified the ChibiOS libraries yourself. \n\n
# Define all object files.
OBJ = $(patsubst %.c,$(OBJDIR)/%.o,$(patsubst %.cpp,$(OBJDIR)/%.o,$(patsubst %.S,$(OBJDIR)/%.o,$(SRC))))
# The files in the lib folder are shared between all keymaps, so generate that folder name by removing
# the keymap from the name
KBOBJDIR=$(subst _$(KEYMAP),,$(OBJDIR))
# And fixup the object files to match
LIBOBJ = $(foreach v,$(OBJ),$(if $(findstring /lib/,$v),$v))
NONLIBOBJ := $(filter-out $(LIBOBJ),$(OBJ))
LIBOBJ := $(subst _$(KEYMAP)/,/,$(LIBOBJ))
OBJ := $(LIBOBJ) $(NONLIBOBJ)
# Define all listing files.
LST = $(patsubst %.c,$(OBJDIR)/%.lst,$(patsubst %.cpp,$(OBJDIR)/%.lst,$(patsubst %.S,$(OBJDIR)/%.lst,$(SRC))))
# Compiler flags to generate dependency files. # Compiler flags to generate dependency files.
#GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d #GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
@ -285,14 +207,6 @@ ALL_ASFLAGS = $(MCUFLAGS) -x assembler-with-cpp $(ASFLAGS) $(EXTRAFLAGS)
MOVE_DEP = mv -f $(patsubst %.o,%.td,$@) $(patsubst %.o,%.d,$@) MOVE_DEP = mv -f $(patsubst %.o,%.td,$@) $(patsubst %.o,%.d,$@)
# Default target.
all: build sizeafter
# Change the build target to build a HEX file or a library.
build: elf hex
#build: elf hex eep lss sym
#build: lib
elf: $(BUILD_DIR)/$(TARGET).elf elf: $(BUILD_DIR)/$(TARGET).elf
hex: $(BUILD_DIR)/$(TARGET).hex hex: $(BUILD_DIR)/$(TARGET).hex
@ -302,15 +216,6 @@ sym: $(BUILD_DIR)/$(TARGET).sym
LIBNAME=lib$(TARGET).a LIBNAME=lib$(TARGET).a
lib: $(LIBNAME) lib: $(LIBNAME)
check_submodule:
git submodule status --recursive | \
while IFS= read -r x; do \
case "$$x" in \
\ *) ;; \
*) printf "$(MSG_SUBMODULE_DIRTY)";break;; \
esac \
done
# Display size of file. # Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
#ELFSIZE = $(SIZE) --mcu=$(MCU) --format=avr $(TARGET).elf #ELFSIZE = $(SIZE) --mcu=$(MCU) --format=avr $(TARGET).elf
@ -364,68 +269,76 @@ gccversion :
$(eval CMD=$(BIN) $< $@ || exit 0) $(eval CMD=$(BIN) $< $@ || exit 0)
@$(BUILD_CMD) @$(BUILD_CMD)
# Create library from object files. BEGIN = gccversion sizebefore
.SECONDARY : $(BUILD_DIR)/$(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@$(SILENT) || printf "$(MSG_CREATING_LIBRARY) $@" | $(AWK_CMD)
$(eval CMD=$(AR) $@ $(OBJ) )
@$(BUILD_CMD)
BEGIN = gccversion check_submodule sizebefore
# Link: create ELF output file from object files. # Link: create ELF output file from object files.
.SECONDARY : $(BUILD_DIR)/$(TARGET).elf .SECONDARY : $(BUILD_DIR)/$(TARGET).elf
.PRECIOUS : $(OBJ) .PRECIOUS : $(OBJ)
# Note the obj.txt depeendency is there to force linking if a source file is deleted # Note the obj.txt depeendency is there to force linking if a source file is deleted
%.elf: $(OBJ) $(OBJDIR)/cflags.txt $(OBJDIR)/ldflags.txt $(OBJDIR)/obj.txt | $(BEGIN) %.elf: $(OBJ) $(MASTER_OUTPUT)/cflags.txt $(MASTER_OUTPUT)/ldflags.txt $(MASTER_OUTPUT)/obj.txt | $(BEGIN)
@$(SILENT) || printf "$(MSG_LINKING) $@" | $(AWK_CMD) @$(SILENT) || printf "$(MSG_LINKING) $@" | $(AWK_CMD)
$(eval CMD=$(CC) $(ALL_CFLAGS) $(filter-out %.txt,$^) --output $@ $(LDFLAGS)) $(eval CMD=$(CC) $(ALL_CFLAGS) $(filter-out %.txt,$^) --output $@ $(LDFLAGS))
@$(BUILD_CMD) @$(BUILD_CMD)
define GEN_OBJRULE define GEN_OBJRULE
$1_INCFLAGS := $$(patsubst %,-I%,$$($1_INC))
ifdef $1_CONFIG
$1_CONFIG_FLAGS += -include $$($1_CONFIG)
endif
$1_CFLAGS = $$(ALL_CFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS)
$1_CPPFLAGS= $$(ALL_CPPFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS)
$1_ASFLAGS= $$(ALL_ASFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS)
# Compile: create object files from C source files. # Compile: create object files from C source files.
$1/%.o : %.c $1/%.d $1/cflags.txt $1/compiler.txt | $(BEGIN) $1/%.o : %.c $1/%.d $1/cflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D) @mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING) $$<" | $$(AWK_CMD) @$$(SILENT) || printf "$$(MSG_COMPILING) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$(ALL_CFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP)) $$(eval CMD := $$(CC) -c $$($1_CFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$$(BUILD_CMD) @$$(BUILD_CMD)
# Compile: create object files from C++ source files. # Compile: create object files from C++ source files.
$1/%.o : %.cpp $1/%.d $1/cppflags.txt $1/compiler.txt | $(BEGIN) $1/%.o : %.cpp $1/%.d $1/cppflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D) @mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING_CPP) $$<" | $$(AWK_CMD) @$$(SILENT) || printf "$$(MSG_COMPILING_CPP) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$(ALL_CPPFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP)) $$(eval CMD=$$(CC) -c $$($1_CPPFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$(BUILD_CMD) @$$(BUILD_CMD)
$1/%.o : %.cc $1/%.d $1/cppflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING_CPP) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$($1_CPPFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$$(BUILD_CMD)
# Assemble: create object files from assembler source files. # Assemble: create object files from assembler source files.
$1/%.o : %.S $1/asflags.txt $1/compiler.txt | $(BEGIN) $1/%.o : %.S $1/asflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D) @mkdir -p $$(@D)
@$(SILENT) || printf "$$(MSG_ASSEMBLING) $$<" | $$(AWK_CMD) @$(SILENT) || printf "$$(MSG_ASSEMBLING) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$(ALL_ASFLAGS) $$< -o $$@) $$(eval CMD=$$(CC) -c $$($1_ASFLAGS) $$< -o $$@)
@$$(BUILD_CMD) @$$(BUILD_CMD)
$1/force: $1/force:
$1/cflags.txt: $1/force $1/cflags.txt: $1/force
echo '$$(ALL_CFLAGS)' | cmp -s - $$@ || echo '$$(ALL_CFLAGS)' > $$@ echo '$$($1_CFLAGS)' | cmp -s - $$@ || echo '$$($1_CFLAGS)' > $$@
$1/cppflags.txt: $1/force $1/cppflags.txt: $1/force
echo '$$(ALL_CPPFLAGS)' | cmp -s - $$@ || echo '$$(ALL_CPPFLAGS)' > $$@ echo '$$($1_CPPFLAGS)' | cmp -s - $$@ || echo '$$($1_CPPFLAGS)' > $$@
$1/asflags.txt: $1/force $1/asflags.txt: $1/force
echo '$$(ALL_ASFLAGS)' | cmp -s - $$@ || echo '$$(ALL_ASFLAGS)' > $$@ echo '$$($1_ASFLAGS)' | cmp -s - $$@ || echo '$$($1_ASFLAGS)' > $$@
$1/ldflags.txt: $1/force
echo '$$(LDFLAGS)' | cmp -s - $$@ || echo '$$(LDFLAGS)' > $$@
$1/obj.txt: $1/force
echo '$$(OBJ)' | cmp -s - $$@ || echo '$$(OBJ)' > $$@
$1/compiler.txt: $1/force $1/compiler.txt: $1/force
$$(CC) --version | cmp -s - $$@ || $$(CC) --version > $$@ $$(CC) --version | cmp -s - $$@ || $$(CC) --version > $$@
endef endef
$(MASTER_OUTPUT)/obj.txt: $(MASTER_OUTPUT)/force
echo '$(OBJ)' | cmp -s - $$@ || echo '$(OBJ)' > $$@
$(MASTER_OUTPUT)/ldflags.txt: $(MASTER_OUTPUT)/force
echo '$(LDFLAGS)' | cmp -s - $$@ || echo '$(LDFLAGS)' > $$@
# We have to use static rules for the .d files for some reason # We have to use static rules for the .d files for some reason
DEPS = $(patsubst %.o,%.d,$(OBJ)) DEPS = $(patsubst %.o,%.d,$(OBJ))
# Keep the .d files # Keep the .d files
@ -433,22 +346,8 @@ DEPS = $(patsubst %.o,%.d,$(OBJ))
# Empty rule to force recompilation if the .d file is missing # Empty rule to force recompilation if the .d file is missing
$(DEPS): $(DEPS):
# Since the object files could be in two different folders, generate
# separate rules for them, rather than having too generic rules
$(eval $(call GEN_OBJRULE,$(OBJDIR)))
$(eval $(call GEN_OBJRULE,$(KBOBJDIR)))
# Compile: create assembler files from C source files. $(foreach OUTPUT,$(OUTPUTS),$(eval $(call GEN_OBJRULE,$(OUTPUT))))
%.s : %.c | $(BEGIN)
@$(SILENT) || printf "$(MSG_ASSEMBLING) $<" | $(AWK_CMD)
$(eval CMD=$(CC) -S $(ALL_CFLAGS) $< -o $@)
@$(BUILD_CMD)
# Compile: create assembler files from C++ source files.
%.s : %.cpp | $(BEGIN)
@$(SILENT) || printf "$(MSG_ASSEMBLING) $<" | $(AWK_CMD)
$(eval CMD=$(CC) -S $(ALL_CPPFLAGS) $< -o $@)
@$(BUILD_CMD)
# Create preprocessed source for use in sending a bug report. # Create preprocessed source for use in sending a bug report.
%.i : %.c | $(BEGIN) %.i : %.c | $(BEGIN)
@ -456,71 +355,19 @@ $(eval $(call GEN_OBJRULE,$(KBOBJDIR)))
# Target: clean project. # Target: clean project.
clean: clean:
$(REMOVE) -r $(OBJDIR) 2>/dev/null $(foreach OUTPUT,$(OUTPUTS), $(REMOVE) -r $(OUTPUT) 2>/dev/null)
$(REMOVE) -r $(KBOBJDIR) 2>/dev/null
$(REMOVE) $(BUILD_DIR)/$(TARGET).* $(REMOVE) $(BUILD_DIR)/$(TARGET).*
show_path: show_path:
@echo VPATH=$(VPATH) @echo VPATH=$(VPATH)
@echo SRC=$(SRC) @echo SRC=$(SRC)
@echo OBJ=$(OBJ)
SUBDIRS := $(filter-out %/util/ %/doc/ %/keymaps/ %/old_keymap_files/,$(dir $(wildcard $(TOP_DIR)/keyboards/**/*/Makefile)))
SUBDIRS := $(SUBDIRS) $(dir $(wildcard $(TOP_DIR)/keyboards/*/.))
SUBDIRS := $(sort $(SUBDIRS))
# $(error $(SUBDIRS))
all-keyboards-defaults-%:
@for x in $(SUBDIRS) ; do \
printf "Compiling with default: $$x" | $(AWK_CMD); \
LOG=$$($(MAKE) -C $$x $(subst all-keyboards-defaults-,,$@) VERBOSE=$(VERBOSE) COLOR=$(COLOR) SILENT=true 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR_PLAIN); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING_PLAIN); else $(PRINT_OK); fi; \
done
all-keyboards-defaults: all-keyboards-defaults-all
KEYBOARDS := $(SUBDIRS:$(TOP_DIR)/keyboards/%/=/keyboards/%)
all-keyboards-all: $(addsuffix -all,$(KEYBOARDS))
all-keyboards-clean: $(addsuffix -clean,$(KEYBOARDS))
all-keyboards: all-keyboards-all
define make_keyboard
$(eval KEYBOARD=$(patsubst /keyboards/%,%,$1))
$(eval SUBPROJECT=$(lastword $(subst /, ,$(KEYBOARD))))
$(eval KEYBOARD=$(firstword $(subst /, ,$(KEYBOARD))))
$(eval KEYMAPS=$(notdir $(patsubst %/.,%,$(wildcard $(TOP_DIR)/keyboards/$(KEYBOARD)/keymaps/*/.))))
$(eval KEYMAPS+=$(notdir $(patsubst %/.,%,$(wildcard $(TOP_DIR)/keyboards/$(KEYBOARD)/$(SUBPROJECT)/keymaps/*/.))))
@for x in $(KEYMAPS) ; do \
printf "Compiling $(BOLD)$(KEYBOARD)/$(SUBPROJECT)$(NO_COLOR) with $(BOLD)$$x$(NO_COLOR)" | $(AWK) '{ printf "%-118s", $$0; }'; \
LOG=$$($(MAKE) -C $(TOP_DIR)$1 $2 keymap=$$x VERBOSE=$(VERBOSE) COLOR=$(COLOR) SILENT=true 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR_PLAIN); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING_PLAIN); else $(PRINT_OK); fi; \
done
endef
define make_keyboard_helper
# Just remove the -all and so on from the first argument and pass it forward
$(call make_keyboard,$(subst -$2,,$1),$2)
endef
/keyboards/%-all:
$(call make_keyboard_helper,$@,all)
/keyboards/%-clean:
$(call make_keyboard_helper,$@,clean)
/keyboards/%:
$(call make_keyboard_helper,$@,all)
all-keymaps-%:
$(eval MAKECONFIG=$(call get_target,all-keymaps,$@))
$(eval KEYMAPS=$(notdir $(patsubst %/.,%,$(wildcard $(TOP_DIR)/keyboards/$(KEYBOARD)/keymaps/*/.))))
@for x in $(KEYMAPS) ; do \
printf "Compiling $(BOLD)$(KEYBOARD)$(NO_COLOR) with $(BOLD)$$x$(NO_COLOR)" | $(AWK) '{ printf "%-118s", $$0; }'; \
LOG=$$($(MAKE) $(subst all-keymaps-,,$@) keyboard=$(KEYBOARD) keymap=$$x VERBOSE=$(VERBOSE) COLOR=$(COLOR) SILENT=true 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR_PLAIN); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING_PLAIN); else $(PRINT_OK); fi; \
done
all-keymaps: all-keymaps-all
# Create build directory # Create build directory
$(shell mkdir $(BUILD_DIR) 2>/dev/null) $(shell mkdir -p $(BUILD_DIR) 2>/dev/null)
# Create object files directory # Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null) $(eval $(foreach OUTPUT,$(OUTPUTS),$(shell mkdir -p $(OUTPUT) 2>/dev/null)))
$(shell mkdir $(KBOBJDIR) 2>/dev/null)
# Include the dependency files. # Include the dependency files.
-include $(patsubst %.o,%.d,$(OBJ)) -include $(patsubst %.o,%.d,$(OBJ))
@ -528,8 +375,6 @@ $(shell mkdir $(KBOBJDIR) 2>/dev/null)
# Listing of phony targets. # Listing of phony targets.
.PHONY : all finish sizebefore sizeafter gccversion \ .PHONY : all finish sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff check_submodule \ build elf hex eep lss sym coff extcoff \
clean clean_list debug gdb-config show_path \ clean clean_list debug gdb-config show_path \
program teensy dfu flip dfu-ee flip-ee dfu-start \ program teensy dfu flip dfu-ee flip-ee dfu-start
all-keyboards-defaults all-keyboards all-keymaps \
all-keyboards-defaults-% all-keyboards-% all-keymaps-%

@ -20,7 +20,8 @@ if [[ -n "$(type -P pacman )" ]]; then
arm-none-eabi-gcc \ arm-none-eabi-gcc \
arm-none-eabi-binutils \ arm-none-eabi-binutils \
arm-none-eabi-newlib \ arm-none-eabi-newlib \
git git \
diffutils
elif [[ -n "$(type -P apt-get)" ]]; then elif [[ -n "$(type -P apt-get)" ]]; then
# Debian and derivatives # Debian and derivatives
@ -47,7 +48,8 @@ elif [[ -n "$(type -P apt-get)" ]]; then
gcc-arm-none-eabi \ gcc-arm-none-eabi \
binutils-arm-none-eabi \ binutils-arm-none-eabi \
libnewlib-arm-none-eabi \ libnewlib-arm-none-eabi \
git git \
diffutils
elif [[ -n "$(type -P yum)" ]]; then elif [[ -n "$(type -P yum)" ]]; then
# Fedora, CentOS or RHEL and derivatives # Fedora, CentOS or RHEL and derivatives
@ -69,7 +71,8 @@ elif [[ -n "$(type -P yum)" ]]; then
gcc-arm-none-eabi \ gcc-arm-none-eabi \
binutils-arm-none-eabi \ binutils-arm-none-eabi \
libnewlib-arm-none-eabi \ libnewlib-arm-none-eabi \
git git \
diffutils
# The listed eabi pacackes do unfortunately not exist for CentOS, # The listed eabi pacackes do unfortunately not exist for CentOS,
# But at least in Fedora they do, so try to install them anyway # But at least in Fedora they do, so try to install them anyway
# TODO: Build them from sources, if the installation fails # TODO: Build them from sources, if the installation fails
@ -85,7 +88,8 @@ elif [[ -n "$(type -P zypper)" ]]; then
patch \ patch \
wget \ wget \
dfu-programmer \ dfu-programmer \
git git \
diffutils
# TODO: The avr and eabi tools are not available as default packages, so we need # TODO: The avr and eabi tools are not available as default packages, so we need
# another way to install them # another way to install them

@ -7,7 +7,7 @@ rev=$(git rev-parse --short HEAD)
git config --global user.name "Travis CI" git config --global user.name "Travis CI"
git config --global user.email "jack.humb+travis.ci@gmail.com" git config --global user.email "jack.humb+travis.ci@gmail.com"
make all-keymaps keyboard=ergodox/ez AUTOGEN=true make ergodox-ez AUTOGEN=true
find . -name ".build" | xargs rm -rf find . -name ".build" | xargs rm -rf
cd .. cd ..

Loading…
Cancel
Save