Porting updates for the UC3B architecture - get UC3B partially enumerating using a modified mouse demo on the EVK1101. Implement a software FIFO for the endpoint banks; datasheet hints that this can be done through hardware as on the AVR8 architecture, but the correct method to do this not discovered yet.

pull/1469/head
Dean Camera 14 years ago
parent 33a81bffb9
commit b763c3f33e

@ -133,6 +133,15 @@
* \param[in] Func Name of the function which the given function name should alias. * \param[in] Func Name of the function which the given function name should alias.
*/ */
#define ATTR_ALIAS(Func) __attribute__ ((alias( #Func ))) #define ATTR_ALIAS(Func) __attribute__ ((alias( #Func )))
/** Marks a variable or struct element for packing into the smallest space available. */
#define ATTR_PACKED __attribute__ ((packed))
/** Indicates the minimum alignment in bytes for a variable or struct element.
*
* \param[in] Bytes Minimum number of bytes the item should be aligned to.
*/
#define ATTR_ALIGNED(Bytes) __attribute__ ((aligned(Bytes)))
#endif #endif
/** @} */ /** @} */

@ -87,15 +87,50 @@
#include <util/delay.h> #include <util/delay.h>
typedef uint8_t uint_reg_t; typedef uint8_t uint_reg_t;
#define le16_to_cpu(x) x
#define le32_to_cpu(x) x
#define be16_to_cpu(x) SwapEndian_16(x)
#define be32_to_cpu(x) SwapEndian_32(x)
#define cpu_to_le16(x) x
#define cpu_to_le32(x) x
#define cpu_to_be16(x) SwapEndian_16(x)
#define cpu_to_be32(x) SwapEndian_32(x)
#define LE16_TO_CPU(x) x
#define LE32_TO_CPU(x) x
#define BE16_TO_CPU(x) SWAPENDIAN_16(x)
#define BE32_TO_CPU(x) SWAPENDIAN_32(x)
#define CPU_TO_LE16(x) x
#define CPU_TO_LE32(x) x
#define CPU_TO_BE16(x) SWAPENDIAN_16(x)
#define CPU_TO_BE32(x) SWAPENDIAN_32(x)
#elif (ARCH == ARCH_UC3B) #elif (ARCH == ARCH_UC3B)
#include <avr32/io.h> #include <avr32/io.h>
typedef uint32_t uint_reg_t; typedef uint32_t uint_reg_t;
// TODO // TODO
#define le16_to_cpu(x) SwapEndian_16(x)
#define le32_to_cpu(x) SwapEndian_32(x)
#define be16_to_cpu(x) x
#define be32_to_cpu(x) x
#define cpu_to_le16(x) SwapEndian_16(x)
#define cpu_to_le32(x) SwapEndian_32(x)
#define cpu_to_be16(x) x
#define cpu_to_be32(x) x
#define LE16_TO_CPU(x) SWAPENDIAN_16(x)
#define LE32_TO_CPU(x) SWAPENDIAN_32(x)
#define BE16_TO_CPU(x) x
#define BE32_TO_CPU(x) x
#define CPU_TO_LE16(x) SWAPENDIAN_16(x)
#define CPU_TO_LE32(x) SWAPENDIAN_32(x)
#define CPU_TO_BE16(x) x
#define CPU_TO_BE32(x) x
#define ISR(Name) void Name (void) __attribute__((__interrupt__)); void Name (void)
#define EEMEM #define EEMEM
#define PROGMEM const #define PROGMEM const
#define ISR(Name) void Name (void) __attribute__((__interrupt__)); void Name (void)
#define ATOMIC_BLOCK(x) if (1) #define ATOMIC_BLOCK(x) if (1)
#define ATOMIC_RESTORESTATE #define ATOMIC_RESTORESTATE
#define pgm_read_byte(x) *x #define pgm_read_byte(x) *x
@ -105,10 +140,6 @@
#define _delay_ms(x) #define _delay_ms(x)
#define memcmp_P(...) memcmp(__VA_ARGS__) #define memcmp_P(...) memcmp(__VA_ARGS__)
#define memcpy_P(...) memcpy(__VA_ARGS__) #define memcpy_P(...) memcpy(__VA_ARGS__)
#define cpu_irq_enable() do { asm volatile("" ::: "memory"); __builtin_csrf(AVR32_SR_GM_OFFSET); } while (0)
#define cpu_irq_disable() do { __builtin_ssrf(AVR32_SR_GM_OFFSET); asm volatile("" ::: "memory"); } while (0)
#warning The UC3B architecture support is currently experimental and incomplete!
#endif #endif
/* Public Interface - May be used in end-application: */ /* Public Interface - May be used in end-application: */

@ -60,8 +60,6 @@ void USB_Init(
USB_Options = Options; USB_Options = Options;
#endif #endif
USB_INT_RegisterHandlers();
if (!(USB_Options & USB_OPT_REG_DISABLED)) if (!(USB_Options & USB_OPT_REG_DISABLED))
USB_REG_On(); USB_REG_On();
else else

@ -84,11 +84,6 @@
}; };
/* Inline Functions: */ /* Inline Functions: */
static inline void USB_INT_RegisterHandlers(void)
{
// Not required for AVR8
}
static inline void USB_INT_Enable(const uint8_t Interrupt) ATTR_ALWAYS_INLINE; static inline void USB_INT_Enable(const uint8_t Interrupt) ATTR_ALWAYS_INLINE;
static inline void USB_INT_Enable(const uint8_t Interrupt) static inline void USB_INT_Enable(const uint8_t Interrupt)
{ {

@ -48,10 +48,11 @@ bool USB_RemoteWakeupEnabled;
void USB_Device_ProcessControlRequest(void) void USB_Device_ProcessControlRequest(void)
{ {
uint8_t* RequestHeader = (uint8_t*)&USB_ControlRequest; USB_ControlRequest.bmRequestType = Endpoint_Read_Byte();
USB_ControlRequest.bRequest = Endpoint_Read_Byte();
for (uint8_t RequestHeaderByte = 0; RequestHeaderByte < sizeof(USB_Request_Header_t); RequestHeaderByte++) USB_ControlRequest.wValue = le16_to_cpu(Endpoint_Read_Word_LE());
*(RequestHeader++) = Endpoint_Read_Byte(); USB_ControlRequest.wIndex = le16_to_cpu(Endpoint_Read_Word_LE());
USB_ControlRequest.wLength = le16_to_cpu(Endpoint_Read_Word_LE());
EVENT_USB_Device_ControlRequest(); EVENT_USB_Device_ControlRequest();

@ -88,13 +88,13 @@
* Decimal format for descriptor fields requiring BCD encoding, such as the USB version number in the * Decimal format for descriptor fields requiring BCD encoding, such as the USB version number in the
* standard device descriptor. * standard device descriptor.
*/ */
#define VERSION_BCD(x) ((((VERSION_TENS(x) << 4) | VERSION_ONES(x)) << 8) | \ #define VERSION_BCD(x) CPU_TO_LE16((((VERSION_TENS(x) << 4) | VERSION_ONES(x)) << 8) | \
((VERSION_TENTHS(x) << 4) | VERSION_HUNDREDTHS(x))) ((VERSION_TENTHS(x) << 4) | VERSION_HUNDREDTHS(x)))
/** String language ID for the English language. Should be used in \ref USB_Descriptor_String_t descriptors /** String language ID for the English language. Should be used in \ref USB_Descriptor_String_t descriptors
* to indicate that the English language is supported by the device in its string descriptors. * to indicate that the English language is supported by the device in its string descriptors.
*/ */
#define LANGUAGE_ID_ENG 0x0409 #define LANGUAGE_ID_ENG CPU_TO_LE16(0x0409)
/** \name Endpoint Address Direction Masks */ /** \name Endpoint Address Direction Masks */
//@{ //@{

@ -39,17 +39,18 @@
uint8_t USB_ControlEndpointSize = ENDPOINT_CONTROLEP_DEFAULT_SIZE; uint8_t USB_ControlEndpointSize = ENDPOINT_CONTROLEP_DEFAULT_SIZE;
#endif #endif
uint8_t USB_SelectedEndpoint = ENDPOINT_CONTROLEP; volatile uint8_t USB_SelectedEndpoint = ENDPOINT_CONTROLEP;
volatile void* USB_EndpointFIFOPos[ENDPOINT_TOTAL_ENDPOINTS];
bool Endpoint_ConfigureEndpoint_Prv(const uint8_t Number, bool Endpoint_ConfigureEndpoint_Prv(const uint8_t Number,
const uint32_t UECFGXData) const uint32_t UECFG0Data)
{ {
Endpoint_SelectEndpoint(Number); Endpoint_SelectEndpoint(Number);
Endpoint_EnableEndpoint(); Endpoint_EnableEndpoint();
((uint32_t*)AVR32_USBB_UECFG0)[USB_SelectedEndpoint] = 0; (&AVR32_USBB.uecfg0)[Number] = 0;
((uint32_t*)AVR32_USBB_UECFG0)[USB_SelectedEndpoint] = UECFGXData; (&AVR32_USBB.uecfg0)[Number] = UECFG0Data;
USB_EndpointFIFOPos[Number] = &AVR32_USBB_SLAVE[Number * 0x10000];
return Endpoint_IsConfigured(); return Endpoint_IsConfigured();
} }
@ -59,8 +60,9 @@ void Endpoint_ClearEndpoints(void)
for (uint8_t EPNum = 0; EPNum < ENDPOINT_TOTAL_ENDPOINTS; EPNum++) for (uint8_t EPNum = 0; EPNum < ENDPOINT_TOTAL_ENDPOINTS; EPNum++)
{ {
Endpoint_SelectEndpoint(EPNum); Endpoint_SelectEndpoint(EPNum);
((uint32_t*)AVR32_USBB_UECFG0)[USB_SelectedEndpoint] = 0; (&AVR32_USBB.uecfg0)[EPNum] = 0;
((uint32_t*)AVR32_USBB_UECON0CLR)[USB_SelectedEndpoint] = 0xFFFFFFFF; (&AVR32_USBB.uecon0clr)[EPNum] = 0xFFFFFFFF;
USB_EndpointFIFOPos[EPNum] = &AVR32_USBB_SLAVE[EPNum * 0x10000];
Endpoint_DisableEndpoint(); Endpoint_DisableEndpoint();
} }
} }

@ -131,7 +131,8 @@
const uint32_t UECFGXData); const uint32_t UECFGXData);
/* External Variables: */ /* External Variables: */
extern uint8_t USB_SelectedEndpoint; extern volatile uint8_t USB_SelectedEndpoint;
extern volatile void* USB_EndpointFIFOPos[];
#endif #endif
/* Public Interface - May be used in end-application: */ /* Public Interface - May be used in end-application: */
@ -296,7 +297,7 @@
static inline uint16_t Endpoint_BytesInEndpoint(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint16_t Endpoint_BytesInEndpoint(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint16_t Endpoint_BytesInEndpoint(void) static inline uint16_t Endpoint_BytesInEndpoint(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].byct; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].byct;
} }
/** Get the endpoint address of the currently selected endpoint. This is typically used to save /** Get the endpoint address of the currently selected endpoint. This is typically used to save
@ -336,6 +337,7 @@
{ {
AVR32_USBB.uerst |= (AVR32_USBB_EPRST0_MASK << EndpointNumber); AVR32_USBB.uerst |= (AVR32_USBB_EPRST0_MASK << EndpointNumber);
AVR32_USBB.uerst &= ~(AVR32_USBB_EPRST0_MASK << EndpointNumber); AVR32_USBB.uerst &= ~(AVR32_USBB_EPRST0_MASK << EndpointNumber);
USB_EndpointFIFOPos[EndpointNumber] = &AVR32_USBB_SLAVE[EndpointNumber * 0x10000];
} }
/** Enables the currently selected endpoint so that data can be sent and received through it to /** Enables the currently selected endpoint so that data can be sent and received through it to
@ -378,7 +380,7 @@
*/ */
static inline uint8_t Endpoint_GetBusyBanks(void) static inline uint8_t Endpoint_GetBusyBanks(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].nbusybk; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].nbusybk;
} }
/** Aborts all pending IN transactions on the currently selected endpoint, once the bank /** Aborts all pending IN transactions on the currently selected endpoint, once the bank
@ -392,9 +394,11 @@
{ {
while (Endpoint_GetBusyBanks() != 0) while (Endpoint_GetBusyBanks() != 0)
{ {
((avr32_usbb_uecon0_t*)AVR32_USBB_UECON0SET)[USB_SelectedEndpoint].killbk = true; (&AVR32_USBB.UECON0SET)[USB_SelectedEndpoint].killbks = true;
while (((avr32_usbb_uecon0_t*)AVR32_USBB_UECON0)[USB_SelectedEndpoint].killbk); while ((&AVR32_USBB.UECON0)[USB_SelectedEndpoint].killbk);
} }
USB_EndpointFIFOPos[USB_SelectedEndpoint] = &AVR32_USBB_SLAVE[USB_SelectedEndpoint * 0x10000];
} }
/** Determines if the currently selected endpoint may be read from (if data is waiting in the endpoint /** Determines if the currently selected endpoint may be read from (if data is waiting in the endpoint
@ -411,7 +415,7 @@
static inline bool Endpoint_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsReadWriteAllowed(void) static inline bool Endpoint_IsReadWriteAllowed(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].rwall; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].rwall;
} }
/** Determines if the currently selected endpoint is configured. /** Determines if the currently selected endpoint is configured.
@ -421,7 +425,7 @@
static inline bool Endpoint_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsConfigured(void) static inline bool Endpoint_IsConfigured(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].cfgok; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].cfgok;
} }
/** Returns a mask indicating which INTERRUPT type endpoints have interrupted - i.e. their /** Returns a mask indicating which INTERRUPT type endpoints have interrupted - i.e. their
@ -461,7 +465,7 @@
static inline bool Endpoint_IsINReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsINReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsINReady(void) static inline bool Endpoint_IsINReady(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].txini; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].txini;
} }
/** Determines if the selected OUT endpoint has received new packet from the host. /** Determines if the selected OUT endpoint has received new packet from the host.
@ -473,7 +477,7 @@
static inline bool Endpoint_IsOUTReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsOUTReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsOUTReceived(void) static inline bool Endpoint_IsOUTReceived(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].rxouti; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].rxouti;
} }
/** Determines if the current CONTROL type endpoint has received a SETUP packet. /** Determines if the current CONTROL type endpoint has received a SETUP packet.
@ -485,7 +489,7 @@
static inline bool Endpoint_IsSETUPReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsSETUPReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsSETUPReceived(void) static inline bool Endpoint_IsSETUPReceived(void)
{ {
return ((avr32_usbb_uesta0_t*)AVR32_USBB_UESTA0)[USB_SelectedEndpoint].rxstpi; return (&AVR32_USBB.UESTA0)[USB_SelectedEndpoint].rxstpi;
} }
/** Clears a received SETUP packet on the currently selected CONTROL type endpoint, freeing up the /** Clears a received SETUP packet on the currently selected CONTROL type endpoint, freeing up the
@ -498,7 +502,8 @@
static inline void Endpoint_ClearSETUP(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_ClearSETUP(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_ClearSETUP(void) static inline void Endpoint_ClearSETUP(void)
{ {
((avr32_usbb_uesta0clr_t*)AVR32_USBB_UESTA0CLR)[USB_SelectedEndpoint].rxstpic = true; (&AVR32_USBB.UESTA0CLR)[USB_SelectedEndpoint].rxstpic = true;
USB_EndpointFIFOPos[USB_SelectedEndpoint] = &AVR32_USBB_SLAVE[USB_SelectedEndpoint * 0x10000];
} }
/** Sends an IN packet to the host on the currently selected endpoint, freeing up the endpoint for the /** Sends an IN packet to the host on the currently selected endpoint, freeing up the endpoint for the
@ -509,8 +514,9 @@
static inline void Endpoint_ClearIN(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_ClearIN(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_ClearIN(void) static inline void Endpoint_ClearIN(void)
{ {
((avr32_usbb_uesta0clr_t*)AVR32_USBB_UESTA0CLR)[USB_SelectedEndpoint].txinic = true; (&AVR32_USBB.UESTA0CLR)[USB_SelectedEndpoint].txinic = true;
((avr32_usbb_uecon0clr_t*)AVR32_USBB_UECON0CLR)[USB_SelectedEndpoint].fifoconc = true; (&AVR32_USBB.UECON0CLR)[USB_SelectedEndpoint].fifoconc = true;
USB_EndpointFIFOPos[USB_SelectedEndpoint] = &AVR32_USBB_SLAVE[USB_SelectedEndpoint * 0x10000];
} }
/** Acknowledges an OUT packet to the host on the currently selected endpoint, freeing up the endpoint /** Acknowledges an OUT packet to the host on the currently selected endpoint, freeing up the endpoint
@ -521,8 +527,9 @@
static inline void Endpoint_ClearOUT(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_ClearOUT(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_ClearOUT(void) static inline void Endpoint_ClearOUT(void)
{ {
((avr32_usbb_uesta0clr_t*)AVR32_USBB_UESTA0CLR)[USB_SelectedEndpoint].rxoutic = true; (&AVR32_USBB.UESTA0CLR)[USB_SelectedEndpoint].rxoutic = true;
((avr32_usbb_uecon0clr_t*)AVR32_USBB_UECON0CLR)[USB_SelectedEndpoint].fifoconc = true; (&AVR32_USBB.UECON0CLR)[USB_SelectedEndpoint].fifoconc = true;
USB_EndpointFIFOPos[USB_SelectedEndpoint] = &AVR32_USBB_SLAVE[USB_SelectedEndpoint * 0x10000];
} }
/** Stalls the current endpoint, indicating to the host that a logical problem occurred with the /** Stalls the current endpoint, indicating to the host that a logical problem occurred with the
@ -539,7 +546,7 @@
static inline void Endpoint_StallTransaction(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_StallTransaction(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_StallTransaction(void) static inline void Endpoint_StallTransaction(void)
{ {
((avr32_usbb_uecon0set_t*)AVR32_USBB_UECON0SET)[USB_SelectedEndpoint].stallrqs = true; (&AVR32_USBB.UECON0SET)[USB_SelectedEndpoint].stallrqs = true;
} }
/** Clears the STALL condition on the currently selected endpoint. /** Clears the STALL condition on the currently selected endpoint.
@ -549,7 +556,7 @@
static inline void Endpoint_ClearStall(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_ClearStall(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_ClearStall(void) static inline void Endpoint_ClearStall(void)
{ {
((avr32_usbb_uecon0clr_t*)AVR32_USBB_UECON0CLR)[USB_SelectedEndpoint].stallrqc = true; (&AVR32_USBB.UECON0CLR)[USB_SelectedEndpoint].stallrqc = true;
} }
/** Determines if the currently selected endpoint is stalled, false otherwise. /** Determines if the currently selected endpoint is stalled, false otherwise.
@ -561,24 +568,24 @@
static inline bool Endpoint_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Endpoint_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Endpoint_IsStalled(void) static inline bool Endpoint_IsStalled(void)
{ {
return ((avr32_usbb_uecon0_t*)AVR32_USBB_UECON0)[USB_SelectedEndpoint].stallrq; return (&AVR32_USBB.UECON0)[USB_SelectedEndpoint].stallrq;
} }
/** Resets the data toggle of the currently selected endpoint. */ /** Resets the data toggle of the currently selected endpoint. */
static inline void Endpoint_ResetDataToggle(void) ATTR_ALWAYS_INLINE; static inline void Endpoint_ResetDataToggle(void) ATTR_ALWAYS_INLINE;
static inline void Endpoint_ResetDataToggle(void) static inline void Endpoint_ResetDataToggle(void)
{ {
((avr32_usbb_uecon0set_t*)AVR32_USBB_UECON0SET)[USB_SelectedEndpoint].rstdts = true; (&AVR32_USBB.UECON0SET)[USB_SelectedEndpoint].rstdts = true;
} }
/** Determines the currently selected endpoint's direction. /** Determines the currently selected endpoint's direction.
* *
* \return The currently selected endpoint's direction, as a \c ENDPOINT_DIR_* mask. * \return The currently selected endpoint's direction, as a \c ENDPOINT_DIR_* mask.
*/ */
static inline uint8_t Endpoint_GetEndpointDirection(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint32_t Endpoint_GetEndpointDirection(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint8_t Endpoint_GetEndpointDirection(void) static inline uint32_t Endpoint_GetEndpointDirection(void)
{ {
return (((uint32_t*)AVR32_USBB_UECFG0)[USB_SelectedEndpoint] & AVR32_USBB_UECFG0_EPDIR_MASK); return ((&AVR32_USBB.uecfg0)[USB_SelectedEndpoint] & AVR32_USBB_UECFG0_EPDIR_MASK);
} }
/** Sets the direction of the currently selected endpoint. /** Sets the direction of the currently selected endpoint.
@ -588,7 +595,7 @@
static inline void Endpoint_SetEndpointDirection(const uint32_t DirectionMask) ATTR_ALWAYS_INLINE; static inline void Endpoint_SetEndpointDirection(const uint32_t DirectionMask) ATTR_ALWAYS_INLINE;
static inline void Endpoint_SetEndpointDirection(const uint32_t DirectionMask) static inline void Endpoint_SetEndpointDirection(const uint32_t DirectionMask)
{ {
((avr32_usbb_uecfg0_t*)AVR32_USBB_UECFG0)[USB_SelectedEndpoint].epdir = (DirectionMask == ENDPOINT_DIR_IN); (&AVR32_USBB.UECFG0)[USB_SelectedEndpoint].epdir = (DirectionMask == ENDPOINT_DIR_IN);
} }
/** Reads one byte from the currently selected endpoint's bank, for OUT direction endpoints. /** Reads one byte from the currently selected endpoint's bank, for OUT direction endpoints.
@ -600,7 +607,7 @@
static inline uint8_t Endpoint_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint8_t Endpoint_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint8_t Endpoint_Read_Byte(void) static inline uint8_t Endpoint_Read_Byte(void)
{ {
return *((uint8_t*)AVR32_USBB_EP_DATA); return *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} }
/** Writes one byte from the currently selected endpoint's bank, for IN direction endpoints. /** Writes one byte from the currently selected endpoint's bank, for IN direction endpoints.
@ -612,7 +619,7 @@
static inline void Endpoint_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE; static inline void Endpoint_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
static inline void Endpoint_Write_Byte(const uint8_t Byte) static inline void Endpoint_Write_Byte(const uint8_t Byte)
{ {
*((uint8_t*)AVR32_USBB_EP_DATA) = Byte; *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = Byte;
} }
/** Discards one byte from the currently selected endpoint's bank, for OUT direction endpoints. /** Discards one byte from the currently selected endpoint's bank, for OUT direction endpoints.
@ -624,7 +631,7 @@
{ {
uint8_t Dummy; uint8_t Dummy;
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} }
/** Reads two bytes from the currently selected endpoint's bank in little endian format, for OUT /** Reads two bytes from the currently selected endpoint's bank in little endian format, for OUT
@ -637,16 +644,10 @@
static inline uint16_t Endpoint_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint16_t Endpoint_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint16_t Endpoint_Read_Word_LE(void) static inline uint16_t Endpoint_Read_Word_LE(void)
{ {
union uint16_t Byte1 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
{ uint16_t Byte0 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint16_t Word;
uint8_t Bytes[2];
} Data;
Data.Bytes[0] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[1] = *((uint8_t*)AVR32_USBB_EP_DATA);
return Data.Word; return ((Byte1 << 8) | Byte0);
} }
/** Reads two bytes from the currently selected endpoint's bank in big endian format, for OUT /** Reads two bytes from the currently selected endpoint's bank in big endian format, for OUT
@ -659,16 +660,10 @@
static inline uint16_t Endpoint_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint16_t Endpoint_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint16_t Endpoint_Read_Word_BE(void) static inline uint16_t Endpoint_Read_Word_BE(void)
{ {
union uint16_t Byte0 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
{ uint16_t Byte1 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint16_t Word;
uint8_t Bytes[2];
} Data;
Data.Bytes[1] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[0] = *((uint8_t*)AVR32_USBB_EP_DATA);
return Data.Word; return ((Byte1 << 8) | Byte0);
} }
/** Writes two bytes to the currently selected endpoint's bank in little endian format, for IN /** Writes two bytes to the currently selected endpoint's bank in little endian format, for IN
@ -681,8 +676,8 @@
static inline void Endpoint_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE; static inline void Endpoint_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
static inline void Endpoint_Write_Word_LE(const uint16_t Word) static inline void Endpoint_Write_Word_LE(const uint16_t Word)
{ {
*((uint8_t*)AVR32_USBB_EP_DATA) = (Word & 0xFF); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (Word & 0xFF);
*((uint8_t*)AVR32_USBB_EP_DATA) = (Word >> 8); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (Word >> 8);
} }
/** Writes two bytes to the currently selected endpoint's bank in big endian format, for IN /** Writes two bytes to the currently selected endpoint's bank in big endian format, for IN
@ -695,8 +690,8 @@
static inline void Endpoint_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE; static inline void Endpoint_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
static inline void Endpoint_Write_Word_BE(const uint16_t Word) static inline void Endpoint_Write_Word_BE(const uint16_t Word)
{ {
*((uint8_t*)AVR32_USBB_EP_DATA) = (Word >> 8); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (Word >> 8);
*((uint8_t*)AVR32_USBB_EP_DATA) = (Word & 0xFF); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (Word & 0xFF);
} }
/** Discards two bytes from the currently selected endpoint's bank, for OUT direction endpoints. /** Discards two bytes from the currently selected endpoint's bank, for OUT direction endpoints.
@ -708,8 +703,8 @@
{ {
uint8_t Dummy; uint8_t Dummy;
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} }
/** Reads four bytes from the currently selected endpoint's bank in little endian format, for OUT /** Reads four bytes from the currently selected endpoint's bank in little endian format, for OUT
@ -722,18 +717,12 @@
static inline uint32_t Endpoint_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint32_t Endpoint_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint32_t Endpoint_Read_DWord_LE(void) static inline uint32_t Endpoint_Read_DWord_LE(void)
{ {
union uint32_t Byte3 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
{ uint32_t Byte2 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint32_t DWord; uint32_t Byte1 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint8_t Bytes[4]; uint32_t Byte0 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} Data;
Data.Bytes[0] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[1] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[2] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[3] = *((uint8_t*)AVR32_USBB_EP_DATA);
return Data.DWord; return ((Byte3 << 24) | (Byte2 << 16) | (Byte1 << 8) | Byte0);
} }
/** Reads four bytes from the currently selected endpoint's bank in big endian format, for OUT /** Reads four bytes from the currently selected endpoint's bank in big endian format, for OUT
@ -746,18 +735,12 @@
static inline uint32_t Endpoint_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint32_t Endpoint_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint32_t Endpoint_Read_DWord_BE(void) static inline uint32_t Endpoint_Read_DWord_BE(void)
{ {
union uint32_t Byte0 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
{ uint32_t Byte1 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint32_t DWord; uint32_t Byte2 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
uint8_t Bytes[4]; uint32_t Byte3 = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} Data;
Data.Bytes[3] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[2] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[1] = *((uint8_t*)AVR32_USBB_EP_DATA);
Data.Bytes[0] = *((uint8_t*)AVR32_USBB_EP_DATA);
return Data.DWord; return ((Byte3 << 24) | (Byte2 << 16) | (Byte1 << 8) | Byte0);
} }
/** Writes four bytes to the currently selected endpoint's bank in little endian format, for IN /** Writes four bytes to the currently selected endpoint's bank in little endian format, for IN
@ -770,10 +753,10 @@
static inline void Endpoint_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE; static inline void Endpoint_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
static inline void Endpoint_Write_DWord_LE(const uint32_t DWord) static inline void Endpoint_Write_DWord_LE(const uint32_t DWord)
{ {
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord & 0xFF); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord & 0xFF);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 8); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 8);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 16); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 16);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 24); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 24);
} }
/** Writes four bytes to the currently selected endpoint's bank in big endian format, for IN /** Writes four bytes to the currently selected endpoint's bank in big endian format, for IN
@ -786,10 +769,10 @@
static inline void Endpoint_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE; static inline void Endpoint_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
static inline void Endpoint_Write_DWord_BE(const uint32_t DWord) static inline void Endpoint_Write_DWord_BE(const uint32_t DWord)
{ {
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 24); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 24);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 16); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 16);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord >> 8); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord >> 8);
*((uint8_t*)AVR32_USBB_EP_DATA) = (DWord & 0xFF); *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++) = (DWord & 0xFF);
} }
/** Discards four bytes from the currently selected endpoint's bank, for OUT direction endpoints. /** Discards four bytes from the currently selected endpoint's bank, for OUT direction endpoints.
@ -801,10 +784,10 @@
{ {
uint8_t Dummy; uint8_t Dummy;
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
Dummy = *((uint8_t*)AVR32_USBB_EP_DATA); Dummy = *(((volatile uint8_t** volatile)USB_EndpointFIFOPos)[USB_SelectedEndpoint]++);
} }
/* External Variables: */ /* External Variables: */

@ -36,7 +36,7 @@
#include "../Pipe.h" #include "../Pipe.h"
uint8_t USB_ControlPipeSize = PIPE_CONTROLPIPE_DEFAULT_SIZE; uint8_t USB_ControlPipeSize = PIPE_CONTROLPIPE_DEFAULT_SIZE;
uint8_t USB_SelectedPipe = PIPE_CONTROLPIPE; volatile uint8_t USB_SelectedPipe = PIPE_CONTROLPIPE;
bool Pipe_ConfigurePipe(const uint8_t Number, bool Pipe_ConfigurePipe(const uint8_t Number,
const uint8_t Type, const uint8_t Type,
@ -48,8 +48,8 @@ bool Pipe_ConfigurePipe(const uint8_t Number,
Pipe_SelectPipe(Number); Pipe_SelectPipe(Number);
Pipe_EnablePipe(); Pipe_EnablePipe();
((uint32_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe] = 0; (&AVR32_USBB.upcfg0)[Number] = 0;
((uint32_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe] = (AVR32_USBB_ALLOC_MASK | (&AVR32_USBB.upcfg0)[Number] = (AVR32_USBB_ALLOC_MASK |
((uint32_t)Type << AVR32_USBB_PTYPE_OFFSET) | ((uint32_t)Type << AVR32_USBB_PTYPE_OFFSET) |
((uint32_t)Token << AVR32_USBB_PTOKEN_OFFSET) | ((uint32_t)Token << AVR32_USBB_PTOKEN_OFFSET) |
((uint32_t)Banks << AVR32_USBB_PBK_OFFSET) | ((uint32_t)Banks << AVR32_USBB_PBK_OFFSET) |
@ -65,8 +65,8 @@ void Pipe_ClearPipes(void)
for (uint8_t PNum = 0; PNum < PIPE_TOTAL_PIPES; PNum++) for (uint8_t PNum = 0; PNum < PIPE_TOTAL_PIPES; PNum++)
{ {
Pipe_SelectPipe(PNum); Pipe_SelectPipe(PNum);
((uint32_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe] = 0; (&AVR32_USBB.upcfg0)[PNum] = 0;
((uint32_t*)AVR32_USBB_UPCON0CLR)[USB_SelectedPipe] = 0xFFFFFFFF; (&AVR32_USBB.upcon0clr)[PNum] = 0xFFFFFFFF;
Pipe_DisablePipe(); Pipe_DisablePipe();
} }
} }

@ -99,7 +99,7 @@
/* Private Interface - For use in library only: */ /* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__) #if !defined(__DOXYGEN__)
/* External Variables: */ /* External Variables: */
extern uint8_t USB_SelectedPipe; extern volatile uint8_t USB_SelectedPipe;
#endif #endif
/* Public Interface - May be used in end-application: */ /* Public Interface - May be used in end-application: */
@ -212,7 +212,7 @@
static inline uint16_t Pipe_BytesInPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint16_t Pipe_BytesInPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint16_t Pipe_BytesInPipe(void) static inline uint16_t Pipe_BytesInPipe(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].pbyct; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].pbyct;
} }
/** Returns the pipe address of the currently selected pipe. This is typically used to save the /** Returns the pipe address of the currently selected pipe. This is typically used to save the
@ -285,7 +285,7 @@
static inline uint8_t Pipe_GetPipeToken(void) ATTR_ALWAYS_INLINE; static inline uint8_t Pipe_GetPipeToken(void) ATTR_ALWAYS_INLINE;
static inline uint8_t Pipe_GetPipeToken(void) static inline uint8_t Pipe_GetPipeToken(void)
{ {
return ((avr32_usbb_upcfg0_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe].ptoken; return (&AVR32_USBB.UPCFG0)[USB_SelectedPipe].ptoken;
} }
/** Sets the token for the currently selected pipe to one of the tokens specified by the \c PIPE_TOKEN_* /** Sets the token for the currently selected pipe to one of the tokens specified by the \c PIPE_TOKEN_*
@ -298,14 +298,14 @@
static inline void Pipe_SetPipeToken(const uint8_t Token) ATTR_ALWAYS_INLINE; static inline void Pipe_SetPipeToken(const uint8_t Token) ATTR_ALWAYS_INLINE;
static inline void Pipe_SetPipeToken(const uint8_t Token) static inline void Pipe_SetPipeToken(const uint8_t Token)
{ {
((avr32_usbb_upcfg0_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe].ptoken = Token; (&AVR32_USBB.UPCFG0)[USB_SelectedPipe].ptoken = Token;
} }
/** Configures the currently selected pipe to allow for an unlimited number of IN requests. */ /** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
static inline void Pipe_SetInfiniteINRequests(void) ATTR_ALWAYS_INLINE; static inline void Pipe_SetInfiniteINRequests(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_SetInfiniteINRequests(void) static inline void Pipe_SetInfiniteINRequests(void)
{ {
((avr32_usbb_upinrq0_t*)AVR32_USBB_UPINRQ0)[USB_SelectedPipe].inmode = true; (&AVR32_USBB.UPINRQ0)[USB_SelectedPipe].inmode = true;
} }
/** Configures the currently selected pipe to only allow the specified number of IN requests to be /** Configures the currently selected pipe to only allow the specified number of IN requests to be
@ -316,8 +316,8 @@
static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests) ATTR_ALWAYS_INLINE; static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests) ATTR_ALWAYS_INLINE;
static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests) static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests)
{ {
((avr32_usbb_upinrq0_t*)AVR32_USBB_UPINRQ0)[USB_SelectedPipe].inmode = false; (&AVR32_USBB.UPINRQ0)[USB_SelectedPipe].inmode = false;
((avr32_usbb_upinrq0_t*)AVR32_USBB_UPINRQ0)[USB_SelectedPipe].inrq = TotalINRequests; (&AVR32_USBB.UPINRQ0)[USB_SelectedPipe].inrq = TotalINRequests;
} }
/** Determines if the currently selected pipe is configured. /** Determines if the currently selected pipe is configured.
@ -327,7 +327,7 @@
static inline bool Pipe_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsConfigured(void) static inline bool Pipe_IsConfigured(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].cfgok; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].cfgok;
} }
/** Retrieves the endpoint number of the endpoint within the attached device that the currently selected /** Retrieves the endpoint number of the endpoint within the attached device that the currently selected
@ -338,7 +338,7 @@
static inline uint8_t Pipe_BoundEndpointNumber(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline uint8_t Pipe_BoundEndpointNumber(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline uint8_t Pipe_BoundEndpointNumber(void) static inline uint8_t Pipe_BoundEndpointNumber(void)
{ {
return ((avr32_usbb_upcfg0_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe].pepnum; return (&AVR32_USBB.UPCFG0)[USB_SelectedPipe].pepnum;
} }
/** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds. /** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
@ -348,7 +348,7 @@
static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds) ATTR_ALWAYS_INLINE; static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds) ATTR_ALWAYS_INLINE;
static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds) static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds)
{ {
((avr32_usbb_upcfg0_t*)AVR32_USBB_UPCFG0)[USB_SelectedPipe].intfrq = Milliseconds; (&AVR32_USBB.UPCFG0)[USB_SelectedPipe].intfrq = Milliseconds;
} }
/** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should /** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
@ -382,14 +382,14 @@
static inline void Pipe_Unfreeze(void) ATTR_ALWAYS_INLINE; static inline void Pipe_Unfreeze(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_Unfreeze(void) static inline void Pipe_Unfreeze(void)
{ {
((avr32_usbb_upcon0clr_t*)AVR32_USBB_UPCON0CLR)[USB_SelectedPipe].pfreezec = true; (&AVR32_USBB.UPCON0CLR)[USB_SelectedPipe].pfreezec = true;
} }
/** Freezes the selected pipe, preventing it from communicating with an attached device. */ /** Freezes the selected pipe, preventing it from communicating with an attached device. */
static inline void Pipe_Freeze(void) ATTR_ALWAYS_INLINE; static inline void Pipe_Freeze(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_Freeze(void) static inline void Pipe_Freeze(void)
{ {
((avr32_usbb_upcon0set_t*)AVR32_USBB_UPCON0SET)[USB_SelectedPipe].pfreezes = true; (&AVR32_USBB.UPCON0SET)[USB_SelectedPipe].pfreezes = true;
} }
/** Determines if the currently selected pipe is frozen, and not able to accept data. /** Determines if the currently selected pipe is frozen, and not able to accept data.
@ -399,15 +399,15 @@
static inline bool Pipe_IsFrozen(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsFrozen(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsFrozen(void) static inline bool Pipe_IsFrozen(void)
{ {
return ((((avr32_usbb_upcon0_t*)AVR32_USBB_UPCON0)[USB_SelectedPipe].pfreeze) ? true : false); return (((&AVR32_USBB.UPCON0)[USB_SelectedPipe].pfreeze) ? true : false);
} }
/** Clears the error flags for the currently selected pipe. */ /** Clears the error flags for the currently selected pipe. */
static inline void Pipe_ClearError(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearError(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearError(void) static inline void Pipe_ClearError(void)
{ {
((uint32_t*)AVR32_USBB_UPERR0)[USB_SelectedPipe] = 0; (&AVR32_USBB.uperr0)[USB_SelectedPipe] = 0;
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].overfic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].overfic = true;
} }
/** Determines if the master pipe error flag is set for the currently selected pipe, indicating that /** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
@ -420,7 +420,7 @@
static inline bool Pipe_IsError(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsError(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsError(void) static inline bool Pipe_IsError(void)
{ {
return ((((uint32_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe] & return (((&AVR32_USBB.upsta0)[USB_SelectedPipe] &
(AVR32_USBB_PERRI_MASK | AVR32_USBB_OVERFI_MASK)) ? true : false); (AVR32_USBB_PERRI_MASK | AVR32_USBB_OVERFI_MASK)) ? true : false);
} }
@ -433,11 +433,11 @@
static inline uint8_t Pipe_GetErrorFlags(void) static inline uint8_t Pipe_GetErrorFlags(void)
{ {
return ((((uint32_t*)AVR32_USBB_UPERR0)[USB_SelectedPipe] & return (((&AVR32_USBB.uperr0)[USB_SelectedPipe] &
(PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT | (PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT |
PIPE_ERRORFLAG_PID | PIPE_ERRORFLAG_DATAPID | PIPE_ERRORFLAG_PID | PIPE_ERRORFLAG_DATAPID |
PIPE_ERRORFLAG_DATATGL)) | PIPE_ERRORFLAG_DATATGL)) |
((((uint32_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe] << 8) & (((&AVR32_USBB.upsta0)[USB_SelectedPipe] << 8) &
PIPE_ERRORFLAG_OVERFLOW)); PIPE_ERRORFLAG_OVERFLOW));
} }
@ -451,7 +451,7 @@
*/ */
static inline uint8_t Pipe_GetBusyBanks(void) static inline uint8_t Pipe_GetBusyBanks(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].nbusybk; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].nbusybk;
} }
/** Determines if the currently selected pipe may be read from (if data is waiting in the pipe /** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
@ -470,7 +470,7 @@
static inline bool Pipe_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsReadWriteAllowed(void) static inline bool Pipe_IsReadWriteAllowed(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].rwall; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].rwall;
} }
/** Determines if a packet has been received on the currently selected IN pipe from the attached device. /** Determines if a packet has been received on the currently selected IN pipe from the attached device.
@ -482,7 +482,7 @@
static inline bool Pipe_IsINReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsINReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsINReceived(void) static inline bool Pipe_IsINReceived(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].rxini; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].rxini;
} }
/** Determines if the currently selected OUT pipe is ready to send an OUT packet to the attached device. /** Determines if the currently selected OUT pipe is ready to send an OUT packet to the attached device.
@ -494,7 +494,7 @@
static inline bool Pipe_IsOUTReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsOUTReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsOUTReady(void) static inline bool Pipe_IsOUTReady(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].txouti; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].txouti;
} }
/** Determines if no SETUP request is currently being sent to the attached device on the selected /** Determines if no SETUP request is currently being sent to the attached device on the selected
@ -507,7 +507,7 @@
static inline bool Pipe_IsSETUPSent(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsSETUPSent(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsSETUPSent(void) static inline bool Pipe_IsSETUPSent(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].txstpi; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].txstpi;
} }
/** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet. /** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
@ -517,7 +517,7 @@
static inline void Pipe_ClearSETUP(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearSETUP(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearSETUP(void) static inline void Pipe_ClearSETUP(void)
{ {
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].txstpic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].txstpic = true;
} }
/** Acknowledges the reception of a setup IN request from the attached device on the currently selected /** Acknowledges the reception of a setup IN request from the attached device on the currently selected
@ -528,8 +528,8 @@
static inline void Pipe_ClearIN(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearIN(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearIN(void) static inline void Pipe_ClearIN(void)
{ {
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].rxinic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].rxinic = true;
((avr32_usbb_upcon0clr_t*)AVR32_USBB_UPCON0CLR)[USB_SelectedPipe].fifoconc = true; (&AVR32_USBB.UPCON0CLR)[USB_SelectedPipe].fifoconc = true;
} }
/** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing /** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
@ -540,8 +540,8 @@
static inline void Pipe_ClearOUT(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearOUT(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearOUT(void) static inline void Pipe_ClearOUT(void)
{ {
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].txoutic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].txoutic = true;
((avr32_usbb_upcon0clr_t*)AVR32_USBB_UPCON0CLR)[USB_SelectedPipe].fifoconc = true; (&AVR32_USBB.UPCON0CLR)[USB_SelectedPipe].fifoconc = true;
} }
/** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on /** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
@ -557,7 +557,7 @@
static inline bool Pipe_IsNAKReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsNAKReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsNAKReceived(void) static inline bool Pipe_IsNAKReceived(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].nakedi; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].nakedi;
} }
/** Clears the NAK condition on the currently selected pipe. /** Clears the NAK condition on the currently selected pipe.
@ -569,7 +569,7 @@
static inline void Pipe_ClearNAKReceived(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearNAKReceived(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearNAKReceived(void) static inline void Pipe_ClearNAKReceived(void)
{ {
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].nakedic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].nakedic = true;
} }
/** Determines if the currently selected pipe has had the STALL condition set by the attached device. /** Determines if the currently selected pipe has had the STALL condition set by the attached device.
@ -581,7 +581,7 @@
static inline bool Pipe_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE; static inline bool Pipe_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Pipe_IsStalled(void) static inline bool Pipe_IsStalled(void)
{ {
return ((avr32_usbb_upsta0_t*)AVR32_USBB_UPSTA0)[USB_SelectedPipe].rxstalldi; return (&AVR32_USBB.UPSTA0)[USB_SelectedPipe].rxstalldi;
} }
/** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the /** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
@ -592,7 +592,7 @@
static inline void Pipe_ClearStall(void) ATTR_ALWAYS_INLINE; static inline void Pipe_ClearStall(void) ATTR_ALWAYS_INLINE;
static inline void Pipe_ClearStall(void) static inline void Pipe_ClearStall(void)
{ {
((avr32_usbb_upsta0clr_t*)AVR32_USBB_UPSTA0CLR)[USB_SelectedPipe].rxstalldic = true; (&AVR32_USBB.UPSTA0CLR)[USB_SelectedPipe].rxstalldic = true;
} }
/** Reads one byte from the currently selected pipe's bank, for OUT direction pipes. /** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.

@ -60,8 +60,6 @@ void USB_Init(
USB_Options = Options; USB_Options = Options;
#endif #endif
USB_INT_RegisterHandlers();
#if defined(USB_CAN_BE_BOTH) #if defined(USB_CAN_BE_BOTH)
if (Mode == USB_MODE_UID) if (Mode == USB_MODE_UID)
{ {
@ -71,6 +69,7 @@ void USB_Init(
} }
else else
{ {
AVR32_USBB.USBCON.uide = false;
USB_CurrentMode = Mode; USB_CurrentMode = Mode;
} }
#endif #endif
@ -108,7 +107,7 @@ void USB_ResetInterface(void)
AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].pllsel = !(USB_Options & USB_OPT_GCLK_SRC_OSC); AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].pllsel = !(USB_Options & USB_OPT_GCLK_SRC_OSC);
AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].oscsel = !(USB_Options & USB_OPT_GCLK_CHANNEL_0); AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].oscsel = !(USB_Options & USB_OPT_GCLK_CHANNEL_0);
AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].diven = (F_CLOCK != 48000000UL); AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].diven = (F_CLOCK != 48000000UL);
AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].div = ((F_CLOCK / 2) / 48000000UL); AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].div = (F_CLOCK == 48000000UL) ? 0 : (uint32_t)(((F_CLOCK / 48000000UL) - 1) / 2);
AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].cen = true; AVR32_PM.GCCTRL[USB_GCLK_USBB_INDEX].cen = true;
USB_INT_DisableAllInterrupts(); USB_INT_DisableAllInterrupts();
@ -181,6 +180,7 @@ static void USB_Init_Device(void)
USB_INT_Enable(USB_INT_EORSTI); USB_INT_Enable(USB_INT_EORSTI);
USB_Attach(); USB_Attach();
USB_Device_SetDeviceAddress(0);
} }
#endif #endif

@ -118,6 +118,7 @@ ISR(USB_GEN_vect)
USB_INT_Disable(USB_INT_SUSPI); USB_INT_Disable(USB_INT_SUSPI);
USB_INT_Enable(USB_INT_WAKEUPI); USB_INT_Enable(USB_INT_WAKEUPI);
USB_Device_SetDeviceAddress(0);
Endpoint_ConfigureEndpoint(ENDPOINT_CONTROLEP, EP_TYPE_CONTROL, Endpoint_ConfigureEndpoint(ENDPOINT_CONTROLEP, EP_TYPE_CONTROL,
ENDPOINT_DIR_OUT, USB_ControlEndpointSize, ENDPOINT_DIR_OUT, USB_ControlEndpointSize,
ENDPOINT_BANK_SINGLE); ENDPOINT_BANK_SINGLE);

@ -83,11 +83,6 @@
ISR(USB_GEN_vect); ISR(USB_GEN_vect);
/* Inline Functions: */ /* Inline Functions: */
static inline void USB_INT_RegisterHandlers(void)
{
AVR32_INTC.IPR[AVR32_USBB_IRQ % 32].autovector = (uintptr_t)&USB_GEN_vect;
}
static inline void USB_INT_Enable(const uint8_t Interrupt) ATTR_ALWAYS_INLINE; static inline void USB_INT_Enable(const uint8_t Interrupt) ATTR_ALWAYS_INLINE;
static inline void USB_INT_Enable(const uint8_t Interrupt) static inline void USB_INT_Enable(const uint8_t Interrupt)
{ {

Loading…
Cancel
Save