Update Mass Storage bootloader so that it can support devices with only 4KB bootloader sections by creating a special AUX section before the real bootloader section to store part of the bootloader code.

pull/1469/head
Dean Camera 12 years ago
parent f8a1dc7424
commit be33d3a515

@ -28,6 +28,19 @@
this software. this software.
*/ */
#if AUX_BOOT_SECTION_SIZE > 0
#warning Using a AUX bootloader section in addition to the defined bootloader space (see documentation).
; Trampoline to jump over the AUX bootloader section to the start of the bootloader,
; on devices where an AUX bootloader section is used.
.section .boot_aux_trampoline, "ax"
.global Boot_AUX_Trampoline
Boot_AUX_Trampoline:
jmp BOOT_START_ADDR
#endif
; Trampolines to actual API implementations if the target address is outside the ; Trampolines to actual API implementations if the target address is outside the
; range of a rjmp instruction (can happen with large bootloader sections) ; range of a rjmp instruction (can happen with large bootloader sections)
.section .apitable_trampolines, "ax" .section .apitable_trampolines, "ax"

@ -61,6 +61,25 @@ USB_ClassInfo_MS_Device_t Disk_MS_Interface =
}; };
void Application_Jump_Check(void)
{
bool JumpToApplication = false;
#if (BOARD == BOARD_LEONARDO)
/* Enable pull-up on the IO13 pin so we can use it to select the mode */
PORTC |= (1 << 7);
Delay_MS(10);
JumpToApplication |= ((PINC & (1 << 7)) != 0);
PORTC &= ~(1 << 7);
#endif
if (JumpToApplication)
{
// cppcheck-suppress constStatement
((void (*)(void))0x0000)();
}
}
/** Main program entry point. This routine configures the hardware required by the application, then /** Main program entry point. This routine configures the hardware required by the application, then
* enters a loop to run the application tasks in sequence. * enters a loop to run the application tasks in sequence.
*/ */
@ -85,9 +104,6 @@ static void SetupHardware(void)
MCUSR &= ~(1 << WDRF); MCUSR &= ~(1 << WDRF);
wdt_disable(); wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Relocate the interrupt vector table to the bootloader section */ /* Relocate the interrupt vector table to the bootloader section */
MCUCR = (1 << IVCE); MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL); MCUCR = (1 << IVSEL);

@ -39,7 +39,6 @@
/* Includes: */ /* Includes: */
#include <avr/io.h> #include <avr/io.h>
#include <avr/wdt.h> #include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <string.h> #include <string.h>
@ -67,14 +66,18 @@
#define LEDMASK_USB_BUSY LEDS_LED2 #define LEDMASK_USB_BUSY LEDS_LED2
/* Function Prototypes: */ /* Function Prototypes: */
static void SetupHardware(void); int main(void) AUX_BOOT_SECTION;
void EVENT_USB_Device_Connect(void); static void SetupHardware(void) AUX_BOOT_SECTION;
void EVENT_USB_Device_Disconnect(void);
void EVENT_USB_Device_ConfigurationChanged(void);
void EVENT_USB_Device_ControlRequest(void);
bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); void Application_Jump_Check(void) ATTR_INIT_SECTION(3);
void EVENT_USB_Device_Connect(void) AUX_BOOT_SECTION;
void EVENT_USB_Device_Disconnect(void) AUX_BOOT_SECTION;
void EVENT_USB_Device_ConfigurationChanged(void) AUX_BOOT_SECTION;
void EVENT_USB_Device_ControlRequest(void) AUX_BOOT_SECTION;
bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
#endif #endif

@ -12,6 +12,8 @@
* *
* \li Series 7 USB AVRs (AT90USBxxx7) * \li Series 7 USB AVRs (AT90USBxxx7)
* \li Series 6 USB AVRs (AT90USBxxx6) * \li Series 6 USB AVRs (AT90USBxxx6)
* \li Series 4 USB AVRs (ATMEGAxxU4) - <i>See \ref SSec_Aux_Space</i>
* \li Series 2 USB AVRs (AT90USBxx2, ATMEGAxxU2) - <i>See \ref SSec_Aux_Space</i>
* *
* \section Sec_Info USB Information: * \section Sec_Info USB Information:
* *
@ -49,7 +51,7 @@
* firmware image file, to load firmware onto the AVR. * firmware image file, to load firmware onto the AVR.
* *
* Out of the box this bootloader builds for the AT90USB1287 with an 8KB bootloader section size, and will fit * Out of the box this bootloader builds for the AT90USB1287 with an 8KB bootloader section size, and will fit
* into 8KB of bootloader space. If you wish to alter this size and/or change the AVR model, you will need to * into 6KB of bootloader space. If you wish to alter this size and/or change the AVR model, you will need to
* edit the MCU, FLASH_SIZE_KB and BOOT_SECTION_SIZE_KB values in the accompanying makefile. * edit the MCU, FLASH_SIZE_KB and BOOT_SECTION_SIZE_KB values in the accompanying makefile.
* *
* When the bootloader is running, the board's LED(s) will flash at regular intervals to distinguish the * When the bootloader is running, the board's LED(s) will flash at regular intervals to distinguish the
@ -100,6 +102,22 @@
* #define BOOTLOADER_ADDRESS_LENGTH 4 * #define BOOTLOADER_ADDRESS_LENGTH 4
* \endcode * \endcode
* *
* From the application the API support of the bootloader can be detected by reading the FLASH memory bytes located at address
* \c BOOTLOADER_MAGIC_SIGNATURE_START and comparing them to the value \c BOOTLOADER_MAGIC_SIGNATURE. The class of bootloader
* can be determined by reading the FLASH memory bytes located at address \c BOOTLOADER_CLASS_SIGNATURE_START and comparing them
* to the value \c BOOTLOADER_MASS_STORAGE_SIGNATURE. The start address of the bootloader can be retrieved by reading the bytes
* of FLASH memory starting from address \c BOOTLOADER_ADDRESS_START.
*
* \subsection SSec_Aux_Space Auxiliary Bootloader Section
* To make the bootloader function on smaller devices (those with a physical bootloader section of smaller than 6KB) a second
* section of memory (called the <i>Auxiliary Bootloader Section</i>) is added before the start of the real bootloader section,
* and is filled with a portion of the bootloader code. This allows smaller devices to run the bootloader, at the cost of an
* additional portion of the device's FLASH (the bootloader section size in KB subtracted from the 6KB total size). A small
* trampoline is inserted at the start of the auxiliary section so that the bootloader will run normally in the case of a blank
* application section.
*
* On devices supporting a 8KB bootloader section size, the AUX section is not created in the final binary.
*
* \subsection SSec_API_MemLayout Device Memory Map * \subsection SSec_API_MemLayout Device Memory Map
* The following illustration indicates the final memory map of the device when loaded with the bootloader. * The following illustration indicates the final memory map of the device when loaded with the bootloader.
* *
@ -121,6 +139,16 @@
* | | * | |
* | | * | |
* | | * | |
* | |
* +----------------------------+ FLASHEND - BOOT_SECTION_SIZE - BOOT_AUX_SECTION_SIZE
* | Booloader Start Trampoline |
* | (Not User App. Accessible) |
* +----------------------------+ FLASHEND - BOOT_SECTION_SIZE - BOOT_AUX_SECTION_SIZE + 4
* | |
* | Auxiliary Bootloader |
* | Space for Smaller Devices |
* | (Not User App. Accessible) |
* | |
* +----------------------------+ FLASHEND - BOOT_SECTION_SIZE * +----------------------------+ FLASHEND - BOOT_SECTION_SIZE
* | | * | |
* | Bootloader Application | * | Bootloader Application |
@ -138,12 +166,6 @@
* +----------------------------+ FLASHEND * +----------------------------+ FLASHEND
* \endverbatim * \endverbatim
* *
* Bootloaders reporting a device release revision number of 1.00 or greater are bootloader API enabled. From the application
* the API support of the bootloader can be detected by reading the FLASH memory bytes located at address \c BOOTLOADER_MAGIC_SIGNATURE_START
* and comparing them to the value \c BOOTLOADER_MAGIC_SIGNATURE. The class of bootloader can be determined by reading the
* FLASH memory bytes located at address \c BOOTLOADER_CLASS_SIGNATURE_START and comparing them to the value \c BOOTLOADER_MASS_STORAGE_SIGNATURE.
* The start address of the bootloader can be retrieved by reading the bytes of FLASH memory starting from address \c BOOTLOADER_ADDRESS_START.
*
* \section Sec_Options Project Options * \section Sec_Options Project Options
* *
* The following defines can be found in this demo, which can control the demo behaviour when defined, or changed in value. * The following defines can be found in this demo, which can control the demo behaviour when defined, or changed in value.

@ -69,7 +69,7 @@
#define USE_RAM_DESCRIPTORS #define USE_RAM_DESCRIPTORS
// #define USE_FLASH_DESCRIPTORS // #define USE_FLASH_DESCRIPTORS
// #define USE_EEPROM_DESCRIPTORS // #define USE_EEPROM_DESCRIPTORS
// #define NO_INTERNAL_SERIAL #define NO_INTERNAL_SERIAL
#define FIXED_CONTROL_ENDPOINT_SIZE 8 #define FIXED_CONTROL_ENDPOINT_SIZE 8
#define DEVICE_STATE_AS_GPIOR 0 #define DEVICE_STATE_AS_GPIOR 0
#define FIXED_NUM_CONFIGURATIONS 1 #define FIXED_NUM_CONFIGURATIONS 1

@ -60,7 +60,7 @@ const USB_Descriptor_Device_t DeviceDescriptor =
.ManufacturerStrIndex = NO_DESCRIPTOR, .ManufacturerStrIndex = NO_DESCRIPTOR,
.ProductStrIndex = NO_DESCRIPTOR, .ProductStrIndex = NO_DESCRIPTOR,
.SerialNumStrIndex = USE_INTERNAL_SERIAL, .SerialNumStrIndex = NO_DESCRIPTOR,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS .NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
}; };
@ -124,17 +124,6 @@ const USB_Descriptor_Configuration_t ConfigurationDescriptor =
} }
}; };
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
const USB_Descriptor_String_t LanguageString =
{
.Header = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},
.UnicodeString = {LANGUAGE_ID_ENG}
};
/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors" /** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given * documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function * to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
@ -145,30 +134,21 @@ uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex, const uint8_t wIndex,
const void** const DescriptorAddress) const void** const DescriptorAddress)
{ {
const uint8_t DescriptorType = (wValue >> 8); const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
const void* Address = NULL; const void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR; uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType) /* If/Else If chain compiles slightly smaller than a switch case */
if (DescriptorType == DTYPE_Device)
{
Address = &DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
}
else if (DescriptorType == DTYPE_Configuration)
{ {
case DTYPE_Device: Address = &ConfigurationDescriptor;
Address = &DeviceDescriptor; Size = sizeof(USB_Descriptor_Configuration_t);
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = &ConfigurationDescriptor;
Size = sizeof(USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
if (!(DescriptorNumber))
{
Address = &LanguageString;
Size = pgm_read_byte(&LanguageString.Header.Size);
}
break;
} }
*DescriptorAddress = Address; *DescriptorAddress = Address;

@ -70,7 +70,7 @@
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex, const uint8_t wIndex,
const void** const DescriptorAddress) const void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3); ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3) AUX_BOOT_SECTION;
#endif #endif

@ -104,9 +104,6 @@ bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
case SCSI_CMD_READ_CAPACITY_10: case SCSI_CMD_READ_CAPACITY_10:
CommandSuccess = SCSI_Command_Read_Capacity_10(MSInterfaceInfo); CommandSuccess = SCSI_Command_Read_Capacity_10(MSInterfaceInfo);
break; break;
case SCSI_CMD_SEND_DIAGNOSTIC:
CommandSuccess = SCSI_Command_Send_Diagnostic(MSInterfaceInfo);
break;
case SCSI_CMD_WRITE_10: case SCSI_CMD_WRITE_10:
CommandSuccess = SCSI_Command_ReadWrite_10(MSInterfaceInfo, DATA_WRITE); CommandSuccess = SCSI_Command_ReadWrite_10(MSInterfaceInfo, DATA_WRITE);
break; break;
@ -116,6 +113,7 @@ bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
case SCSI_CMD_MODE_SENSE_6: case SCSI_CMD_MODE_SENSE_6:
CommandSuccess = SCSI_Command_ModeSense_6(MSInterfaceInfo); CommandSuccess = SCSI_Command_ModeSense_6(MSInterfaceInfo);
break; break;
case SCSI_CMD_SEND_DIAGNOSTIC:
case SCSI_CMD_START_STOP_UNIT: case SCSI_CMD_START_STOP_UNIT:
case SCSI_CMD_TEST_UNIT_READY: case SCSI_CMD_TEST_UNIT_READY:
case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL: case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
@ -227,33 +225,6 @@ static bool SCSI_Command_Read_Capacity_10(USB_ClassInfo_MS_Device_t* const MSInt
return true; return true;
} }
/** Command processing for an issued SCSI SEND DIAGNOSTIC command. This command performs a quick check of the Dataflash ICs on the
* board, and indicates if they are present and functioning correctly. Only the Self-Test portion of the diagnostic command is
* supported.
*
* \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface structure that the command is associated with
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_Send_Diagnostic(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
{
/* Check to see if the SELF TEST bit is not set */
if (!(MSInterfaceInfo->State.CommandBlock.SCSICommandData[1] & (1 << 2)))
{
/* Only self-test supported - update SENSE key and fail the command */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_FIELD_IN_CDB,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Succeed the command and update the bytes transferred counter */
MSInterfaceInfo->State.CommandBlock.DataTransferLength = 0;
return true;
}
/** Command processing for an issued SCSI READ (10) or WRITE (10) command. This command reads in the block start address /** Command processing for an issued SCSI READ (10) or WRITE (10) command. This command reads in the block start address
* and total number of blocks to process, then calls the appropriate low-level Dataflash routine to handle the actual * and total number of blocks to process, then calls the appropriate low-level Dataflash routine to handle the actual
* reading and writing of the data. * reading and writing of the data.

@ -42,7 +42,6 @@
#include <LUFA/Drivers/USB/USB.h> #include <LUFA/Drivers/USB/USB.h>
#include "../BootloaderMassStorage.h"
#include "../Descriptors.h" #include "../Descriptors.h"
#include "VirtualFAT.h" #include "VirtualFAT.h"
@ -69,16 +68,15 @@
#define DEVICE_TYPE_BLOCK 0x00 #define DEVICE_TYPE_BLOCK 0x00
/* Function Prototypes: */ /* Function Prototypes: */
bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); bool SCSI_DecodeSCSICommand(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
#if defined(INCLUDE_FROM_SCSI_C) #if defined(INCLUDE_FROM_SCSI_C)
static bool SCSI_Command_Inquiry(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); static bool SCSI_Command_Inquiry(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
static bool SCSI_Command_Request_Sense(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); static bool SCSI_Command_Request_Sense(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
static bool SCSI_Command_Read_Capacity_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); static bool SCSI_Command_Read_Capacity_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
static bool SCSI_Command_Send_Diagnostic(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo);
static bool SCSI_Command_ReadWrite_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, static bool SCSI_Command_ReadWrite_10(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const bool IsDataRead); const bool IsDataRead) AUX_BOOT_SECTION;
static bool SCSI_Command_ModeSense_6(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo); static bool SCSI_Command_ModeSense_6(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo) AUX_BOOT_SECTION;
#endif #endif
#endif #endif

@ -151,26 +151,28 @@ static void WriteVirtualBlock(const uint16_t BlockNumber)
if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES)))) if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES))))
{ {
#if (FLASHEND > 0xFFFF)
uint32_t WriteFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES; uint32_t WriteFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES;
#else
uint16_t WriteFlashAddress = (uint16_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES;
#endif
for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i += 2) for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i += 2)
{ {
if ((WriteFlashAddress % SPM_PAGESIZE) == 0) if ((WriteFlashAddress % SPM_PAGESIZE) == 0)
{ {
/* Erase the given FLASH page, ready to be programmed */ /* Erase the given FLASH page, ready to be programmed */
boot_page_erase(WriteFlashAddress); BootloaderAPI_ErasePage(WriteFlashAddress);
boot_spm_busy_wait();
} }
/* Write the next data word to the FLASH page */ /* Write the next data word to the FLASH page */
boot_page_fill(WriteFlashAddress, (BlockBuffer[i + 1] << 8) | BlockBuffer[i]); BootloaderAPI_FillWord(WriteFlashAddress, (BlockBuffer[i + 1] << 8) | BlockBuffer[i]);
WriteFlashAddress += 2; WriteFlashAddress += 2;
if ((WriteFlashAddress % SPM_PAGESIZE) == 0) if ((WriteFlashAddress % SPM_PAGESIZE) == 0)
{ {
/* Write the filled FLASH page to memory */ /* Write the filled FLASH page to memory */
boot_page_write(WriteFlashAddress - SPM_PAGESIZE); BootloaderAPI_WritePage(WriteFlashAddress - SPM_PAGESIZE);
boot_spm_busy_wait();
} }
} }
} }
@ -219,10 +221,17 @@ static void ReadVirtualBlock(const uint16_t BlockNumber)
default: /* Blocks 4 onwards: Data allocation section */ default: /* Blocks 4 onwards: Data allocation section */
if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES)))) if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES))))
{ {
#if (FLASHEND > 0xFFFF)
uint32_t ReadFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES; uint32_t ReadFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES;
for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++) for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++)
BlockBuffer[i] = pgm_read_byte_far(ReadFlashAddress++); BlockBuffer[i] = pgm_read_byte_far(ReadFlashAddress++);
#else
uint16_t ReadFlashAddress = (uint16_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES;
for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++)
BlockBuffer[i] = pgm_read_byte(ReadFlashAddress++);
#endif
} }
break; break;
@ -237,8 +246,8 @@ static void ReadVirtualBlock(const uint16_t BlockNumber)
* PC via the USB Mass Storage interface. * PC via the USB Mass Storage interface.
* *
* \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state
* \param[in] BlockAddress Data block starting address for the write sequence * \param[in] BlockAddress Data block starting address for the write sequence
* \param[in] TotalBlocks Number of blocks of data to write * \param[in] TotalBlocks Number of blocks of data to write
*/ */
void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress, const uint32_t BlockAddress,
@ -256,8 +265,8 @@ void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
* to the host PC via the USB Mass Storage interface. * to the host PC via the USB Mass Storage interface.
* *
* \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state
* \param[in] BlockAddress Data block starting address for the read sequence * \param[in] BlockAddress Data block starting address for the read sequence
* \param[in] TotalBlocks Number of blocks of data to read * \param[in] TotalBlocks Number of blocks of data to read
*/ */
void VirtualFAT_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, void VirtualFAT_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress, const uint32_t BlockAddress,

@ -37,9 +37,11 @@
#include <LUFA/Drivers/USB/USB.h> #include <LUFA/Drivers/USB/USB.h>
#include "../BootloaderAPI.h"
/* Macros: */ /* Macros: */
/** Size of the virtual FIRMWARE.BIN file in bytes. */ /** Size of the virtual FIRMWARE.BIN file in bytes. */
#define FIRMWARE_FILE_SIZE_BYTES (FLASHEND - (FLASHEND - BOOT_START_ADDR)) #define FIRMWARE_FILE_SIZE_BYTES (FLASHEND - (FLASHEND - BOOT_START_ADDR) - AUX_BOOT_SECTION_SIZE)
/** Number of sectors that comprise a single logical disk cluster. */ /** Number of sectors that comprise a single logical disk cluster. */
#define SECTOR_PER_CLUSTER 4 #define SECTOR_PER_CLUSTER 4
@ -144,16 +146,16 @@
#if defined(INCLUDE_FROM_VIRTUAL_FAT_C) #if defined(INCLUDE_FROM_VIRTUAL_FAT_C)
static void UpdateFAT12ClusterEntry(uint8_t* const FATTable, static void UpdateFAT12ClusterEntry(uint8_t* const FATTable,
const uint16_t Index, const uint16_t Index,
const uint16_t ChainEntry); const uint16_t ChainEntry) AUX_BOOT_SECTION;
static void WriteVirtualBlock(const uint16_t BlockNumber); static void WriteVirtualBlock(const uint16_t BlockNumber) AUX_BOOT_SECTION;
static void ReadVirtualBlock(const uint16_t BlockNumber); static void ReadVirtualBlock(const uint16_t BlockNumber) AUX_BOOT_SECTION;
#endif #endif
void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress, const uint32_t BlockAddress,
uint16_t TotalBlocks); uint16_t TotalBlocks) AUX_BOOT_SECTION;
void VirtualFAT_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, void VirtualFAT_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
const uint32_t BlockAddress, const uint32_t BlockAddress,
uint16_t TotalBlocks); uint16_t TotalBlocks) AUX_BOOT_SECTION;
#endif #endif

@ -27,20 +27,33 @@ LD_FLAGS = -Wl,--section-start=.text=$(BOOT_START_OFFSET) $(BOOT_API_LD_FLAG
# match the target's total FLASH size and the bootloader size set in the # match the target's total FLASH size and the bootloader size set in the
# device's fuses. # device's fuses.
FLASH_SIZE_KB = 128 FLASH_SIZE_KB = 128
BOOT_SECTION_SIZE_KB = 8 BOOT_SECTION_SIZE_KB = 4
# Bootloader address calculation formulas # Bootloader address calculation formulas
# Do not modify these macros, but rather modify the dependent values above. # Do not modify these macros, but rather modify the dependent values above.
CALC_ADDRESS_IN_HEX = $(shell printf "0x%X" $$(( $(1) )) ) CALC_ADDRESS_IN_HEX = $(shell printf "0x%X" $$(( $(1) )) )
BOOT_START_OFFSET = $(call CALC_ADDRESS_IN_HEX, ($(FLASH_SIZE_KB) - $(BOOT_SECTION_SIZE_KB)) * 1024 ) BOOT_START_OFFSET = $(call CALC_ADDRESS_IN_HEX, ($(FLASH_SIZE_KB) - $(BOOT_SECTION_SIZE_KB)) * 1024 )
BOOT_SEC_OFFSET = $(call CALC_ADDRESS_IN_HEX, ($(FLASH_SIZE_KB) * 1024) - $(strip $(1)) ) BOOT_SEC_OFFSET = $(call CALC_ADDRESS_IN_HEX, ($(FLASH_SIZE_KB) * 1024) - ($(strip $(1))) )
# Bootloader linker section flags for relocating the API table sections to # Bootloader linker section flags for relocating the API table sections to
# known FLASH addresses - these should not normally be user-edited. # known FLASH addresses - these should not normally be user-edited.
BOOT_SECTION_LD_FLAG = -Wl,--section-start=.apitable_$(strip $(1))=$(call BOOT_SEC_OFFSET, $(3)) -Wl,--undefined=BootloaderAPI_$(strip $(2)) BOOT_SECTION_LD_FLAG = -Wl,--section-start=$(strip $(1))=$(call BOOT_SEC_OFFSET, $(3)) -Wl,--undefined=$(strip $(2))
BOOT_API_LD_FLAGS = $(call BOOT_SECTION_LD_FLAG, trampolines, Trampolines, 96) BOOT_API_LD_FLAGS = $(call BOOT_SECTION_LD_FLAG, .apitable_trampolines, BootloaderAPI_Trampolines, 96)
BOOT_API_LD_FLAGS += $(call BOOT_SECTION_LD_FLAG, jumptable, JumpTable, 32) BOOT_API_LD_FLAGS += $(call BOOT_SECTION_LD_FLAG, .apitable_jumptable, BootloaderAPI_JumpTable, 32)
BOOT_API_LD_FLAGS += $(call BOOT_SECTION_LD_FLAG, signatures, Signatures, 8) BOOT_API_LD_FLAGS += $(call BOOT_SECTION_LD_FLAG, .apitable_signatures, BootloaderAPI_Signatures, 8)
# Check if the bootloader needs an AUX section, located before the real bootloader section to store some of the
# bootloader code. This is required for 32KB and smaller devices, where the actual bootloader is 6KB but the maximum
# bootloader section size is 4KB. The actual usable application space will be reduced by 6KB for these devices.
ifeq ($(BOOT_SECTION_SIZE_KB),8)
CC_FLAGS += -DAUX_BOOT_SECTION='' -DAUX_BOOT_SECTION_SIZE=0
else
AUX_BOOT_SECTION_KB = (6 - $(BOOT_SECTION_SIZE_KB))
CC_FLAGS += -DAUX_BOOT_SECTION='__attribute__((section(".boot_aux")))' -DAUX_BOOT_SECTION_SIZE='($(AUX_BOOT_SECTION_KB) * 1024)'
LD_FLAGS += -Wl,--section-start=.boot_aux=$(call BOOT_SEC_OFFSET, (($(BOOT_SECTION_SIZE_KB) + $(AUX_BOOT_SECTION_KB)) * 1024 - 16))
LD_FLAGS += $(call BOOT_SECTION_LD_FLAG, .boot_aux_trampoline, Boot_AUX_Trampoline, ($(BOOT_SECTION_SIZE_KB) + $(AUX_BOOT_SECTION_KB)) * 1024)
endif
# Default target # Default target
all: all:

Loading…
Cancel
Save