Reduce rgb matrix firmware size

pull/5884/head^2 0.6.385
Ryan Caltabiano 6 years ago committed by Drashna Jaelre
parent e7af23788f
commit c9a7161d93

@ -32,6 +32,14 @@
const point_t k_rgb_matrix_center = RGB_MATRIX_CENTER;
#endif
// Generic effect runners
#include "rgb_matrix_runners/effect_runner_dx_dy_dist.h"
#include "rgb_matrix_runners/effect_runner_dx_dy.h"
#include "rgb_matrix_runners/effect_runner_i.h"
#include "rgb_matrix_runners/effect_runner_sin_cos_i.h"
#include "rgb_matrix_runners/effect_runner_reactive.h"
#include "rgb_matrix_runners/effect_runner_reactive_splash.h"
// ------------------------------------------
// -----Begin rgb effect includes macros-----
#define RGB_MATRIX_EFFECT(name)

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(BAND_PINWHEEL_SAT)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_PINWHEEL_SAT(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, 0, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
hsv.s = rgb_matrix_config.sat - time - atan2_8(dy, dx) * 3;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void BAND_PINWHEEL_SAT_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t time) {
hsv->s = rgb_matrix_config.sat - time - atan2_8(dy, dx) * 3;
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_PINWHEEL_SAT(effect_params_t* params) {
return effect_runner_dx_dy(params, &BAND_PINWHEEL_SAT_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(BAND_PINWHEEL_VAL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_PINWHEEL_VAL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
hsv.v = rgb_matrix_config.val - time - atan2_8(dy, dx) * 3;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void BAND_PINWHEEL_VAL_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t time) {
hsv->v = rgb_matrix_config.val - time - atan2_8(dy, dx) * 3;
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_PINWHEEL_VAL(effect_params_t* params) {
return effect_runner_dx_dy(params, &BAND_PINWHEEL_VAL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,19 +2,13 @@
RGB_MATRIX_EFFECT(BAND_SAT)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_SAT(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, 0, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
static void BAND_SAT_math(HSV* hsv, uint8_t i, uint8_t time) {
int16_t s = rgb_matrix_config.sat - abs(scale8(g_led_config.point[i].x, 228) + 28 - time) * 8;
hsv.s = s < 0 ? 0 : s;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
hsv->s = s < 0 ? 0 : s;
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_SAT(effect_params_t* params) {
return effect_runner_i(params, &BAND_SAT_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,21 +2,12 @@
RGB_MATRIX_EFFECT(BAND_SPIRAL_SAT)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_SPIRAL_SAT(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, 0, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
uint8_t dist = sqrt16(dx * dx + dy * dy);
hsv.s = rgb_matrix_config.sat + dist - time - atan2_8(dy, dx);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void BAND_SPIRAL_SAT_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint8_t time) {
hsv->s = rgb_matrix_config.sat + dist - time - atan2_8(dy, dx);
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_SPIRAL_SAT(effect_params_t* params) {
return effect_runner_dx_dy_dist(params, &BAND_SPIRAL_SAT_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,21 +2,12 @@
RGB_MATRIX_EFFECT(BAND_SPIRAL_VAL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_SPIRAL_VAL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
uint8_t dist = sqrt16(dx * dx + dy * dy);
hsv.v = rgb_matrix_config.val + dist - time - atan2_8(dy, dx);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void BAND_SPIRAL_VAL_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint8_t time) {
hsv->v = rgb_matrix_config.val + dist - time - atan2_8(dy, dx);
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_SPIRAL_VAL(effect_params_t* params) {
return effect_runner_dx_dy_dist(params, &BAND_SPIRAL_VAL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,19 +2,13 @@
RGB_MATRIX_EFFECT(BAND_VAL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool BAND_VAL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
static void BAND_VAL_math(HSV* hsv, uint8_t i, uint8_t time) {
int16_t v = rgb_matrix_config.val - abs(scale8(g_led_config.point[i].x, 228) + 28 - time) * 8;
hsv.v = v < 0 ? 0 : v;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
hsv->v = v < 0 ? 0 : v;
}
return led_max < DRIVER_LED_TOTAL;
bool BAND_VAL(effect_params_t* params) {
return effect_runner_i(params, &BAND_VAL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,17 +2,13 @@
RGB_MATRIX_EFFECT(CYCLE_ALL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_ALL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
hsv.h = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_ALL_math(HSV* hsv, uint8_t i, uint8_t time)
{
hsv->h = time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_ALL(effect_params_t* params) {
return effect_runner_i(params, &CYCLE_ALL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,18 +2,12 @@
RGB_MATRIX_EFFECT(CYCLE_LEFT_RIGHT)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_LEFT_RIGHT(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = g_led_config.point[i].x - time;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_LEFT_RIGHT_math(HSV* hsv, uint8_t i, uint8_t time) {
hsv->h = g_led_config.point[i].x - time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_LEFT_RIGHT(effect_params_t* params) {
return effect_runner_i(params, &CYCLE_LEFT_RIGHT_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,21 +2,12 @@
RGB_MATRIX_EFFECT(CYCLE_OUT_IN)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_OUT_IN(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - k_rgb_matrix_center.x;
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
uint8_t dist = sqrt16(dx * dx + dy * dy);
hsv.h = 3 * dist / 2 + time;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_OUT_IN_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint8_t time) {
hsv->h = 3 * dist / 2 + time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_OUT_IN(effect_params_t* params) {
return effect_runner_dx_dy_dist(params, &CYCLE_OUT_IN_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,21 +2,14 @@
RGB_MATRIX_EFFECT(CYCLE_OUT_IN_DUAL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_OUT_IN_DUAL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = (k_rgb_matrix_center.x / 2) - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x);
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
static void CYCLE_OUT_IN_DUAL_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t time) {
dx = (k_rgb_matrix_center.x / 2) - abs8(dx);
uint8_t dist = sqrt16(dx * dx + dy * dy);
hsv.h = 3 * dist + time;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
hsv->h = 3 * dist + time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_OUT_IN_DUAL(effect_params_t* params) {
return effect_runner_dx_dy(params, &CYCLE_OUT_IN_DUAL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(CYCLE_PINWHEEL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_PINWHEEL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
hsv.h = atan2_8(dy, dx) + time;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_PINWHEEL_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t time) {
hsv->h = atan2_8(dy, dx) + time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_PINWHEEL(effect_params_t* params) {
return effect_runner_dx_dy(params, &CYCLE_PINWHEEL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,21 +2,12 @@
RGB_MATRIX_EFFECT(CYCLE_SPIRAL)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_SPIRAL(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - 112;
int16_t dy = g_led_config.point[i].y - 32;
uint8_t dist = sqrt16(dx * dx + dy * dy);
hsv.h = dist - time - atan2_8(dy, dx);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_SPIRAL_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint8_t time) {
hsv->h = dist - time - atan2_8(dy, dx);
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_SPIRAL(effect_params_t* params) {
return effect_runner_dx_dy_dist(params, &CYCLE_SPIRAL_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,18 +2,12 @@
RGB_MATRIX_EFFECT(CYCLE_UP_DOWN)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool CYCLE_UP_DOWN(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = g_led_config.point[i].y - time;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void CYCLE_UP_DOWN_math(HSV* hsv, uint8_t i, uint8_t time) {
hsv->h = g_led_config.point[i].y - time;
}
return led_max < DRIVER_LED_TOTAL;
bool CYCLE_UP_DOWN(effect_params_t* params) {
return effect_runner_i(params, &CYCLE_UP_DOWN_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(DUAL_BEACON)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool DUAL_BEACON(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
int8_t cos_value = cos8(time) - 128;
int8_t sin_value = sin8(time) - 128;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void DUAL_BEACON_math(HSV* hsv, int8_t sin, int8_t cos, uint8_t i, uint8_t time) {
hsv->h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin) / 128 + rgb_matrix_config.hue;
}
return led_max < DRIVER_LED_TOTAL;
bool DUAL_BEACON(effect_params_t* params) {
return effect_runner_sin_cos_i(params, &DUAL_BEACON_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(RAINBOW_BEACON)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool RAINBOW_BEACON(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
int16_t cos_value = 2 * (cos8(time) - 128);
int16_t sin_value = 2 * (sin8(time) - 128);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void RAINBOW_BEACON_math(HSV* hsv, int8_t sin, int8_t cos, uint8_t i, uint8_t time) {
hsv->h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * 2 * cos + (g_led_config.point[i].x - k_rgb_matrix_center.x) * 2 * sin) / 128 + rgb_matrix_config.hue;
}
return led_max < DRIVER_LED_TOTAL;
bool RAINBOW_BEACON(effect_params_t* params) {
return effect_runner_sin_cos_i(params, &RAINBOW_BEACON_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,18 +2,12 @@
RGB_MATRIX_EFFECT(RAINBOW_MOVING_CHEVRON)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool RAINBOW_MOVING_CHEVRON(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = abs8(g_led_config.point[i].y - 32) + (g_led_config.point[i].x - time) + rgb_matrix_config.hue;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void RAINBOW_MOVING_CHEVRON_math(HSV* hsv, uint8_t i, uint8_t time) {
hsv->h = abs8(g_led_config.point[i].y - k_rgb_matrix_center.y) + (g_led_config.point[i].x - time) + rgb_matrix_config.hue;
}
return led_max < DRIVER_LED_TOTAL;
bool RAINBOW_MOVING_CHEVRON(effect_params_t* params) {
return effect_runner_i(params, &RAINBOW_MOVING_CHEVRON_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -2,20 +2,12 @@
RGB_MATRIX_EFFECT(PINWHEELS)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool PINWHEELS(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, rgb_matrix_config.val };
uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
int16_t cos_value = 3 * (cos8(time) - 128);
int16_t sin_value = 3 * (sin8(time) - 128);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (56 - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x)) * sin_value) / 128 + rgb_matrix_config.hue;
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
static void PINWHEELS_math(HSV* hsv, int8_t sin, int8_t cos, uint8_t i, uint8_t time) {
hsv->h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * 3 * cos + (56 - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x)) * 3 * sin) / 128 + rgb_matrix_config.hue;
}
return led_max < DRIVER_LED_TOTAL;
bool PINWHEELS(effect_params_t* params) {
return effect_runner_sin_cos_i(params, &PINWHEELS_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -3,30 +3,12 @@
RGB_MATRIX_EFFECT(SOLID_REACTIVE)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool SOLID_REACTIVE(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, 255, rgb_matrix_config.val };
// Max tick based on speed scale ensures results from scale16by8 with rgb_matrix_config.speed are no greater than 255
uint16_t max_tick = 65535 / rgb_matrix_config.speed;
// Relies on hue being 8-bit and wrapping
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
uint16_t tick = max_tick;
// Reverse search to find most recent key hit
for (int8_t j = g_last_hit_tracker.count - 1; j >= 0; j--) {
if (g_last_hit_tracker.index[j] == i && g_last_hit_tracker.tick[j] < tick) {
tick = g_last_hit_tracker.tick[j];
break;
}
static void SOLID_REACTIVE_math(HSV* hsv, uint16_t offset) {
hsv->h = rgb_matrix_config.hue + qsub8(130, offset);
}
uint16_t offset = scale16by8(tick, rgb_matrix_config.speed);
hsv.h = rgb_matrix_config.hue + qsub8(130, offset);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
bool SOLID_REACTIVE(effect_params_t* params) {
return effect_runner_reactive(params, &SOLID_REACTIVE_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -11,45 +11,29 @@ RGB_MATRIX_EFFECT(SOLID_REACTIVE_MULTICROSS)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
static bool rgb_matrix_solid_reactive_multicross_range(uint8_t start, effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
int16_t dist2 = 16;
uint8_t dist3;
uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) + dist;
static void SOLID_REACTIVE_CROSS_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick) {
uint16_t effect = tick + dist;
dx = dx < 0 ? dx * -1 : dx;
dy = dy < 0 ? dy * -1 : dy;
dx = dx * dist2 > 255 ? 255 : dx * dist2;
dy = dy * dist2 > 255 ? 255 : dy * dist2;
dist3 = dx > dy ? dy : dx;
effect += dist3;
dx = dx * 16 > 255 ? 255 : dx * 16;
dy = dy * 16 > 255 ? 255 : dy * 16;
effect += dx > dy ? dy : dx;
if (effect > 255)
effect = 255;
hsv.v = qadd8(hsv.v, 255 - effect);
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
hsv->v = qadd8(hsv->v, 255 - effect);
}
bool SOLID_REACTIVE_MULTICROSS(effect_params_t* params) {
return rgb_matrix_solid_reactive_multicross_range(0, params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_CROSS
bool SOLID_REACTIVE_CROSS(effect_params_t* params) {
return effect_runner_reactive_splash(qsub8(g_last_hit_tracker.count, 1), params, &SOLID_REACTIVE_CROSS_math);
}
#endif
bool SOLID_REACTIVE_CROSS(effect_params_t* params) {
return rgb_matrix_solid_reactive_multicross_range(qsub8(g_last_hit_tracker.count, 1), params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTICROSS
bool SOLID_REACTIVE_MULTICROSS(effect_params_t* params) {
return effect_runner_reactive_splash(0, params, &SOLID_REACTIVE_CROSS_math);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_CROSS) || !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTICROSS)

@ -11,43 +11,29 @@ RGB_MATRIX_EFFECT(SOLID_REACTIVE_MULTINEXUS)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
static bool rgb_matrix_solid_reactive_multinexus_range(uint8_t start, effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
int16_t dist2 = 8;
uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) - dist;
static void SOLID_REACTIVE_NEXUS_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick) {
uint16_t effect = tick - dist;
if (effect > 255)
effect = 255;
if (dist > 72)
effect = 255;
if ((dx > dist2 || dx < -dist2) && (dy > dist2 || dy < -dist2))
if ((dx > 8 || dx < -8) && (dy > 8 || dy < -8))
effect = 255;
hsv.v = qadd8(hsv.v, 255 - effect);
hsv.h = rgb_matrix_config.hue + dy / 4;
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
hsv->v = qadd8(hsv->v, 255 - effect);
hsv->h = rgb_matrix_config.hue + dy / 4;
}
bool SOLID_REACTIVE_MULTINEXUS(effect_params_t* params) {
return rgb_matrix_solid_reactive_multinexus_range(0, params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_NEXUS
bool SOLID_REACTIVE_NEXUS(effect_params_t* params) {
return effect_runner_reactive_splash(qsub8(g_last_hit_tracker.count, 1), params, &SOLID_REACTIVE_NEXUS_math);
}
#endif
bool SOLID_REACTIVE_NEXUS(effect_params_t* params) {
return rgb_matrix_solid_reactive_multinexus_range(qsub8(g_last_hit_tracker.count, 1), params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS
bool SOLID_REACTIVE_MULTINEXUS(effect_params_t* params) {
return effect_runner_reactive_splash(0, params, &SOLID_REACTIVE_NEXUS_math);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_NEXUS) || !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTINEXUS)

@ -3,29 +3,12 @@
RGB_MATRIX_EFFECT(SOLID_REACTIVE_SIMPLE)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
bool SOLID_REACTIVE_SIMPLE(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
// Max tick based on speed scale ensures results from scale16by8 with rgb_matrix_config.speed are no greater than 255
uint16_t max_tick = 65535 / rgb_matrix_config.speed;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
uint16_t tick = max_tick;
// Reverse search to find most recent key hit
for (int8_t j = g_last_hit_tracker.count - 1; j >= 0; j--) {
if (g_last_hit_tracker.index[j] == i && g_last_hit_tracker.tick[j] < tick) {
tick = g_last_hit_tracker.tick[j];
break;
}
static void SOLID_REACTIVE_SIMPLE_math(HSV* hsv, uint16_t offset) {
hsv->v = scale8(255 - offset, rgb_matrix_config.val);
}
uint16_t offset = scale16by8(tick, rgb_matrix_config.speed);
hsv.v = scale8(255 - offset, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
bool SOLID_REACTIVE_SIMPLE(effect_params_t* params) {
return effect_runner_reactive(params, &SOLID_REACTIVE_SIMPLE_math);
}
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

@ -11,37 +11,24 @@ RGB_MATRIX_EFFECT(SOLID_REACTIVE_MULTIWIDE)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
static bool rgb_matrix_solid_reactive_multiwide_range(uint8_t start, effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) + dist * 5;
static void SOLID_REACTIVE_WIDE_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick) {
uint16_t effect = tick + dist * 5;
if (effect > 255)
effect = 255;
hsv.v = qadd8(hsv.v, 255 - effect);
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
hsv->v = qadd8(hsv->v, 255 - effect);
}
bool SOLID_REACTIVE_MULTIWIDE(effect_params_t* params) {
return rgb_matrix_solid_reactive_multiwide_range(0, params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_WIDE
bool SOLID_REACTIVE_WIDE(effect_params_t* params) {
return effect_runner_reactive_splash(qsub8(g_last_hit_tracker.count, 1), params, &SOLID_REACTIVE_WIDE_math);
}
#endif
bool SOLID_REACTIVE_WIDE(effect_params_t* params) {
return rgb_matrix_solid_reactive_multiwide_range(qsub8(g_last_hit_tracker.count, 1), params);
#ifndef DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE
bool SOLID_REACTIVE_MULTIWIDE(effect_params_t* params) {
return effect_runner_reactive_splash(0, params, &SOLID_REACTIVE_WIDE_math);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_WIDE) || !defined(DISABLE_RGB_MATRIX_SOLID_REACTIVE_MULTIWIDE)

@ -11,37 +11,24 @@ RGB_MATRIX_EFFECT(SOLID_MULTISPLASH)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
static bool rgb_matrix_solid_multisplash_range(uint8_t start, effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) - dist;
void SOLID_SPLASH_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick) {
uint16_t effect = tick - dist;
if (effect > 255)
effect = 255;
hsv.v = qadd8(hsv.v, 255 - effect);
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
hsv->v = qadd8(hsv->v, 255 - effect);
}
bool SOLID_MULTISPLASH(effect_params_t* params) {
return rgb_matrix_solid_multisplash_range(0, params);
#ifndef DISABLE_RGB_MATRIX_SOLID_SPLASH
bool SOLID_SPLASH(effect_params_t* params) {
return effect_runner_reactive_splash(qsub8(g_last_hit_tracker.count, 1), params, &SOLID_SPLASH_math);
}
#endif
bool SOLID_SPLASH(effect_params_t* params) {
return rgb_matrix_solid_multisplash_range(qsub8(g_last_hit_tracker.count, 1), params);
#ifndef DISABLE_RGB_MATRIX_SOLID_MULTISPLASH
bool SOLID_MULTISPLASH(effect_params_t* params) {
return effect_runner_reactive_splash(0, params, &SOLID_SPLASH_math);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // !defined(DISABLE_RGB_MATRIX_SPLASH) && !defined(DISABLE_RGB_MATRIX_MULTISPLASH)

@ -11,40 +11,25 @@ RGB_MATRIX_EFFECT(MULTISPLASH)
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
static bool rgb_matrix_multisplash_range(uint8_t start, effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = rgb_matrix_config.hue;
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
uint16_t effect = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed) - dist;
void SPLASH_math(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick) {
uint16_t effect = tick - dist;
if (effect > 255)
effect = 255;
hsv.h += effect;
hsv.v = qadd8(hsv.v, 255 - effect);
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
hsv->h += effect;
hsv->v = qadd8(hsv->v, 255 - effect);
}
bool MULTISPLASH(effect_params_t* params) {
return rgb_matrix_multisplash_range(0, params);
#ifndef DISABLE_RGB_MATRIX_SPLASH
bool SPLASH(effect_params_t* params) {
return effect_runner_reactive_splash(qsub8(g_last_hit_tracker.count, 1), params, &SPLASH_math);
}
#endif
bool SPLASH(effect_params_t* params) {
return rgb_matrix_multisplash_range(qsub8(g_last_hit_tracker.count, 1), params);
#ifndef DISABLE_RGB_MATRIX_MULTISPLASH
bool MULTISPLASH(effect_params_t* params) {
return effect_runner_reactive_splash(0, params, &SPLASH_math);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // !defined(DISABLE_RGB_MATRIX_SPLASH) || !defined(DISABLE_RGB_MATRIX_MULTISPLASH)

@ -0,0 +1,19 @@
#pragma once
typedef void (*dx_dy_f)(HSV* hsv, int16_t dx, int16_t dy, uint8_t time);
bool effect_runner_dx_dy(effect_params_t* params, dx_dy_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - k_rgb_matrix_center.x;
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
effect_func(&hsv, dx, dy, time);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}

@ -0,0 +1,20 @@
#pragma once
typedef void (*dx_dy_dist_f)(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint8_t time);
bool effect_runner_dx_dy_dist(effect_params_t* params, dx_dy_dist_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 2);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t dx = g_led_config.point[i].x - k_rgb_matrix_center.x;
int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y;
uint8_t dist = sqrt16(dx * dx + dy * dy);
effect_func(&hsv, dx, dy, dist, time);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}

@ -0,0 +1,17 @@
#pragma once
typedef void (*i_f)(HSV* hsv, uint8_t i, uint8_t time);
bool effect_runner_i(effect_params_t* params, i_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
effect_func(&hsv, i, time);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}

@ -0,0 +1,31 @@
#pragma once
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
typedef void (*reactive_f)(HSV* hsv, uint16_t offset);
bool effect_runner_reactive(effect_params_t* params, reactive_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
uint16_t max_tick = 65535 / rgb_matrix_config.speed;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
uint16_t tick = max_tick;
// Reverse search to find most recent key hit
for (int8_t j = g_last_hit_tracker.count - 1; j >= 0; j--) {
if (g_last_hit_tracker.index[j] == i && g_last_hit_tracker.tick[j] < tick) {
tick = g_last_hit_tracker.tick[j];
break;
}
}
uint16_t offset = scale16by8(tick, rgb_matrix_config.speed);
effect_func(&hsv, offset);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED

@ -0,0 +1,30 @@
#pragma once
#ifdef RGB_MATRIX_KEYREACTIVE_ENABLED
typedef void (*reactive_splash_f)(HSV* hsv, int16_t dx, int16_t dy, uint8_t dist, uint16_t tick);
bool effect_runner_reactive_splash(uint8_t start, effect_params_t* params, reactive_splash_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { 0, rgb_matrix_config.sat, 0 };
uint8_t count = g_last_hit_tracker.count;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
hsv.h = rgb_matrix_config.hue;
hsv.v = 0;
for (uint8_t j = start; j < count; j++) {
int16_t dx = g_led_config.point[i].x - g_last_hit_tracker.x[j];
int16_t dy = g_led_config.point[i].y - g_last_hit_tracker.y[j];
uint8_t dist = sqrt16(dx * dx + dy * dy);
uint16_t tick = scale16by8(g_last_hit_tracker.tick[j], rgb_matrix_config.speed);
effect_func(&hsv, dx, dy, dist, tick);
}
hsv.v = scale8(hsv.v, rgb_matrix_config.val);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED

@ -0,0 +1,19 @@
#pragma once
typedef void (*sin_cos_i_f)(HSV* hsv, int8_t sin, int8_t cos, uint8_t i, uint8_t time);
bool effect_runner_sin_cos_i(effect_params_t* params, sin_cos_i_f effect_func) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
HSV hsv = { rgb_matrix_config.hue, rgb_matrix_config.sat, rgb_matrix_config.val };
uint16_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4);
int8_t cos_value = cos8(time) - 128;
int8_t sin_value = sin8(time) - 128;
for (uint8_t i = led_min; i < led_max; i++) {
RGB_MATRIX_TEST_LED_FLAGS();
effect_func(&hsv, cos_value, sin_value, i, time);
RGB rgb = hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return led_max < DRIVER_LED_TOTAL;
}
Loading…
Cancel
Save