14 KiB
#Planck Advanced (but not too advanced) cygwin
Users Guide
If you are a user of the cygwin environment in Windows and want the freedom to use the latest tools available, then this is the guide for you. If compiling your own copy of the latest and greatest Gnu C Compiler makes you super happy, then this is the guide for you. If the command line make you smile, then this is the guide for you.
This guide was written step by step as I went through the process on a Windows 10
x86_64
and a Windows 7
amd k10
based system. This should be generally applicable to to any Windows
environment with cygwin
.
#####Do not skip steps. Do not move past a step until the previous step finishes successfully.
Based on avr-libc installation guide
##Get the Required Packages
Download the cygwin
setup (x86_64) and install the default system plus the following if they are not already selected:
- devel/gcc-core
- devel/gcc-g++
- devel/flex
- devel/git
- devel/bison
- devel/make
- libs/libgcc1
- interpreters/m4
- web/wget
- archive/unzip
The following sources will be required:
The dfu-programmer
will be required to flash the new firmware
- dfu-programmer (0.7.2)
The set of commands below will create a directory (~/local/avr
) for the sources you compile to be installed on the machine and a directory (~/src
) for these source files to be stored. The commands then download the sources of the needed packages and unpack them. Note: the expand commands are different depending on if the packages are offered as a bz2
or gz
archive
$ mkdir ~/local
$ mkdir ~/local/avr
$ mkdir ~/src
$ cd ~/src
$ wget https://gmplib.org/download/gmp/gmp-6.1.0.tar.bz2
$ wget http://www.mpfr.org/mpfr-3.1.4/mpfr-3.1.4.tar.bz2
$ wget ftp://ftp.gnu.org/gnu/mpc/mpc-1.0.3.tar.gz
$ wget http://ftp.gnu.org/gnu/binutils/binutils-2.26.tar.gz
$ wget http://mirror0.babylon.network/gcc/releases/gcc-5.3.0/gcc-5.3.0.tar.gz
$ wget http://download.savannah.gnu.org/releases/avr-libc/avr-libc-2.0.0.tar.bz2
$ tar -xjf gmp-6.1.0.tar.bz2
$ tar -xjf mpfr-3.1.4.tar.bz2
$ tar -zxf mpc-1.0.3.tar.gz
$ tar -zxf binutils-2.26.tar.gz
$ tar -zxf gcc-5.3.0.tar.gz
$ tar -xjf avr-libc-2.0.0.tar.bz2
##Setup the Build Environment
These commands will set up the install directory and the PATH
variable, which will allow you to access your installed packages. Note: if you close the cygwin
terminal window, you will need to rerun these commands, they are not permanent.
$ PREFIX=$HOME/local/avr
$ export PREFIX
$ PATH=/usr/local/bin:/usr/local/lib:/usr/local/include:/bin:/lib:/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS
$ PATH=$PATH:$PREFIX/bin
$ export PATH
##The gcc
Required Math Library Packages
The following packages are required to be complied and installed in order to compile gcc
. They are not available through the cygwin
package system, so we have to make them ourselves. They must be complied in this order because each one depends on the previous.
###Build and Install gmp
$ cd ~/src/gmp-6.1.0
$ ./configure --enable-static --disable-shared
$ make
$ make check
$ make install
###Build and Install mpfr
$ cd ~/src/mpfr-3.1.4
$ ./configure --with-gmp-build=../gmp-6.1.0 --enable-static --disable-shared
$ make
$ make check
$ make install
###Build and Install mpc
$ cd ~/src/mpc-1.0.3
$ ./configure --with-gmp=/usr/local --with-mpfr=/usr/local --enable-static --disable-shared
$ make
$ make check
$ make install
##OPTIONAL Part
You can build and install a brand new gcc
or you can use the one supplied by cygwin
. This will take about 4-5 hours to compile (It is a "native build", so it does the entire build 3 times. This takes a long while).
###Build and Install gcc
on your Machine
$ cd ~/src/gcc-5.3.0
$ mkdir obj-local
$ cd obj-local
$ ../configure --enable-languages=c,c++ --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --enable-static --disable-shared
$ make
$ make install
###Build and Install binutils
on your Machine
$ cd ~/src/binutils-2.26
$ mkdir obj-local
$ cd obj-local
$ ../configure
$ make
$ make install
##End OPTIONAL Part
##Buliding binutils
, gcc
, and avr-libc
for the AVR system
Now we can make the critical stuff for compiling our firmware: binutils
, gcc
, and avr-libc
for the AVR architecture. These allow us to build and manipulate the firmware for the keyboard.
###Build binutils
for AVR
$ cd ~/src/binutils-2.26
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX --target=avr --disable-nls
$ make
$ make install
###Build gcc
for AVR
$ cd ~/src/gcc-5.3.0
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --enable-static --disable-shared --disable-nls --disable-libssp --with-dwarf2
$ make
$ make install
For building the avr-libc
, we have to specify the host build system. In my case it is x86_64-unknown-cygwin
. You can look for build system type in the gcc
configure notes for the proper --build
specification to pass when you configure avr-libc
.
###Build avr-libc
for AVR
$ cd ~/src/avr-libc-2.0.0
$ ./configure --prefix=$PREFIX --build=x86_64-unknown-cygwin --host=avr
$ make
$ make install
Build and Install the dfu-programmer
We can either build our own, or use the precomplied binaries. The precompiled binaries don't play well with cygwin
so it is better to build them ourselves. The procedure for the precompiled binaries is included at the end of this guide.
The dfu-programmer
requires libusb
. So let's go ahead and build that first.
$ cd ~/src
$ git clone https://github.com/libusb/libusb.git
$ cd libusb
$ ./bootstrap.sh
$ ./configure --prefix=$PREFIX
$ make
$ make install
Next, we can build the dfu-programmer
. This should be quick.
$ cd ~/src
$ git clone https://github.com/dfu-programmer/dfu-programmer.git
$ cd dfu-programmer
$ ./bootstrap.sh
$ ./configure --prefix=$PREFIX
$ make
$ make install
Verify the installation with:
$ which dfu-programmer
/home/Kevin/local/avr/bin/dfu-programmer
$ dfu-programmer
dfu-programmer 0.7.2
https://github.com/dfu-programmer/dfu-programmer
Type 'dfu-programmer --help' for a list of commands
'dfu-programmer --targets' to list supported target devices
If you are not getting the above result, you will not be able to flash the firmware!
###Install the USB drivers
The official Atmel drivers are included in the windows binary version of dfu-programmer
0.7.2 and allow the dfu-programmer
to program the firmware.
$ cd ~/src
$ wget http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip
$ unzip dfu-programmer-win-0.7.2.zip -d dfu-programmer-win-0.7.2
Then, from an administrator-privileged Windows
terminal, run the following command (adjust the path for username as necessary) and accept the prompt that pops up:
C:\> pnputil -i -a C:\cygwin64\home\Kevin\src\dfu-programmer-win-0.7.2\dfu-prog-usb-1.2.2\atmel_usb_dfu.inf
This should be the result:
Microsoft PnP Utility
Processing inf : atmel_usb_dfu.inf
Successfully installed the driver on a device on the system.
Driver package added successfully.
Published name : oem104.inf
Total attempted: 1
Number successfully imported: 1
Alternativly, the Windows
driver can be installed when prompted by Windows
when the keyboard is attached. Do not let Windows
search for a driver; specify the path to search for a driver and point it to the atmel_usb_dfu.inf
file.
##Building and Flashing the Planck firmware!
If you did everything else right. This part should be a snap! Grab the latest sources from github
, make the Plank firmware, then flash it.
###Build Planck and Load the Firmware
$ cd ~/src
$ git clone https://github.com/jackhumbert/qmk_firmware.git
$ cd qmk_firmware/keyboard/planck
$ make
Make sure there are no errors. You should end up with this or something similar:
Creating load file for Flash: planck.hex
avr-objcopy -O ihex -R .eeprom -R .fuse -R .lock -R .signature planck.elf planck.hex
Creating load file for EEPROM: planck.eep
avr-objcopy -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O ihex planck.elf planck.eep || exit 0
Creating Extended Listing: planck.lss
avr-objdump -h -S -z planck.elf > planck.lss
Creating Symbol Table: planck.sym
avr-nm -n planck.elf > planck.sym
Size after:
text data bss dec hex filename
18602 82 155 18839 4997 planck.elf
-------- end --------
If you do not get the above, you did not build the firmware, and you will have nothing to flash. If you have the fresh clone from github, it was probably something gone wrong in this install process, go check and see what didn't work and threw errors or what steps you might have missed.
But if everything went OK, you are ready to flash! Press the reset button on the bottom of the Planck, wait two seconds, then:
$ make dfu
. . . profit!!!
##extra bits...
###Installing Precompiled dfu-programmer
Binaries (Not recommended)
To install the dfu-programmer
from the binaries, we must get if from the dfu-programmer
website (0.7.2).
Copy this file into your cygwin
home\src directory. (For me, it is C:\cygwin64\home\Kevin\src
), extract the files, move dfu-programmer.exe
to ~/local/avr/bin
. Most obnoxiously, the libusb0_x86.dll
and libusb0.sys
need to be moved from ./dfu-prog-usb-1.2.2/x86/
to a directory in the Windows
PATH
and the cygwin
PATH
. I achieved this by moving the files with Windows Explorer (you know, click and drag...) to C:\cygwin64\home\Kevin\local\avr\bin
Then, in a WINDOWS
command prompt running:
C:\> set PATH=%PATH%;C:\cygwin64\home\Kevin\local\avr\bin
Adjust your path (for username) as needed.
Then, rename libusb0_x86.dll
to libusb0.dll
.
You can tell that you were successful by trying to execute 'dfu-programmer' from the 'cygwin' prompt:
$ which dfu-programmer
/home/Kevin/local/avr/bin/dfu-programmer
$ dfu-programmer
dfu-programmer 0.7.2
https://github.com/dfu-programmer/dfu-programmer
Type 'dfu-programmer --help' for a list of commands
'dfu-programmer --targets' to list supported target devices
If you are not getting the above result, you will not be able to flash the firmware!
- Try making sure your
PATH
variables are set correctly for bothWindows
andcygwin
. - Make sure the
dll
is named correctly. - Do not extract it with
cygwin
'sunzip
as it does not set the executable permission. If you did it anyway, dochmod +x dfu-programmer.exe
.
##Debugging Tools
These tools are for debugging your firmware, etc. before flashing. Theoretically, it can save your flash memory from wearing out. However, these tool do not work 100% for the Planck firmware.
gdb
for AVR
gdb
has a simulator for AVR but it does not support all instructions (like WDT), so it immediately crashes when running the Planck firmware (because lufa.c
disables the WDT in the first few lines of execution). But it can still be useful in debugging example code and test cases, if you know how to use it.
$ cd ~/src
$ git clone git://sourceware.org/git/binutils-gdb.git
$ cd binutils-gdb
$ ./bootstrap
$ mkdir obj-avr
$ cd obj-avr
$ ../configure --prefix=$PREFIX --target=avr --build=x86_64-unknown-cygwin --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --disable-nls --enable-static
$ make
$ make install
simulavr
simulavr
is an AVR simulator. It runs the complied AVR elf's. simulavr
does not support the atmega32u4
device... it does atmega32
but that is not good enough for the firmware (no PORTE and other things), so you cannot run the Planck firmware. I use it to simulate ideas I have for features in separate test projects.
This one is a major pain in the butt because it has a lot of dependencies and it is almost always buggy. I will do my best to explain it but... it was hard to figure out. A few things need to be changed in the 'Makefile' to make it work in cygwin
.
$ cd ~/src
$ git clone https://github.com/Traumflug/simulavr.git
$ cd simulavr
$ ./bootstrap
$ ./configure --prefix=$PREFIX --enable-static --disable-tcl --disable-doxygen-doc
Edit src/Makefile.am
now so that -no-undefined
is included (I did this by removing the SYS_MINGW conditional surrounding libsim_la_LDFLAGS += -no-undefined
and libsimulavr_la_LDFLAGS += -no-undefined \ libsimulavr_la_LIBADD += $(TCL_LIB)
. Also, $(EXEEXT)
is added after kbdgentables
in two places.
$ make
$ make install