You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qmk_firmware/quantum/audio/SID.cpp

420 lines
11 KiB

/*
SID.cpp - Atmega8 MOS6581 SID Emulator
Copyright (c) 2007 Christoph Haberer, christoph(at)roboterclub-freiburg.de
Arduino Library Conversion by Mario Patino, cybernesto(at)gmail.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/************************************************************************
Atmega8 MOS6581 SID Emulator
SID = Sound Interface Device
This program tries to emulate the sound chip SID of the famous
historical C64 Commodore computer.
The SID emulator includes all registers of the original SID, but
some functions may not be implemented yet.
If you want to program the SID registers to generate your own sound,
please refer to the MOS6581 datasheet. The emulator tries to be as
compatible as possible.
In the main program there is an interrupt routine which sets the
ouptut values for the PWM-Output at 62.5kHz. Therefore the high
frequency noise of the PWM should not be audible to normal people.
The output is calculated with a 16kHz sample frequency to save
processing cycles.
The envelope generators are updated every 1ms.
The amplitude value is output as an 8Bit PWM value.
The PWM-Output may be directly connected to an audio amplifier.
************************************************************************
Hardware
processor: ATMEGA8, ATMEGA168
clock: 16MHz Crystal
PIN15 PB1/OC1A 8Bit PWM sound output
PIN19 PB0 test LED
***************************************************************************/
#include <avr/interrupt.h>
#include "SID.h"
// attack, decay, release envelope timings
const static uint16_t AttackRate[16]={2,4,16,24,38,58,68,80,100,250,500,800,1000,3000,5000,8000};
const static uint16_t DecayReleaseRate[16]={6,24,48,72,114,168,204,240,300,750,1500,2400,3000,9000,15000,24000};
static uint8_t output;
static Sid_t Sid;
static Oscillator_t osc[OSCILLATORS];
void initialize()
{
// TIMER1 used to generate sound output
// TIMER1: Fast PWM 8-bit
TCCR1A = (1 << WGM10) | (1 << COM1A1) ;
// TIMER1: no prescaling
TCCR1B = (1 << WGM12) | (1 << CS10);
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
// TIMER2 used to generate sample and ms interrupts
// TIMER2: Normal Mode
TCCR2 = 0;
// TIMER2: clock/8 prescaling
TCCR2 |= (1 << CS21);
// TIMER2: set compare value to generate a 16kHz sample rate
OCR2 = SAMPLERATECOUNT;
// interrupt mask register: enable timer2 OCR2A interrupt
TIMSK = (1 << OCIE2);
// interrupt mask register: enable timer1 overflow
TIMSK |= (1 << TOIE1);
#else
// TIMER2 used to generate sample and ms interrupts
// TIMER2: Normal Mode
TCCR2A = 0 ;
// TIMER2: clock/8 prescaling
TCCR2B = (1 << CS21);
// TIMER2: set compare value to generate a 16kHz sample rate
OCR2A = SAMPLERATECOUNT;
// interrupt mask register: enable timer2 OCR2A interrupt
TIMSK2 = (1 << OCIE2A);
// interrupt mask register: enable timer1 overflow
TIMSK1 = (1 << TOIE1);
#endif
}
static int8_t wave(Voice_t *voice, uint16_t phase)
{
int8_t out;
uint8_t n = phase >> 8;
uint8_t wavetype = voice->ControlReg;
if(wavetype & SAWTOOTH)
{
out = n - 128;
}
if(wavetype & TRIANGLE)
{
if(n&0x80)
out = ((n^0xFF)<<1)-128;
else
out = (n<<1)-128;
}
if(wavetype & RECTANGLE)
{
if(n > (voice->PW >> 4)) // SID has 12Bit pwm, here we use only 8Bit
out = 127;
else
out = -127;
}
return out;
}
static void waveforms()
{
static uint16_t phase[3], sig[3];
static int16_t temp,temp1;
static uint8_t i,j,k;
static uint16_t noise = 0xACE1;
static uint8_t noise8;
static uint16_t tempphase;
// noise generator based on Galois LFSR
noise = (noise >> 1) ^ (-(noise & 1) & 0xB400u);
noise8 = noise>>8;
for(i = 0; i< 3; i++)
{
j = (i == 0 ? 2 : i - 1);
tempphase=phase[i]+osc[i].freq_coefficient; //0.88us
if(Sid.block.voice[i].ControlReg&NOISE)
{
if((tempphase^phase[i])&0x4000) sig[i]=noise8*osc[i].envelope;
}
else
{
if(Sid.block.voice[i].ControlReg&RINGMOD)
{
if(phase[j]&0x8000)
sig[i]=osc[i].envelope*-wave(&Sid.block.voice[i],phase[i]);
else
sig[i]=osc[i].envelope*wave(&Sid.block.voice[i],phase[i]);
}
else
{
if(Sid.block.voice[i].ControlReg&SYNC)
{
if(tempphase < phase[j])
phase[i] = 0;
}
else
sig[i]=osc[i].envelope*wave(&Sid.block.voice[i],phase[i]); //2.07us
}
}
phase[i]=tempphase;
}
// voice filter selection
temp=0; // direct output variable
temp1=0; // filter output variable
if(Sid.block.RES_Filt&FILT1) temp1+=sig[0];
else temp+=sig[0];
if(Sid.block.RES_Filt&FILT2) temp1+=sig[1];
else temp+=sig[1];
if(Sid.block.RES_Filt&FILT3) temp1+=sig[2];
else if(!(Sid.block.Mode_Vol&VOICE3OFF))temp+=sig[2]; // voice 3 with special turn off bit
//filterOutput = IIR2((struct IIR_filter*)&filter04_06, filterInput);
//IIR2(filter04_06, temp1);
k=(temp>>8)+128;
k+=temp1>>10; // no real filter implemeted yet
output = k; // Output to PWM
}
static void envelopes()
{
uint8_t n;
uint8_t controll_regadr[3]={4,11,18};
// if gate is ONE then the attack,decay,sustain cycle begins
// if gate switches to zero the sound decays
for(n=0;n<OSCILLATORS;n++)
{
if(Sid.sidregister[controll_regadr[n]]&GATE) // if gate set then attack,decay,sustain
{
if(osc[n].attackdecay_flag)
{ // if attack cycle
osc[n].amp+=osc[n].m_attack;
if(osc[n].amp>MAXLEVEL)
{
osc[n].amp=MAXLEVEL;
osc[n].attackdecay_flag=false; // if level reached, then switch to decay
}
}
else // decay cycle
{
if(osc[n].amp>osc[n].level_sustain)
{
osc[n].amp-=osc[n].m_decay;
if(osc[n].amp<osc[n].level_sustain) osc[n].amp=osc[n].level_sustain;
}
}
}
else // if gate flag is not set then release
{
osc[n].attackdecay_flag=true; // at next attack/decay cycle start wiht attack
if(osc[n].amp>0)
{
osc[n].amp-=osc[n].m_release;
if(osc[n].amp<0) osc[n].amp=0;
}
}
osc[n].envelope=osc[n].amp>>8;
}
}
/************************************************************************
interrupt routine timer 1 overflow
- set PWM output
************************************************************************/
ISR(TIMER1_OVF_vect)
{
OCR1A = output; // Output to PWM
}
/************************************************************************
interrupt routine timer 2 16kHz
- calculate waverform phases
- calculate waveforms
- calculate attack decay release (1kHz)
************************************************************************/
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
ISR(TIMER2_COMP_vect)
{
static uint8_t mscounter = 0;
OCR2 += SAMPLERATECOUNT; // Output to PWM
waveforms(); //~22us
if(mscounter++ >= MSCOUNT)
{
envelopes(); //~16us
mscounter = 0;
}
}
#else
ISR(TIMER2_COMPA_vect)
{
static uint8_t mscounter = 0;
OCR2A += SAMPLERATECOUNT; // Output to PWM
waveforms(); //~36us
if(mscounter++ >= MSCOUNT)
{
envelopes(); //~16us
mscounter = 0;
}
}
#endif
// Constructor /////////////////////////////////////////////////////////////////
// Function that handles the creation and setup of instances
void SID::begin()
{
pinMode(9, OUTPUT);
initialize();
//initialize SID-registers
Sid.sidregister[6]=0xF0;
Sid.sidregister[13]=0xF0;
Sid.sidregister[20]=0xF0;
// set all amplitudes to zero
for(int n=0;n<OSCILLATORS;n++) {
osc[n].attackdecay_flag=true;
setenvelope(&Sid.block.voice[n]);
osc[n].amp=0;
}
}
// Public Methods //////////////////////////////////////////////////////////////
// Functions available in Wiring sketches, this library, and other libraries
/************************************************************************
uint8_t set_sidregister(uint8_t regnum, uint8_t value)
The registers of the virtual SID are set by this routine.
For some registers it is necessary to transform the SID-register
values to some internal settings of the emulator.
To select this registers and to start the calculation, the switch/
case statement is used.
For instance: If setting the SID envelope register, new attach, decay
sustain times are calculated.
If an invalid register is requested the returned value will be 0.
4.2007 ch
************************************************************************/
uint8_t SID::set_register(uint8_t regnum, uint8_t value)
{
if(regnum>NUMREGISTERS-1)
return 0;
Sid.sidregister[regnum]=value;
switch(regnum)
{
//voice1
case 1:
osc[0].freq_coefficient=((uint16_t)Sid.sidregister[0]+((uint16_t)Sid.sidregister[1]<<8))>>2;
break;
case 5: setenvelope(&Sid.block.voice[0]);break;
case 6: setenvelope(&Sid.block.voice[0]);break;
//voice2
case 8:
osc[1].freq_coefficient=((uint16_t)Sid.sidregister[7]+((uint16_t)Sid.sidregister[8]<<8))>>2;
break;
case 12: setenvelope(&Sid.block.voice[1]);break;
case 13: setenvelope(&Sid.block.voice[1]);break;
//voice3
case 15:
osc[2].freq_coefficient=((uint16_t)Sid.sidregister[14]+((uint16_t)Sid.sidregister[15]<<8))>>2;
break;
case 19: setenvelope(&Sid.block.voice[2]);break;
case 20: setenvelope(&Sid.block.voice[2]);break;
}
return 1;
}
/************************************************************************
uint8_t get_sidregister(uint8_t regnum)
The registers of the virtual SID are read by this routine.
If an invalid register is requested it returns zero.
************************************************************************/
uint8_t SID::get_register(uint8_t regnum)
{
if(regnum>NUMREGISTERS-1)
return 0;
return Sid.sidregister[regnum];
}
// Private Methods /////////////////////////////////////////////////////////////
// Functions only available to other functions in this library
uint8_t SID::get_wavenum(Voice_t *voice)
{
uint8_t n;
if(voice==&Sid.block.voice[0]) n=0;
if(voice==&Sid.block.voice[1]) n=1;
if(voice==&Sid.block.voice[2]) n=2;
return n;
}
void SID::setfreq(Voice_t *voice,uint16_t freq)
{
uint32_t templong;
uint8_t n;
n=get_wavenum(voice);
templong=freq;
osc[n].freq_coefficient=templong*4000/SAMPLEFREQ;
}
void SID::setenvelope(Voice_t *voice)
{
uint8_t n;
n=get_wavenum(voice);
osc[n].attackdecay_flag=true;
osc[n].level_sustain=(voice->SustainRelease>>4)*SUSTAINFACTOR;
osc[n].m_attack=MAXLEVEL/AttackRate[voice->AttackDecay>>4];
osc[n].m_decay=(MAXLEVEL-osc[n].level_sustain*SUSTAINFACTOR)/DecayReleaseRate[voice->AttackDecay&0x0F];
osc[n].m_release=(osc[n].level_sustain)/DecayReleaseRate[voice->SustainRelease&0x0F];
}