/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
* planner . cpp
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* The ring buffer implementation gleaned from the wiring_serial library by David A . Mellis .
*
*
* Reasoning behind the mathematics in this module ( in the key of ' Mathematica ' ) :
*
* s = = speed , a = = acceleration , t = = time , d = = distance
*
* Basic definitions :
* Speed [ s_ , a_ , t_ ] : = s + ( a * t )
* Travel [ s_ , a_ , t_ ] : = Integrate [ Speed [ s , a , t ] , t ]
*
* Distance to reach a specific speed with a constant acceleration :
* Solve [ { Speed [ s , a , t ] = = m , Travel [ s , a , t ] = = d } , d , t ]
* d - > ( m ^ 2 - s ^ 2 ) / ( 2 a ) - - > estimate_acceleration_distance ( )
*
* Speed after a given distance of travel with constant acceleration :
* Solve [ { Speed [ s , a , t ] = = m , Travel [ s , a , t ] = = d } , m , t ]
* m - > Sqrt [ 2 a d + s ^ 2 ]
*
* DestinationSpeed [ s_ , a_ , d_ ] : = Sqrt [ 2 a d + s ^ 2 ]
*
* When to start braking ( di ) to reach a specified destination speed ( s2 ) after accelerating
* from initial speed s1 without ever stopping at a plateau :
* Solve [ { DestinationSpeed [ s1 , a , di ] = = DestinationSpeed [ s2 , a , d - di ] } , di ]
* di - > ( 2 a d - s1 ^ 2 + s2 ^ 2 ) / ( 4 a ) - - > intersection_distance ( )
*
* IntersectionDistance [ s1_ , s2_ , a_ , d_ ] : = ( 2 a d - s1 ^ 2 + s2 ^ 2 ) / ( 4 a )
*
*/
# include "Marlin.h"
# include "planner.h"
# include "stepper.h"
# include "temperature.h"
# include "ultralcd.h"
# include "language.h"
# if ENABLED(MESH_BED_LEVELING)
# include "mesh_bed_leveling.h"
# endif
Planner planner ;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner : : block_buffer [ BLOCK_BUFFER_SIZE ] ;
volatile uint8_t Planner : : block_buffer_head = 0 ; // Index of the next block to be pushed
volatile uint8_t Planner : : block_buffer_tail = 0 ;
float Planner : : max_feedrate_mm_s [ NUM_AXIS ] ; // Max speeds in mm per second
float Planner : : axis_steps_per_mm [ NUM_AXIS ] ;
unsigned long Planner : : max_acceleration_steps_per_s2 [ NUM_AXIS ] ;
unsigned long Planner : : max_acceleration_mm_per_s2 [ NUM_AXIS ] ; // Use M201 to override by software
millis_t Planner : : min_segment_time ;
float Planner : : min_feedrate_mm_s ;
float Planner : : acceleration ; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float Planner : : retract_acceleration ; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float Planner : : travel_acceleration ; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float Planner : : max_xy_jerk ; // The largest speed change requiring no acceleration
float Planner : : max_z_jerk ;
float Planner : : max_e_jerk ;
float Planner : : min_travel_feedrate_mm_s ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 Planner : : bed_level_matrix ; // Transform to compensate for bed level
# endif
# if ENABLED(AUTOTEMP)
float Planner : : autotemp_max = 250 ;
float Planner : : autotemp_min = 210 ;
float Planner : : autotemp_factor = 0.1 ;
bool Planner : : autotemp_enabled = false ;
# endif
// private:
long Planner : : position [ NUM_AXIS ] = { 0 } ;
float Planner : : previous_speed [ NUM_AXIS ] ;
float Planner : : previous_nominal_speed ;
# if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner : : g_uc_extruder_last_move [ EXTRUDERS ] = { 0 } ;
# endif // DISABLE_INACTIVE_EXTRUDER
# ifdef XY_FREQUENCY_LIMIT
// Old direction bits. Used for speed calculations
unsigned char Planner : : old_direction_bits = 0 ;
// Segment times (in µs). Used for speed calculations
long Planner : : axis_segment_time [ 2 ] [ 3 ] = { { MAX_FREQ_TIME + 1 , 0 , 0 } , { MAX_FREQ_TIME + 1 , 0 , 0 } } ;
# endif
/**
* Class and Instance Methods
*/
Planner : : Planner ( ) { init ( ) ; }
void Planner : : init ( ) {
block_buffer_head = block_buffer_tail = 0 ;
memset ( position , 0 , sizeof ( position ) ) ; // clear position
for ( int i = 0 ; i < NUM_AXIS ; i + + ) previous_speed [ i ] = 0.0 ;
previous_nominal_speed = 0.0 ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
bed_level_matrix . set_to_identity ( ) ;
# endif
}
/**
* Calculate trapezoid parameters , multiplying the entry - and exit - speeds
* by the provided factors .
*/
void Planner : : calculate_trapezoid_for_block ( block_t * block , float entry_factor , float exit_factor ) {
unsigned long initial_rate = ceil ( block - > nominal_rate * entry_factor ) ,
final_rate = ceil ( block - > nominal_rate * exit_factor ) ; // (steps per second)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS ( initial_rate , 120 ) ;
NOLESS ( final_rate , 120 ) ;
long accel = block - > acceleration_steps_per_s2 ;
int32_t accelerate_steps = ceil ( estimate_acceleration_distance ( initial_rate , block - > nominal_rate , accel ) ) ;
int32_t decelerate_steps = floor ( estimate_acceleration_distance ( block - > nominal_rate , final_rate , - accel ) ) ;
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block - > step_event_count - accelerate_steps - decelerate_steps ;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort accel and start braking
// in order to reach the final_rate exactly at the end of this block.
if ( plateau_steps < 0 ) {
accelerate_steps = ceil ( intersection_distance ( initial_rate , final_rate , accel , block - > step_event_count ) ) ;
accelerate_steps = max ( accelerate_steps , 0 ) ; // Check limits due to numerical round-off
accelerate_steps = min ( ( uint32_t ) accelerate_steps , block - > step_event_count ) ; //(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0 ;
}
# if ENABLED(ADVANCE)
volatile long initial_advance = block - > advance * sq ( entry_factor ) ;
volatile long final_advance = block - > advance * sq ( exit_factor ) ;
# endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START ; // Fill variables used by the stepper in a critical section
if ( ! block - > busy ) { // Don't update variables if block is busy.
block - > accelerate_until = accelerate_steps ;
block - > decelerate_after = accelerate_steps + plateau_steps ;
block - > initial_rate = initial_rate ;
block - > final_rate = final_rate ;
# if ENABLED(ADVANCE)
block - > initial_advance = initial_advance ;
block - > final_advance = final_advance ;
# endif
}
CRITICAL_SECTION_END ;
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
// return sqrt(
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
//}
// The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner : : reverse_pass_kernel ( block_t * previous , block_t * current , block_t * next ) {
if ( ! current ) return ;
UNUSED ( previous ) ;
if ( next ) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
float max_entry_speed = current - > max_entry_speed ;
if ( current - > entry_speed ! = max_entry_speed ) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if ( ! current - > nominal_length_flag & & max_entry_speed > next - > entry_speed ) {
current - > entry_speed = min ( max_entry_speed ,
max_allowable_speed ( - current - > acceleration , next - > entry_speed , current - > millimeters ) ) ;
}
else {
current - > entry_speed = max_entry_speed ;
}
current - > recalculate_flag = true ;
}
} // Skip last block. Already initialized and set for recalculation.
}
/**
* recalculate ( ) needs to go over the current plan twice .
* Once in reverse and once forward . This implements the reverse pass .
*/
void Planner : : reverse_pass ( ) {
if ( movesplanned ( ) > 3 ) {
block_t * block [ 3 ] = { NULL , NULL , NULL } ;
// Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START ;
uint8_t tail = block_buffer_tail ;
CRITICAL_SECTION_END
uint8_t b = BLOCK_MOD ( block_buffer_head - 3 ) ;
while ( b ! = tail ) {
b = prev_block_index ( b ) ;
block [ 2 ] = block [ 1 ] ;
block [ 1 ] = block [ 0 ] ;
block [ 0 ] = & block_buffer [ b ] ;
reverse_pass_kernel ( block [ 0 ] , block [ 1 ] , block [ 2 ] ) ;
}
}
}
// The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner : : forward_pass_kernel ( block_t * previous , block_t * current , block_t * next ) {
if ( ! previous ) return ;
UNUSED ( next ) ;
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if ( ! previous - > nominal_length_flag ) {
if ( previous - > entry_speed < current - > entry_speed ) {
double entry_speed = min ( current - > entry_speed ,
max_allowable_speed ( - previous - > acceleration , previous - > entry_speed , previous - > millimeters ) ) ;
// Check for junction speed change
if ( current - > entry_speed ! = entry_speed ) {
current - > entry_speed = entry_speed ;
current - > recalculate_flag = true ;
}
}
}
}
/**
* recalculate ( ) needs to go over the current plan twice .
* Once in reverse and once forward . This implements the forward pass .
*/
void Planner : : forward_pass ( ) {
block_t * block [ 3 ] = { NULL , NULL , NULL } ;
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
block [ 0 ] = block [ 1 ] ;
block [ 1 ] = block [ 2 ] ;
block [ 2 ] = & block_buffer [ b ] ;
forward_pass_kernel ( block [ 0 ] , block [ 1 ] , block [ 2 ] ) ;
}
forward_pass_kernel ( block [ 1 ] , block [ 2 ] , NULL ) ;
}
/**
* Recalculate the trapezoid speed profiles for all blocks in the plan
* according to the entry_factor for each junction . Must be called by
* recalculate ( ) after updating the blocks .
*/
void Planner : : recalculate_trapezoids ( ) {
int8_t block_index = block_buffer_tail ;
block_t * current ;
block_t * next = NULL ;
while ( block_index ! = block_buffer_head ) {
current = next ;
next = & block_buffer [ block_index ] ;
if ( current ) {
// Recalculate if current block entry or exit junction speed has changed.
if ( current - > recalculate_flag | | next - > recalculate_flag ) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
float nom = current - > nominal_speed ;
calculate_trapezoid_for_block ( current , current - > entry_speed / nom , next - > entry_speed / nom ) ;
current - > recalculate_flag = false ; // Reset current only to ensure next trapezoid is computed
}
}
block_index = next_block_index ( block_index ) ;
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if ( next ) {
float nom = next - > nominal_speed ;
calculate_trapezoid_for_block ( next , next - > entry_speed / nom , ( MINIMUM_PLANNER_SPEED ) / nom ) ;
next - > recalculate_flag = false ;
}
}
/*
* Recalculate the motion plan according to the following algorithm :
*
* 1. Go over every block in reverse order . . .
*
* Calculate a junction speed reduction ( block_t . entry_factor ) so :
*
* a . The junction jerk is within the set limit , and
*
* b . No speed reduction within one block requires faster
* deceleration than the one , true constant acceleration .
*
* 2. Go over every block in chronological order . . .
*
* Dial down junction speed reduction values if :
* a . The speed increase within one block would require faster
* acceleration than the one , true constant acceleration .
*
* After that , all blocks will have an entry_factor allowing all speed changes to
* be performed using only the one , true constant acceleration , and where no junction
* jerk is jerkier than the set limit , Jerky . Finally it will :
*
* 3. Recalculate " trapezoids " for all blocks .
*/
void Planner : : recalculate ( ) {
reverse_pass ( ) ;
forward_pass ( ) ;
recalculate_trapezoids ( ) ;
}
# if ENABLED(AUTOTEMP)
void Planner : : getHighESpeed ( ) {
static float oldt = 0 ;
if ( ! autotemp_enabled ) return ;
if ( thermalManager . degTargetHotend ( 0 ) + 2 < autotemp_min ) return ; // probably temperature set to zero.
float high = 0.0 ;
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
block_t * block = & block_buffer [ b ] ;
if ( block - > steps [ X_AXIS ] | | block - > steps [ Y_AXIS ] | | block - > steps [ Z_AXIS ] ) {
float se = ( float ) block - > steps [ E_AXIS ] / block - > step_event_count * block - > nominal_speed ; // mm/sec;
NOLESS ( high , se ) ;
}
}
float t = autotemp_min + high * autotemp_factor ;
t = constrain ( t , autotemp_min , autotemp_max ) ;
if ( oldt > t ) {
t * = ( 1 - ( AUTOTEMP_OLDWEIGHT ) ) ;
t + = ( AUTOTEMP_OLDWEIGHT ) * oldt ;
}
oldt = t ;
thermalManager . setTargetHotend ( t , 0 ) ;
}
# endif //AUTOTEMP
/**
* Maintain fans , paste extruder pressure ,
*/
void Planner : : check_axes_activity ( ) {
unsigned char axis_active [ NUM_AXIS ] = { 0 } ,
tail_fan_speed [ FAN_COUNT ] ;
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) tail_fan_speed [ i ] = fanSpeeds [ i ] ;
# endif
# if ENABLED(BARICUDA)
# if HAS_HEATER_1
unsigned char tail_valve_pressure = baricuda_valve_pressure ;
# endif
# if HAS_HEATER_2
unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure ;
# endif
# endif
if ( blocks_queued ( ) ) {
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) tail_fan_speed [ i ] = block_buffer [ block_buffer_tail ] . fan_speed [ i ] ;
# endif
block_t * block ;
# if ENABLED(BARICUDA)
block = & block_buffer [ block_buffer_tail ] ;
# if HAS_HEATER_1
tail_valve_pressure = block - > valve_pressure ;
# endif
# if HAS_HEATER_2
tail_e_to_p_pressure = block - > e_to_p_pressure ;
# endif
# endif
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
block = & block_buffer [ b ] ;
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( block - > steps [ i ] ) axis_active [ i ] + + ;
}
}
# if ENABLED(DISABLE_X)
if ( ! axis_active [ X_AXIS ] ) disable_x ( ) ;
# endif
# if ENABLED(DISABLE_Y)
if ( ! axis_active [ Y_AXIS ] ) disable_y ( ) ;
# endif
# if ENABLED(DISABLE_Z)
if ( ! axis_active [ Z_AXIS ] ) disable_z ( ) ;
# endif
# if ENABLED(DISABLE_E)
if ( ! axis_active [ E_AXIS ] ) {
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
disable_e3 ( ) ;
}
# endif
# if FAN_COUNT > 0
# if defined(FAN_MIN_PWM)
# define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
# else
# define CALC_FAN_SPEED(f) tail_fan_speed[f]
# endif
# ifdef FAN_KICKSTART_TIME
static millis_t fan_kick_end [ FAN_COUNT ] = { 0 } ;
# define KICKSTART_FAN(f) \
if ( tail_fan_speed [ f ] ) { \
millis_t ms = millis ( ) ; \
if ( fan_kick_end [ f ] = = 0 ) { \
fan_kick_end [ f ] = ms + FAN_KICKSTART_TIME ; \
tail_fan_speed [ f ] = 255 ; \
} else { \
if ( PENDING ( ms , fan_kick_end [ f ] ) ) { \
tail_fan_speed [ f ] = 255 ; \
} \
} \
} else { \
fan_kick_end [ f ] = 0 ; \
}
# if HAS_FAN0
KICKSTART_FAN ( 0 ) ;
# endif
# if HAS_FAN1
KICKSTART_FAN ( 1 ) ;
# endif
# if HAS_FAN2
KICKSTART_FAN ( 2 ) ;
# endif
# endif //FAN_KICKSTART_TIME
# if ENABLED(FAN_SOFT_PWM)
# if HAS_FAN0
thermalManager . fanSpeedSoftPwm [ 0 ] = CALC_FAN_SPEED ( 0 ) ;
# endif
# if HAS_FAN1
thermalManager . fanSpeedSoftPwm [ 1 ] = CALC_FAN_SPEED ( 1 ) ;
# endif
# if HAS_FAN2
thermalManager . fanSpeedSoftPwm [ 2 ] = CALC_FAN_SPEED ( 2 ) ;
# endif
# else
# if HAS_FAN0
analogWrite ( FAN_PIN , CALC_FAN_SPEED ( 0 ) ) ;
# endif
# if HAS_FAN1
analogWrite ( FAN1_PIN , CALC_FAN_SPEED ( 1 ) ) ;
# endif
# if HAS_FAN2
analogWrite ( FAN2_PIN , CALC_FAN_SPEED ( 2 ) ) ;
# endif
# endif
# endif // FAN_COUNT > 0
# if ENABLED(AUTOTEMP)
getHighESpeed ( ) ;
# endif
# if ENABLED(BARICUDA)
# if HAS_HEATER_1
analogWrite ( HEATER_1_PIN , tail_valve_pressure ) ;
# endif
# if HAS_HEATER_2
analogWrite ( HEATER_2_PIN , tail_e_to_p_pressure ) ;
# endif
# endif
}
/**
* Planner : : buffer_line
*
* Add a new linear movement to the buffer .
*
* x , y , z , e - target position in mm
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
*/
# if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
void Planner : : buffer_line ( float x , float y , float z , const float & e , float fr_mm_s , const uint8_t extruder )
# else
void Planner : : buffer_line ( const float & x , const float & y , const float & z , const float & e , float fr_mm_s , const uint8_t extruder )
# endif // AUTO_BED_LEVELING_FEATURE
{
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index ( block_buffer_head ) ;
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while ( block_buffer_tail = = next_buffer_head ) idle ( ) ;
# if ENABLED(MESH_BED_LEVELING)
if ( mbl . active ( ) )
z + = mbl . get_z ( x - home_offset [ X_AXIS ] , y - home_offset [ Y_AXIS ] ) ;
# elif ENABLED(AUTO_BED_LEVELING_FEATURE)
apply_rotation_xyz ( bed_level_matrix , x , y , z ) ;
# endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target [ NUM_AXIS ] = {
lround ( x * axis_steps_per_mm [ X_AXIS ] ) ,
lround ( y * axis_steps_per_mm [ Y_AXIS ] ) ,
lround ( z * axis_steps_per_mm [ Z_AXIS ] ) ,
lround ( e * axis_steps_per_mm [ E_AXIS ] )
} ;
long dx = target [ X_AXIS ] - position [ X_AXIS ] ,
dy = target [ Y_AXIS ] - position [ Y_AXIS ] ,
dz = target [ Z_AXIS ] - position [ Z_AXIS ] ;
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if ( DEBUGGING ( DRYRUN ) )
position [ E_AXIS ] = target [ E_AXIS ] ;
long de = target [ E_AXIS ] - position [ E_AXIS ] ;
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
if ( de ) {
if ( thermalManager . tooColdToExtrude ( extruder ) ) {
position [ E_AXIS ] = target [ E_AXIS ] ; // Behave as if the move really took place, but ignore E part
de = 0 ; // no difference
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_ERR_COLD_EXTRUDE_STOP ) ;
}
# if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if ( labs ( de ) > axis_steps_per_mm [ E_AXIS ] * ( EXTRUDE_MAXLENGTH ) ) {
position [ E_AXIS ] = target [ E_AXIS ] ; // Behave as if the move really took place, but ignore E part
de = 0 ; // no difference
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_ERR_LONG_EXTRUDE_STOP ) ;
}
# endif
}
# endif
// Prepare to set up new block
block_t * block = & block_buffer [ block_buffer_head ] ;
// Mark block as not busy (Not executed by the stepper interrupt)
block - > busy = false ;
// Number of steps for each axis
# if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block - > steps [ A_AXIS ] = labs ( dx + dy ) ;
block - > steps [ B_AXIS ] = labs ( dx - dy ) ;
block - > steps [ Z_AXIS ] = labs ( dz ) ;
# elif ENABLED(COREXZ)
// corexz planning
block - > steps [ A_AXIS ] = labs ( dx + dz ) ;
block - > steps [ Y_AXIS ] = labs ( dy ) ;
block - > steps [ C_AXIS ] = labs ( dx - dz ) ;
# elif ENABLED(COREYZ)
// coreyz planning
block - > steps [ X_AXIS ] = labs ( dx ) ;
block - > steps [ B_AXIS ] = labs ( dy + dz ) ;
block - > steps [ C_AXIS ] = labs ( dy - dz ) ;
# else
// default non-h-bot planning
block - > steps [ X_AXIS ] = labs ( dx ) ;
block - > steps [ Y_AXIS ] = labs ( dy ) ;
block - > steps [ Z_AXIS ] = labs ( dz ) ;
# endif
block - > steps [ E_AXIS ] = labs ( de ) ;
block - > steps [ E_AXIS ] * = volumetric_multiplier [ extruder ] ;
block - > steps [ E_AXIS ] * = extruder_multiplier [ extruder ] ;
block - > steps [ E_AXIS ] / = 100 ;
block - > step_event_count = max ( block - > steps [ X_AXIS ] , max ( block - > steps [ Y_AXIS ] , max ( block - > steps [ Z_AXIS ] , block - > steps [ E_AXIS ] ) ) ) ;
// Bail if this is a zero-length block
if ( block - > step_event_count < = dropsegments ) return ;
// For a mixing extruder, get a magnified step_event_count for each
# if ENABLED(MIXING_EXTRUDER)
for ( uint8_t i = 0 ; i < MIXING_STEPPERS ; i + + )
block - > mix_event_count [ i ] = ( mixing_factor [ i ] < 0.0001 ) ? 0 : block - > step_event_count / mixing_factor [ i ] ;
# endif
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) block - > fan_speed [ i ] = fanSpeeds [ i ] ;
# endif
# if ENABLED(BARICUDA)
block - > valve_pressure = baricuda_valve_pressure ;
block - > e_to_p_pressure = baricuda_e_to_p_pressure ;
# endif
// Compute direction bits for this block
uint8_t db = 0 ;
# if ENABLED(COREXY)
if ( dx < 0 ) SBI ( db , X_HEAD ) ; // Save the real Extruder (head) direction in X Axis
if ( dy < 0 ) SBI ( db , Y_HEAD ) ; // ...and Y
if ( dz < 0 ) SBI ( db , Z_AXIS ) ;
if ( dx + dy < 0 ) SBI ( db , A_AXIS ) ; // Motor A direction
if ( dx - dy < 0 ) SBI ( db , B_AXIS ) ; // Motor B direction
# elif ENABLED(COREXZ)
if ( dx < 0 ) SBI ( db , X_HEAD ) ; // Save the real Extruder (head) direction in X Axis
if ( dy < 0 ) SBI ( db , Y_AXIS ) ;
if ( dz < 0 ) SBI ( db , Z_HEAD ) ; // ...and Z
if ( dx + dz < 0 ) SBI ( db , A_AXIS ) ; // Motor A direction
if ( dx - dz < 0 ) SBI ( db , C_AXIS ) ; // Motor C direction
# elif ENABLED(COREYZ)
if ( dx < 0 ) SBI ( db , X_AXIS ) ;
if ( dy < 0 ) SBI ( db , Y_HEAD ) ; // Save the real Extruder (head) direction in Y Axis
if ( dz < 0 ) SBI ( db , Z_HEAD ) ; // ...and Z
if ( dy + dz < 0 ) SBI ( db , B_AXIS ) ; // Motor B direction
if ( dy - dz < 0 ) SBI ( db , C_AXIS ) ; // Motor C direction
# else
if ( dx < 0 ) SBI ( db , X_AXIS ) ;
if ( dy < 0 ) SBI ( db , Y_AXIS ) ;
if ( dz < 0 ) SBI ( db , Z_AXIS ) ;
# endif
if ( de < 0 ) SBI ( db , E_AXIS ) ;
block - > direction_bits = db ;
block - > active_extruder = extruder ;
//enable active axes
# if ENABLED(COREXY)
if ( block - > steps [ A_AXIS ] | | block - > steps [ B_AXIS ] ) {
enable_x ( ) ;
enable_y ( ) ;
}
# if DISABLED(Z_LATE_ENABLE)
if ( block - > steps [ Z_AXIS ] ) enable_z ( ) ;
# endif
# elif ENABLED(COREXZ)
if ( block - > steps [ A_AXIS ] | | block - > steps [ C_AXIS ] ) {
enable_x ( ) ;
enable_z ( ) ;
}
if ( block - > steps [ Y_AXIS ] ) enable_y ( ) ;
# else
if ( block - > steps [ X_AXIS ] ) enable_x ( ) ;
if ( block - > steps [ Y_AXIS ] ) enable_y ( ) ;
# if DISABLED(Z_LATE_ENABLE)
if ( block - > steps [ Z_AXIS ] ) enable_z ( ) ;
# endif
# endif
// Enable extruder(s)
if ( block - > steps [ E_AXIS ] ) {
# if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
for ( int i = 0 ; i < EXTRUDERS ; i + + )
if ( g_uc_extruder_last_move [ i ] > 0 ) g_uc_extruder_last_move [ i ] - - ;
switch ( extruder ) {
case 0 :
enable_e0 ( ) ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( extruder_duplication_enabled ) {
enable_e1 ( ) ;
g_uc_extruder_last_move [ 1 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
}
# endif
g_uc_extruder_last_move [ 0 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
# if EXTRUDERS > 1
if ( g_uc_extruder_last_move [ 1 ] = = 0 ) disable_e1 ( ) ;
# if EXTRUDERS > 2
if ( g_uc_extruder_last_move [ 2 ] = = 0 ) disable_e2 ( ) ;
# if EXTRUDERS > 3
if ( g_uc_extruder_last_move [ 3 ] = = 0 ) disable_e3 ( ) ;
# endif
# endif
# endif
break ;
# if EXTRUDERS > 1
case 1 :
enable_e1 ( ) ;
g_uc_extruder_last_move [ 1 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
if ( g_uc_extruder_last_move [ 0 ] = = 0 ) disable_e0 ( ) ;
# if EXTRUDERS > 2
if ( g_uc_extruder_last_move [ 2 ] = = 0 ) disable_e2 ( ) ;
# if EXTRUDERS > 3
if ( g_uc_extruder_last_move [ 3 ] = = 0 ) disable_e3 ( ) ;
# endif
# endif
break ;
# if EXTRUDERS > 2
case 2 :
enable_e2 ( ) ;
g_uc_extruder_last_move [ 2 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
if ( g_uc_extruder_last_move [ 0 ] = = 0 ) disable_e0 ( ) ;
if ( g_uc_extruder_last_move [ 1 ] = = 0 ) disable_e1 ( ) ;
# if EXTRUDERS > 3
if ( g_uc_extruder_last_move [ 3 ] = = 0 ) disable_e3 ( ) ;
# endif
break ;
# if EXTRUDERS > 3
case 3 :
enable_e3 ( ) ;
g_uc_extruder_last_move [ 3 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
if ( g_uc_extruder_last_move [ 0 ] = = 0 ) disable_e0 ( ) ;
if ( g_uc_extruder_last_move [ 1 ] = = 0 ) disable_e1 ( ) ;
if ( g_uc_extruder_last_move [ 2 ] = = 0 ) disable_e2 ( ) ;
break ;
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
# endif // EXTRUDERS > 1
}
# else
enable_e0 ( ) ;
enable_e1 ( ) ;
enable_e2 ( ) ;
enable_e3 ( ) ;
# endif
}
if ( block - > steps [ E_AXIS ] )
NOLESS ( fr_mm_s , min_feedrate_mm_s ) ;
else
NOLESS ( fr_mm_s , min_travel_feedrate_mm_s ) ;
/**
* This part of the code calculates the total length of the movement .
* For cartesian bots , the X_AXIS is the real X movement and same for Y_AXIS .
* But for corexy bots , that is not true . The " X_AXIS " and " Y_AXIS " motors ( that should be named to A_AXIS
* and B_AXIS ) cannot be used for X and Y length , because A = X + Y and B = X - Y .
* So we need to create other 2 " AXIS " , named X_HEAD and Y_HEAD , meaning the real displacement of the Head .
* Having the real displacement of the head , we can calculate the total movement length and apply the desired speed .
*/
# if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
float delta_mm [ 6 ] ;
# if ENABLED(COREXY)
delta_mm [ X_HEAD ] = dx / axis_steps_per_mm [ A_AXIS ] ;
delta_mm [ Y_HEAD ] = dy / axis_steps_per_mm [ B_AXIS ] ;
delta_mm [ Z_AXIS ] = dz / axis_steps_per_mm [ Z_AXIS ] ;
delta_mm [ A_AXIS ] = ( dx + dy ) / axis_steps_per_mm [ A_AXIS ] ;
delta_mm [ B_AXIS ] = ( dx - dy ) / axis_steps_per_mm [ B_AXIS ] ;
# elif ENABLED(COREXZ)
delta_mm [ X_HEAD ] = dx / axis_steps_per_mm [ A_AXIS ] ;
delta_mm [ Y_AXIS ] = dy / axis_steps_per_mm [ Y_AXIS ] ;
delta_mm [ Z_HEAD ] = dz / axis_steps_per_mm [ C_AXIS ] ;
delta_mm [ A_AXIS ] = ( dx + dz ) / axis_steps_per_mm [ A_AXIS ] ;
delta_mm [ C_AXIS ] = ( dx - dz ) / axis_steps_per_mm [ C_AXIS ] ;
# elif ENABLED(COREYZ)
delta_mm [ X_AXIS ] = dx / axis_steps_per_mm [ A_AXIS ] ;
delta_mm [ Y_HEAD ] = dy / axis_steps_per_mm [ Y_AXIS ] ;
delta_mm [ Z_HEAD ] = dz / axis_steps_per_mm [ C_AXIS ] ;
delta_mm [ B_AXIS ] = ( dy + dz ) / axis_steps_per_mm [ B_AXIS ] ;
delta_mm [ C_AXIS ] = ( dy - dz ) / axis_steps_per_mm [ C_AXIS ] ;
# endif
# else
float delta_mm [ 4 ] ;
delta_mm [ X_AXIS ] = dx / axis_steps_per_mm [ X_AXIS ] ;
delta_mm [ Y_AXIS ] = dy / axis_steps_per_mm [ Y_AXIS ] ;
delta_mm [ Z_AXIS ] = dz / axis_steps_per_mm [ Z_AXIS ] ;
# endif
delta_mm [ E_AXIS ] = ( de / axis_steps_per_mm [ E_AXIS ] ) * volumetric_multiplier [ extruder ] * extruder_multiplier [ extruder ] / 100.0 ;
if ( block - > steps [ X_AXIS ] < = dropsegments & & block - > steps [ Y_AXIS ] < = dropsegments & & block - > steps [ Z_AXIS ] < = dropsegments ) {
block - > millimeters = fabs ( delta_mm [ E_AXIS ] ) ;
}
else {
block - > millimeters = sqrt (
# if ENABLED(COREXY)
sq ( delta_mm [ X_HEAD ] ) + sq ( delta_mm [ Y_HEAD ] ) + sq ( delta_mm [ Z_AXIS ] )
# elif ENABLED(COREXZ)
sq ( delta_mm [ X_HEAD ] ) + sq ( delta_mm [ Y_AXIS ] ) + sq ( delta_mm [ Z_HEAD ] )
# elif ENABLED(COREYZ)
sq ( delta_mm [ X_AXIS ] ) + sq ( delta_mm [ Y_HEAD ] ) + sq ( delta_mm [ Z_HEAD ] )
# else
sq ( delta_mm [ X_AXIS ] ) + sq ( delta_mm [ Y_AXIS ] ) + sq ( delta_mm [ Z_AXIS ] )
# endif
) ;
}
float inverse_millimeters = 1.0 / block - > millimeters ; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_second = fr_mm_s * inverse_millimeters ;
int moves_queued = movesplanned ( ) ;
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
# if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
bool mq = moves_queued > 1 & & moves_queued < ( BLOCK_BUFFER_SIZE ) / 2 ;
# if ENABLED(OLD_SLOWDOWN)
if ( mq ) fr_mm_s * = 2.0 * moves_queued / ( BLOCK_BUFFER_SIZE ) ;
# endif
# if ENABLED(SLOWDOWN)
// segment time im micro seconds
unsigned long segment_time = lround ( 1000000.0 / inverse_second ) ;
if ( mq ) {
if ( segment_time < min_segment_time ) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second = 1000000.0 / ( segment_time + lround ( 2 * ( min_segment_time - segment_time ) / moves_queued ) ) ;
# ifdef XY_FREQUENCY_LIMIT
segment_time = lround ( 1000000.0 / inverse_second ) ;
# endif
}
}
# endif
# endif
block - > nominal_speed = block - > millimeters * inverse_second ; // (mm/sec) Always > 0
block - > nominal_rate = ceil ( block - > step_event_count * inverse_second ) ; // (step/sec) Always > 0
# if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0 , filwidth_delay_dist = 0 ;
//FMM update ring buffer used for delay with filament measurements
if ( extruder = = FILAMENT_SENSOR_EXTRUDER_NUM & & filwidth_delay_index2 > = 0 ) { //only for extruder with filament sensor and if ring buffer is initialized
const int MMD_CM = MAX_MEASUREMENT_DELAY + 1 , MMD_MM = MMD_CM * 10 ;
// increment counters with next move in e axis
filwidth_e_count + = delta_mm [ E_AXIS ] ;
filwidth_delay_dist + = delta_mm [ E_AXIS ] ;
// Only get new measurements on forward E movement
if ( filwidth_e_count > 0.0001 ) {
// Loop the delay distance counter (modulus by the mm length)
while ( filwidth_delay_dist > = MMD_MM ) filwidth_delay_dist - = MMD_MM ;
// Convert into an index into the measurement array
filwidth_delay_index1 = ( int ) ( filwidth_delay_dist / 10.0 + 0.0001 ) ;
// If the index has changed (must have gone forward)...
if ( filwidth_delay_index1 ! = filwidth_delay_index2 ) {
filwidth_e_count = 0 ; // Reset the E movement counter
int8_t meas_sample = thermalManager . widthFil_to_size_ratio ( ) - 100 ; // Subtract 100 to reduce magnitude - to store in a signed char
do {
filwidth_delay_index2 = ( filwidth_delay_index2 + 1 ) % MMD_CM ; // The next unused slot
measurement_delay [ filwidth_delay_index2 ] = meas_sample ; // Store the measurement
} while ( filwidth_delay_index1 ! = filwidth_delay_index2 ) ; // More slots to fill?
}
}
}
# endif
// Calculate and limit speed in mm/sec for each axis
float current_speed [ NUM_AXIS ] ;
float speed_factor = 1.0 ; //factor <=1 do decrease speed
for ( int i = 0 ; i < NUM_AXIS ; i + + ) {
current_speed [ i ] = delta_mm [ i ] * inverse_second ;
float cs = fabs ( current_speed [ i ] ) , mf = max_feedrate_mm_s [ i ] ;
if ( cs > mf ) speed_factor = min ( speed_factor , mf / cs ) ;
}
// Max segement time in us.
# ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
unsigned char direction_change = block - > direction_bits ^ old_direction_bits ;
old_direction_bits = block - > direction_bits ;
segment_time = lround ( ( float ) segment_time / speed_factor ) ;
long xs0 = axis_segment_time [ X_AXIS ] [ 0 ] ,
xs1 = axis_segment_time [ X_AXIS ] [ 1 ] ,
xs2 = axis_segment_time [ X_AXIS ] [ 2 ] ,
ys0 = axis_segment_time [ Y_AXIS ] [ 0 ] ,
ys1 = axis_segment_time [ Y_AXIS ] [ 1 ] ,
ys2 = axis_segment_time [ Y_AXIS ] [ 2 ] ;
if ( TEST ( direction_change , X_AXIS ) ) {
xs2 = axis_segment_time [ X_AXIS ] [ 2 ] = xs1 ;
xs1 = axis_segment_time [ X_AXIS ] [ 1 ] = xs0 ;
xs0 = 0 ;
}
xs0 = axis_segment_time [ X_AXIS ] [ 0 ] = xs0 + segment_time ;
if ( TEST ( direction_change , Y_AXIS ) ) {
ys2 = axis_segment_time [ Y_AXIS ] [ 2 ] = axis_segment_time [ Y_AXIS ] [ 1 ] ;
ys1 = axis_segment_time [ Y_AXIS ] [ 1 ] = axis_segment_time [ Y_AXIS ] [ 0 ] ;
ys0 = 0 ;
}
ys0 = axis_segment_time [ Y_AXIS ] [ 0 ] = ys0 + segment_time ;
long max_x_segment_time = max ( xs0 , max ( xs1 , xs2 ) ) ,
max_y_segment_time = max ( ys0 , max ( ys1 , ys2 ) ) ,
min_xy_segment_time = min ( max_x_segment_time , max_y_segment_time ) ;
if ( min_xy_segment_time < MAX_FREQ_TIME ) {
float low_sf = speed_factor * min_xy_segment_time / ( MAX_FREQ_TIME ) ;
speed_factor = min ( speed_factor , low_sf ) ;
}
# endif // XY_FREQUENCY_LIMIT
// Correct the speed
if ( speed_factor < 1.0 ) {
for ( unsigned char i = 0 ; i < NUM_AXIS ; i + + ) current_speed [ i ] * = speed_factor ;
block - > nominal_speed * = speed_factor ;
block - > nominal_rate * = speed_factor ;
}
// Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block - > step_event_count / block - > millimeters ;
long bsx = block - > steps [ X_AXIS ] , bsy = block - > steps [ Y_AXIS ] , bsz = block - > steps [ Z_AXIS ] , bse = block - > steps [ E_AXIS ] ;
if ( bsx = = 0 & & bsy = = 0 & & bsz = = 0 ) {
block - > acceleration_steps_per_s2 = ceil ( retract_acceleration * steps_per_mm ) ; // convert to: acceleration steps/sec^2
}
else if ( bse = = 0 ) {
block - > acceleration_steps_per_s2 = ceil ( travel_acceleration * steps_per_mm ) ; // convert to: acceleration steps/sec^2
}
else {
block - > acceleration_steps_per_s2 = ceil ( acceleration * steps_per_mm ) ; // convert to: acceleration steps/sec^2
}
// Limit acceleration per axis
unsigned long acc_st = block - > acceleration_steps_per_s2 ,
x_acc_st = max_acceleration_steps_per_s2 [ X_AXIS ] ,
y_acc_st = max_acceleration_steps_per_s2 [ Y_AXIS ] ,
z_acc_st = max_acceleration_steps_per_s2 [ Z_AXIS ] ,
e_acc_st = max_acceleration_steps_per_s2 [ E_AXIS ] ,
allsteps = block - > step_event_count ;
if ( x_acc_st < ( acc_st * bsx ) / allsteps ) acc_st = ( x_acc_st * allsteps ) / bsx ;
if ( y_acc_st < ( acc_st * bsy ) / allsteps ) acc_st = ( y_acc_st * allsteps ) / bsy ;
if ( z_acc_st < ( acc_st * bsz ) / allsteps ) acc_st = ( z_acc_st * allsteps ) / bsz ;
if ( e_acc_st < ( acc_st * bse ) / allsteps ) acc_st = ( e_acc_st * allsteps ) / bse ;
block - > acceleration_steps_per_s2 = acc_st ;
block - > acceleration = acc_st / steps_per_mm ;
block - > acceleration_rate = ( long ) ( acc_st * 16777216.0 / ( F_CPU / 8.0 ) ) ;
#if 0 // Use old jerk for now
float junction_deviation = 0.1 ;
// Compute path unit vector
double unit_vec [ 3 ] ;
unit_vec [ X_AXIS ] = delta_mm [ X_AXIS ] * inverse_millimeters ;
unit_vec [ Y_AXIS ] = delta_mm [ Y_AXIS ] * inverse_millimeters ;
unit_vec [ Z_AXIS ] = delta_mm [ Z_AXIS ] * inverse_millimeters ;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
// collinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity.
double vmax_junction = MINIMUM_PLANNER_SPEED ; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if ( ( block_buffer_head ! = block_buffer_tail ) & & ( previous_nominal_speed > 0.0 ) ) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec [ X_AXIS ] * unit_vec [ X_AXIS ]
- previous_unit_vec [ Y_AXIS ] * unit_vec [ Y_AXIS ]
- previous_unit_vec [ Z_AXIS ] * unit_vec [ Z_AXIS ] ;
// Skip and use default max junction speed for 0 degree acute junction.
if ( cos_theta < 0.95 ) {
vmax_junction = min ( previous_nominal_speed , block - > nominal_speed ) ;
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if ( cos_theta > - 0.95 ) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt ( 0.5 * ( 1.0 - cos_theta ) ) ; // Trig half angle identity. Always positive.
vmax_junction = min ( vmax_junction ,
sqrt ( block - > acceleration * junction_deviation * sin_theta_d2 / ( 1.0 - sin_theta_d2 ) ) ) ;
}
}
}
# endif
// Start with a safe speed
float vmax_junction = max_xy_jerk / 2 ;
float vmax_junction_factor = 1.0 ;
float mz2 = max_z_jerk / 2 , me2 = max_e_jerk / 2 ;
float csz = current_speed [ Z_AXIS ] , cse = current_speed [ E_AXIS ] ;
if ( fabs ( csz ) > mz2 ) vmax_junction = min ( vmax_junction , mz2 ) ;
if ( fabs ( cse ) > me2 ) vmax_junction = min ( vmax_junction , me2 ) ;
vmax_junction = min ( vmax_junction , block - > nominal_speed ) ;
float safe_speed = vmax_junction ;
if ( ( moves_queued > 1 ) & & ( previous_nominal_speed > 0.0001 ) ) {
float dsx = current_speed [ X_AXIS ] - previous_speed [ X_AXIS ] ,
dsy = current_speed [ Y_AXIS ] - previous_speed [ Y_AXIS ] ,
dsz = fabs ( csz - previous_speed [ Z_AXIS ] ) ,
dse = fabs ( cse - previous_speed [ E_AXIS ] ) ,
jerk = HYPOT ( dsx , dsy ) ;
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block - > nominal_speed ;
// }
if ( jerk > max_xy_jerk ) vmax_junction_factor = max_xy_jerk / jerk ;
if ( dsz > max_z_jerk ) vmax_junction_factor = min ( vmax_junction_factor , max_z_jerk / dsz ) ;
if ( dse > max_e_jerk ) vmax_junction_factor = min ( vmax_junction_factor , max_e_jerk / dse ) ;
vmax_junction = min ( previous_nominal_speed , vmax_junction * vmax_junction_factor ) ; // Limit speed to max previous speed
}
block - > max_entry_speed = vmax_junction ;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed ( - block - > acceleration , MINIMUM_PLANNER_SPEED , block - > millimeters ) ;
block - > entry_speed = min ( vmax_junction , v_allowable ) ;
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
block - > nominal_length_flag = ( block - > nominal_speed < = v_allowable ) ;
block - > recalculate_flag = true ; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed
for ( int i = 0 ; i < NUM_AXIS ; i + + ) previous_speed [ i ] = current_speed [ i ] ;
previous_nominal_speed = block - > nominal_speed ;
# if ENABLED(LIN_ADVANCE)
// bse == allsteps: A problem occurs when there's a very tiny move before a retract.
// In this case, the retract and the move will be executed together.
// This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here.
if ( ! bse | | ( ! bsx & & ! bsy & & ! bsz ) | | stepper . get_advance_k ( ) = = 0 | | ( uint32_t ) bse = = allsteps ) {
block - > use_advance_lead = false ;
}
else {
block - > use_advance_lead = true ;
block - > e_speed_multiplier8 = ( block - > steps [ E_AXIS ] < < 8 ) / block - > step_event_count ;
}
# elif ENABLED(ADVANCE)
// Calculate advance rate
if ( ! bse | | ( ! bsx & & ! bsy & & ! bsz ) ) {
block - > advance_rate = 0 ;
block - > advance = 0 ;
}
else {
long acc_dist = estimate_acceleration_distance ( 0 , block - > nominal_rate , block - > acceleration_steps_per_s2 ) ;
float advance = ( ( STEPS_PER_CUBIC_MM_E ) * ( EXTRUDER_ADVANCE_K ) ) * HYPOT ( cse , EXTRUSION_AREA ) * 256 ;
block - > advance = advance ;
block - > advance_rate = acc_dist ? advance / ( float ) acc_dist : 0 ;
}
/**
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( " advance : " ) ;
SERIAL_ECHO ( block - > advance / 256.0 ) ;
SERIAL_ECHOPGM ( " advance rate : " ) ;
SERIAL_ECHOLN ( block - > advance_rate / 256.0 ) ;
*/
# endif // ADVANCE or LIN_ADVANCE
calculate_trapezoid_for_block ( block , block - > entry_speed / block - > nominal_speed , safe_speed / block - > nominal_speed ) ;
// Move buffer head
block_buffer_head = next_buffer_head ;
// Update position
for ( int i = 0 ; i < NUM_AXIS ; i + + ) position [ i ] = target [ i ] ;
recalculate ( ) ;
stepper . wake_up ( ) ;
} // buffer_line()
# if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
/**
* Get the XYZ position of the steppers as a vector_3 .
*
* On CORE machines XYZ is derived from ABC .
*/
vector_3 Planner : : adjusted_position ( ) {
vector_3 pos = vector_3 ( stepper . get_axis_position_mm ( X_AXIS ) , stepper . get_axis_position_mm ( Y_AXIS ) , stepper . get_axis_position_mm ( Z_AXIS ) ) ;
//pos.debug("in Planner::adjusted_position");
//bed_level_matrix.debug("in Planner::adjusted_position");
matrix_3x3 inverse = matrix_3x3 : : transpose ( bed_level_matrix ) ;
//inverse.debug("in Planner::inverse");
pos . apply_rotation ( inverse ) ;
//pos.debug("after rotation");
return pos ;
}
# endif // AUTO_BED_LEVELING_FEATURE && !DELTA
/**
* Directly set the planner XYZ position ( hence the stepper positions ) .
*
* On CORE machines stepper ABC will be translated from the given XYZ .
*/
# if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
void Planner : : set_position_mm ( float x , float y , float z , const float & e )
# else
void Planner : : set_position_mm ( const float & x , const float & y , const float & z , const float & e )
# endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
{
# if ENABLED(MESH_BED_LEVELING)
if ( mbl . active ( ) )
z + = mbl . get_z ( x - home_offset [ X_AXIS ] , y - home_offset [ Y_AXIS ] ) ;
# elif ENABLED(AUTO_BED_LEVELING_FEATURE)
apply_rotation_xyz ( bed_level_matrix , x , y , z ) ;
# endif
long nx = position [ X_AXIS ] = lround ( x * axis_steps_per_mm [ X_AXIS ] ) ,
ny = position [ Y_AXIS ] = lround ( y * axis_steps_per_mm [ Y_AXIS ] ) ,
nz = position [ Z_AXIS ] = lround ( z * axis_steps_per_mm [ Z_AXIS ] ) ,
ne = position [ E_AXIS ] = lround ( e * axis_steps_per_mm [ E_AXIS ] ) ;
stepper . set_position ( nx , ny , nz , ne ) ;
previous_nominal_speed = 0.0 ; // Resets planner junction speeds. Assumes start from rest.
for ( int i = 0 ; i < NUM_AXIS ; i + + ) previous_speed [ i ] = 0.0 ;
}
/**
* Directly set the planner E position ( hence the stepper E position ) .
*/
void Planner : : set_e_position_mm ( const float & e ) {
position [ E_AXIS ] = lround ( e * axis_steps_per_mm [ E_AXIS ] ) ;
stepper . set_e_position ( position [ E_AXIS ] ) ;
}
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner : : reset_acceleration_rates ( ) {
for ( int i = 0 ; i < NUM_AXIS ; i + + )
max_acceleration_steps_per_s2 [ i ] = max_acceleration_mm_per_s2 [ i ] * axis_steps_per_mm [ i ] ;
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
}
# if ENABLED(AUTOTEMP)
void Planner : : autotemp_M109 ( ) {
autotemp_enabled = code_seen ( ' F ' ) ;
if ( autotemp_enabled ) autotemp_factor = code_value_temp_diff ( ) ;
if ( code_seen ( ' S ' ) ) autotemp_min = code_value_temp_abs ( ) ;
if ( code_seen ( ' B ' ) ) autotemp_max = code_value_temp_abs ( ) ;
}
# endif