commit
						89a304fd98
					
				@ -0,0 +1,1932 @@
 | 
				
			|||||||
 | 
					#include "qr_solve.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifdef ACCURATE_BED_LEVELING
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include <stdlib.h>
 | 
				
			||||||
 | 
					#include <math.h>
 | 
				
			||||||
 | 
					#include <time.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//# include "r8lib.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int i4_min ( int i1, int i2 )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    I4_MIN returns the smaller of two I4's.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    29 August 2006
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int I1, I2, two integers to be compared.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int I4_MIN, the smaller of I1 and I2.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( i1 < i2 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = i1;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = i2;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r8_epsilon ( void )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8_EPSILON returns the R8 round off unit.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8_EPSILON is a number R which is a power of 2 with the property that,
 | 
				
			||||||
 | 
					    to the precision of the computer's arithmetic,
 | 
				
			||||||
 | 
					      1 < 1 + R
 | 
				
			||||||
 | 
					    but
 | 
				
			||||||
 | 
					      1 = ( 1 + R / 2 )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    01 September 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8_EPSILON, the R8 round-off unit.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  const double value = 2.220446049250313E-016;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r8_max ( double x, double y )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8_MAX returns the maximum of two R8's.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    07 May 2006
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double X, Y, the quantities to compare.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8_MAX, the maximum of X and Y.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( y < x )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = x;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = y;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r8_abs ( double x )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8_ABS returns the absolute value of an R8.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    07 May 2006
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double X, the quantity whose absolute value is desired.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8_ABS, the absolute value of X.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( 0.0 <= x )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = + x;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = - x;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r8_sign ( double x )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8_SIGN returns the sign of an R8.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    08 May 2006
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double X, the number whose sign is desired.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8_SIGN, the sign of X.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( x < 0.0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = - 1.0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    value = + 1.0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double r8mat_amax ( int m, int n, double a[] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | 
				
			||||||
 | 
					    in column-major order.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    07 September 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, the number of rows in A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of columns in A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double A[M*N], the M by N matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8MAT_AMAX, the maximum absolute value entry of A.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					  double value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  value = r8_abs ( a[0+0*m] );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( j = 0; j < n; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      if ( value < r8_abs ( a[i+j*m] ) )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        value = r8_abs ( a[i+j*m] );
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return value;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double *r8mat_copy_new ( int m, int n, double a1[] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | 
				
			||||||
 | 
					    in column-major order.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    26 July 2008
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, N, the number of rows and columns.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double A1[M*N], the matrix to be copied.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double *a2;
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  a2 = ( double * ) malloc ( m * n * sizeof ( double ) );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( j = 0; j < n; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      a2[i+j*m] = a1[i+j*m];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return a2;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DAXPY computes constant times a vector plus a vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This routine uses unrolled loops for increments equal to one.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    30 March 2007
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
				
			||||||
 | 
					    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
				
			||||||
 | 
					    Algorithm 539, 
 | 
				
			||||||
 | 
					    ACM Transactions on Mathematical Software, 
 | 
				
			||||||
 | 
					    Volume 5, Number 3, September 1979, pages 308-323.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of elements in DX and DY.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double DA, the multiplier of DX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double DX[*], the first vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCX, the increment between successive entries of DX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double DY[*], the second vector.
 | 
				
			||||||
 | 
					    On output, DY[*] has been replaced by DY[*] + DA * DX[*].
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCY, the increment between successive entries of DY.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int ix;
 | 
				
			||||||
 | 
					  int iy;
 | 
				
			||||||
 | 
					  int m;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n <= 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( da == 0.0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Code for unequal increments or equal increments
 | 
				
			||||||
 | 
					  not equal to 1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( incx != 1 || incy != 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( 0 <= incx )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = ( - n + 1 ) * incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( 0 <= incy )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = ( - n + 1 ) * incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dy[iy] = dy[iy] + da * dx[ix];
 | 
				
			||||||
 | 
					      ix = ix + incx;
 | 
				
			||||||
 | 
					      iy = iy + incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Code for both increments equal to 1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    m = n % 4;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dy[i] = dy[i] + da * dx[i];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = m; i < n; i = i + 4 )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dy[i  ] = dy[i  ] + da * dx[i  ];
 | 
				
			||||||
 | 
					      dy[i+1] = dy[i+1] + da * dx[i+1];
 | 
				
			||||||
 | 
					      dy[i+2] = dy[i+2] + da * dx[i+2];
 | 
				
			||||||
 | 
					      dy[i+3] = dy[i+3] + da * dx[i+3];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double ddot ( int n, double dx[], int incx, double dy[], int incy )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DDOT forms the dot product of two vectors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This routine uses unrolled loops for increments equal to one.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    30 March 2007
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
				
			||||||
 | 
					    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
				
			||||||
 | 
					    Algorithm 539, 
 | 
				
			||||||
 | 
					    ACM Transactions on Mathematical Software, 
 | 
				
			||||||
 | 
					    Volume 5, Number 3, September 1979, pages 308-323.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of entries in the vectors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double DX[*], the first vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCX, the increment between successive entries in DX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double DY[*], the second vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCY, the increment between successive entries in DY.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double DDOT, the sum of the product of the corresponding
 | 
				
			||||||
 | 
					    entries of DX and DY.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double dtemp;
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int ix;
 | 
				
			||||||
 | 
					  int iy;
 | 
				
			||||||
 | 
					  int m;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  dtemp = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n <= 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    return dtemp;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Code for unequal increments or equal increments
 | 
				
			||||||
 | 
					  not equal to 1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( incx != 1 || incy != 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( 0 <= incx )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = ( - n + 1 ) * incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( 0 <= incy )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = ( - n + 1 ) * incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dtemp = dtemp + dx[ix] * dy[iy];
 | 
				
			||||||
 | 
					      ix = ix + incx;
 | 
				
			||||||
 | 
					      iy = iy + incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Code for both increments equal to 1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    m = n % 5;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dtemp = dtemp + dx[i] * dy[i];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = m; i < n; i = i + 5 )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      dtemp = dtemp + dx[i  ] * dy[i  ] 
 | 
				
			||||||
 | 
					                    + dx[i+1] * dy[i+1] 
 | 
				
			||||||
 | 
					                    + dx[i+2] * dy[i+2] 
 | 
				
			||||||
 | 
					                    + dx[i+3] * dy[i+3] 
 | 
				
			||||||
 | 
					                    + dx[i+4] * dy[i+4];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return dtemp;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double dnrm2 ( int n, double x[], int incx )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DNRM2 returns the euclidean norm of a vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					     DNRM2 ( X ) = sqrt ( X' * X )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    30 March 2007
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
				
			||||||
 | 
					    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
				
			||||||
 | 
					    Algorithm 539,
 | 
				
			||||||
 | 
					    ACM Transactions on Mathematical Software,
 | 
				
			||||||
 | 
					    Volume 5, Number 3, September 1979, pages 308-323.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of entries in the vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double X[*], the vector whose norm is to be computed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCX, the increment between successive entries of X.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double DNRM2, the Euclidean norm of X.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double absxi;
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int ix;
 | 
				
			||||||
 | 
					  double norm;
 | 
				
			||||||
 | 
					  double scale;
 | 
				
			||||||
 | 
					  double ssq;
 | 
				
			||||||
 | 
					  double value;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n < 1 || incx < 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    norm = 0.0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else if ( n == 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    norm = r8_abs ( x[0] );
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    scale = 0.0;
 | 
				
			||||||
 | 
					    ssq = 1.0;
 | 
				
			||||||
 | 
					    ix = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      if ( x[ix] != 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        absxi = r8_abs ( x[ix] );
 | 
				
			||||||
 | 
					        if ( scale < absxi )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          ssq = 1.0 + ssq * ( scale / absxi ) * ( scale / absxi );
 | 
				
			||||||
 | 
					          scale = absxi;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        else
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          ssq = ssq + ( absxi / scale ) * ( absxi / scale );
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      ix = ix + incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    norm  = scale * sqrt ( ssq );
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return norm;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void dqrank ( double a[], int lda, int m, int n, double tol, int *kr, 
 | 
				
			||||||
 | 
					  int jpvt[], double qraux[] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRANK computes the QR factorization of a rectangular matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This routine is used in conjunction with DQRLSS to solve
 | 
				
			||||||
 | 
					    overdetermined, underdetermined and singular linear systems
 | 
				
			||||||
 | 
					    in a least squares sense.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRANK uses the LINPACK subroutine DQRDC to compute the QR
 | 
				
			||||||
 | 
					    factorization, with column pivoting, of an M by N matrix A.
 | 
				
			||||||
 | 
					    The numerical rank is determined using the tolerance TOL.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | 
				
			||||||
 | 
					    of the condition number of the matrix of independent columns,
 | 
				
			||||||
 | 
					    and of R.  This estimate will be <= 1/TOL.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    21 April 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979,
 | 
				
			||||||
 | 
					    ISBN13: 978-0-898711-72-1,
 | 
				
			||||||
 | 
					    LC: QA214.L56.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double A[LDA*N].  On input, the matrix whose
 | 
				
			||||||
 | 
					    decomposition is to be computed.  On output, the information from DQRDC.
 | 
				
			||||||
 | 
					    The triangular matrix R of the QR factorization is contained in the
 | 
				
			||||||
 | 
					    upper triangle and information needed to recover the orthogonal
 | 
				
			||||||
 | 
					    matrix Q is stored below the diagonal in A and in the vector QRAUX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int LDA, the leading dimension of A, which must
 | 
				
			||||||
 | 
					    be at least M.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, the number of rows of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of columns of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double TOL, a relative tolerance used to determine the
 | 
				
			||||||
 | 
					    numerical rank.  The problem should be scaled so that all the elements
 | 
				
			||||||
 | 
					    of A have roughly the same absolute accuracy, EPS.  Then a reasonable
 | 
				
			||||||
 | 
					    value for TOL is roughly EPS divided by the magnitude of the largest
 | 
				
			||||||
 | 
					    element.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int *KR, the numerical rank.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int JPVT[N], the pivot information from DQRDC.
 | 
				
			||||||
 | 
					    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | 
				
			||||||
 | 
					    independent to within the tolerance TOL and the remaining columns
 | 
				
			||||||
 | 
					    are linearly dependent.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double QRAUX[N], will contain extra information defining
 | 
				
			||||||
 | 
					    the QR factorization.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					  int job;
 | 
				
			||||||
 | 
					  int k;
 | 
				
			||||||
 | 
					  double *work;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    jpvt[i] = 0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  work = ( double * ) malloc ( n * sizeof ( double ) );
 | 
				
			||||||
 | 
					  job = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  dqrdc ( a, lda, m, n, qraux, jpvt, work, job );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  *kr = 0;
 | 
				
			||||||
 | 
					  k = i4_min ( m, n );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( j = 0; j < k; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( r8_abs ( a[j+j*lda] ) <= tol * r8_abs ( a[0+0*lda] ) )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      return;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    *kr = j + 1;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  free ( work );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void dqrdc ( double a[], int lda, int n, int p, double qraux[], int jpvt[], 
 | 
				
			||||||
 | 
					  double work[], int job )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRDC computes the QR factorization of a real rectangular matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRDC uses Householder transformations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Column pivoting based on the 2-norms of the reduced columns may be
 | 
				
			||||||
 | 
					    performed at the user's option.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    07 June 2005
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, (Society for Industrial and Applied Mathematics),
 | 
				
			||||||
 | 
					    3600 University City Science Center,
 | 
				
			||||||
 | 
					    Philadelphia, PA, 19104-2688.
 | 
				
			||||||
 | 
					    ISBN 0-89871-172-X
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double A(LDA,P).  On input, the N by P matrix
 | 
				
			||||||
 | 
					    whose decomposition is to be computed.  On output, A contains in
 | 
				
			||||||
 | 
					    its upper triangle the upper triangular matrix R of the QR
 | 
				
			||||||
 | 
					    factorization.  Below its diagonal A contains information from
 | 
				
			||||||
 | 
					    which the orthogonal part of the decomposition can be recovered.
 | 
				
			||||||
 | 
					    Note that if pivoting has been requested, the decomposition is not that
 | 
				
			||||||
 | 
					    of the original matrix A but that of A with its columns permuted
 | 
				
			||||||
 | 
					    as described by JPVT.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int LDA, the leading dimension of the array A.  LDA must
 | 
				
			||||||
 | 
					    be at least N.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of rows of the matrix A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int P, the number of columns of the matrix A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double QRAUX[P], contains further information required
 | 
				
			||||||
 | 
					    to recover the orthogonal part of the decomposition.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, integer JPVT[P].  On input, JPVT contains integers that
 | 
				
			||||||
 | 
					    control the selection of the pivot columns.  The K-th column A(*,K) of A
 | 
				
			||||||
 | 
					    is placed in one of three classes according to the value of JPVT(K).
 | 
				
			||||||
 | 
					      > 0, then A(K) is an initial column.
 | 
				
			||||||
 | 
					      = 0, then A(K) is a free column.
 | 
				
			||||||
 | 
					      < 0, then A(K) is a final column.
 | 
				
			||||||
 | 
					    Before the decomposition is computed, initial columns are moved to
 | 
				
			||||||
 | 
					    the beginning of the array A and final columns to the end.  Both
 | 
				
			||||||
 | 
					    initial and final columns are frozen in place during the computation
 | 
				
			||||||
 | 
					    and only free columns are moved.  At the K-th stage of the
 | 
				
			||||||
 | 
					    reduction, if A(*,K) is occupied by a free column it is interchanged
 | 
				
			||||||
 | 
					    with the free column of largest reduced norm.  JPVT is not referenced
 | 
				
			||||||
 | 
					    if JOB == 0.  On output, JPVT(K) contains the index of the column of the
 | 
				
			||||||
 | 
					    original matrix that has been interchanged into the K-th column, if
 | 
				
			||||||
 | 
					    pivoting was requested.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Workspace, double WORK[P].  WORK is not referenced if JOB == 0.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int JOB, initiates column pivoting.
 | 
				
			||||||
 | 
					    0, no pivoting is done.
 | 
				
			||||||
 | 
					    nonzero, pivoting is done.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					  int jp;
 | 
				
			||||||
 | 
					  int l;
 | 
				
			||||||
 | 
					  int lup;
 | 
				
			||||||
 | 
					  int maxj;
 | 
				
			||||||
 | 
					  double maxnrm;
 | 
				
			||||||
 | 
					  double nrmxl;
 | 
				
			||||||
 | 
					  int pl;
 | 
				
			||||||
 | 
					  int pu;
 | 
				
			||||||
 | 
					  int swapj;
 | 
				
			||||||
 | 
					  double t;
 | 
				
			||||||
 | 
					  double tt;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  pl = 1;
 | 
				
			||||||
 | 
					  pu = 0;
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  If pivoting is requested, rearrange the columns.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( job != 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( j = 1; j <= p; j++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      swapj = ( 0 < jpvt[j-1] );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( jpvt[j-1] < 0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        jpvt[j-1] = -j;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      else
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        jpvt[j-1] = j;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( swapj )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        if ( j != pl )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          dswap ( n, a+0+(pl-1)*lda, 1, a+0+(j-1), 1 );
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        jpvt[j-1] = jpvt[pl-1];
 | 
				
			||||||
 | 
					        jpvt[pl-1] = j;
 | 
				
			||||||
 | 
					        pl = pl + 1;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    pu = p;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( j = p; 1 <= j; j-- )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      if ( jpvt[j-1] < 0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        jpvt[j-1] = -jpvt[j-1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if ( j != pu )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          dswap ( n, a+0+(pu-1)*lda, 1, a+0+(j-1)*lda, 1 );
 | 
				
			||||||
 | 
					          jp = jpvt[pu-1];
 | 
				
			||||||
 | 
					          jpvt[pu-1] = jpvt[j-1];
 | 
				
			||||||
 | 
					          jpvt[j-1] = jp;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        pu = pu - 1;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute the norms of the free columns.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  for ( j = pl; j <= pu; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    qraux[j-1] = dnrm2 ( n, a+0+(j-1)*lda, 1 );
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( j = pl; j <= pu; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    work[j-1] = qraux[j-1];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Perform the Householder reduction of A.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  lup = i4_min ( n, p );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( l = 1; l <= lup; l++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Bring the column of largest norm into the pivot position.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					    if ( pl <= l && l < pu )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      maxnrm = 0.0;
 | 
				
			||||||
 | 
					      maxj = l;
 | 
				
			||||||
 | 
					      for ( j = l; j <= pu; j++ )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        if ( maxnrm < qraux[j-1] )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          maxnrm = qraux[j-1];
 | 
				
			||||||
 | 
					          maxj = j;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( maxj != l )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        dswap ( n, a+0+(l-1)*lda, 1, a+0+(maxj-1)*lda, 1 );
 | 
				
			||||||
 | 
					        qraux[maxj-1] = qraux[l-1];
 | 
				
			||||||
 | 
					        work[maxj-1] = work[l-1];
 | 
				
			||||||
 | 
					        jp = jpvt[maxj-1];
 | 
				
			||||||
 | 
					        jpvt[maxj-1] = jpvt[l-1];
 | 
				
			||||||
 | 
					        jpvt[l-1] = jp;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute the Householder transformation for column L.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					    qraux[l-1] = 0.0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( l != n )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      nrmxl = dnrm2 ( n-l+1, a+l-1+(l-1)*lda, 1 );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( nrmxl != 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        if ( a[l-1+(l-1)*lda] != 0.0 )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          nrmxl = nrmxl * r8_sign ( a[l-1+(l-1)*lda] );
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        dscal ( n-l+1, 1.0 / nrmxl, a+l-1+(l-1)*lda, 1 );
 | 
				
			||||||
 | 
					        a[l-1+(l-1)*lda] = 1.0 + a[l-1+(l-1)*lda];
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Apply the transformation to the remaining columns, updating the norms.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					        for ( j = l + 1; j <= p; j++ )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          t = -ddot ( n-l+1, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 ) 
 | 
				
			||||||
 | 
					            / a[l-1+(l-1)*lda];
 | 
				
			||||||
 | 
					          daxpy ( n-l+1, t, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          if ( pl <= j && j <= pu )
 | 
				
			||||||
 | 
					          {
 | 
				
			||||||
 | 
					            if ( qraux[j-1] != 0.0 )
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					              tt = 1.0 - pow ( r8_abs ( a[l-1+(j-1)*lda] ) / qraux[j-1], 2 );
 | 
				
			||||||
 | 
					              tt = r8_max ( tt, 0.0 );
 | 
				
			||||||
 | 
					              t = tt;
 | 
				
			||||||
 | 
					              tt = 1.0 + 0.05 * tt * pow ( qraux[j-1] / work[j-1], 2 );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					              if ( tt != 1.0 )
 | 
				
			||||||
 | 
					              {
 | 
				
			||||||
 | 
					                qraux[j-1] = qraux[j-1] * sqrt ( t );
 | 
				
			||||||
 | 
					              }
 | 
				
			||||||
 | 
					              else
 | 
				
			||||||
 | 
					              {
 | 
				
			||||||
 | 
					                qraux[j-1] = dnrm2 ( n-l, a+l+(j-1)*lda, 1 );
 | 
				
			||||||
 | 
					                work[j-1] = qraux[j-1];
 | 
				
			||||||
 | 
					              }
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					          }
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Save the transformation.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					        qraux[l-1] = a[l-1+(l-1)*lda];
 | 
				
			||||||
 | 
					        a[l-1+(l-1)*lda] = -nrmxl;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int dqrls ( double a[], int lda, int m, int n, double tol, int *kr, double b[], 
 | 
				
			||||||
 | 
					  double x[], double rsd[], int jpvt[], double qraux[], int itask )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLS factors and solves a linear system in the least squares sense.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    The linear system may be overdetermined, underdetermined or singular.
 | 
				
			||||||
 | 
					    The solution is obtained using a QR factorization of the
 | 
				
			||||||
 | 
					    coefficient matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLS can be efficiently used to solve several least squares
 | 
				
			||||||
 | 
					    problems with the same matrix A.  The first system is solved
 | 
				
			||||||
 | 
					    with ITASK = 1.  The subsequent systems are solved with
 | 
				
			||||||
 | 
					    ITASK = 2, to avoid the recomputation of the matrix factors.
 | 
				
			||||||
 | 
					    The parameters KR, JPVT, and QRAUX must not be modified
 | 
				
			||||||
 | 
					    between calls to DQRLS.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLS is used to solve in a least squares sense
 | 
				
			||||||
 | 
					    overdetermined, underdetermined and singular linear systems.
 | 
				
			||||||
 | 
					    The system is A*X approximates B where A is M by N.
 | 
				
			||||||
 | 
					    B is a given M-vector, and X is the N-vector to be computed.
 | 
				
			||||||
 | 
					    A solution X is found which minimimzes the sum of squares (2-norm)
 | 
				
			||||||
 | 
					    of the residual,  A*X - B.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    The numerical rank of A is determined using the tolerance TOL.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLS uses the LINPACK subroutine DQRDC to compute the QR
 | 
				
			||||||
 | 
					    factorization, with column pivoting, of an M by N matrix A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    10 September 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    David Kahaner, Cleve Moler, Steven Nash,
 | 
				
			||||||
 | 
					    Numerical Methods and Software,
 | 
				
			||||||
 | 
					    Prentice Hall, 1989,
 | 
				
			||||||
 | 
					    ISBN: 0-13-627258-4,
 | 
				
			||||||
 | 
					    LC: TA345.K34.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double A[LDA*N], an M by N matrix.
 | 
				
			||||||
 | 
					    On input, the matrix whose decomposition is to be computed.
 | 
				
			||||||
 | 
					    In a least squares data fitting problem, A(I,J) is the
 | 
				
			||||||
 | 
					    value of the J-th basis (model) function at the I-th data point.
 | 
				
			||||||
 | 
					    On output, A contains the output from DQRDC.  The triangular matrix R
 | 
				
			||||||
 | 
					    of the QR factorization is contained in the upper triangle and
 | 
				
			||||||
 | 
					    information needed to recover the orthogonal matrix Q is stored
 | 
				
			||||||
 | 
					    below the diagonal in A and in the vector QRAUX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int LDA, the leading dimension of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, the number of rows of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of columns of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double TOL, a relative tolerance used to determine the
 | 
				
			||||||
 | 
					    numerical rank.  The problem should be scaled so that all the elements
 | 
				
			||||||
 | 
					    of A have roughly the same absolute accuracy EPS.  Then a reasonable
 | 
				
			||||||
 | 
					    value for TOL is roughly EPS divided by the magnitude of the largest
 | 
				
			||||||
 | 
					    element.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int *KR, the numerical rank.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double B[M], the right hand side of the linear system.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double X[N], a least squares solution to the linear
 | 
				
			||||||
 | 
					    system.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double RSD[M], the residual, B - A*X.  RSD may
 | 
				
			||||||
 | 
					    overwrite B.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Workspace, int JPVT[N], required if ITASK = 1.
 | 
				
			||||||
 | 
					    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | 
				
			||||||
 | 
					    independent to within the tolerance TOL and the remaining columns
 | 
				
			||||||
 | 
					    are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | 
				
			||||||
 | 
					    of the condition number of the matrix of independent columns,
 | 
				
			||||||
 | 
					    and of R.  This estimate will be <= 1/TOL.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Workspace, double QRAUX[N], required if ITASK = 1.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int ITASK.
 | 
				
			||||||
 | 
					    1, DQRLS factors the matrix A and solves the least squares problem.
 | 
				
			||||||
 | 
					    2, DQRLS assumes that the matrix A was factored with an earlier
 | 
				
			||||||
 | 
					       call to DQRLS, and only solves the least squares problem.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int DQRLS, error code.
 | 
				
			||||||
 | 
					    0:  no error
 | 
				
			||||||
 | 
					    -1: LDA < M   (fatal error)
 | 
				
			||||||
 | 
					    -2: N < 1     (fatal error)
 | 
				
			||||||
 | 
					    -3: ITASK < 1 (fatal error)
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int ind;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( lda < m )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    /*fprintf ( stderr, "\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "  LDA < M.\n" );*/
 | 
				
			||||||
 | 
					    ind = -1;
 | 
				
			||||||
 | 
					    return ind;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n <= 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    /*fprintf ( stderr, "\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "  N <= 0.\n" );*/
 | 
				
			||||||
 | 
					    ind = -2;
 | 
				
			||||||
 | 
					    return ind;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( itask < 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    /*fprintf ( stderr, "\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
				
			||||||
 | 
					    fprintf ( stderr, "  ITASK < 1.\n" );*/
 | 
				
			||||||
 | 
					    ind = -3;
 | 
				
			||||||
 | 
					    return ind;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ind = 0;
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Factor the matrix.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( itask == 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    dqrank ( a, lda, m, n, tol, kr, jpvt, qraux );
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Solve the least-squares problem.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  dqrlss ( a, lda, m, n, *kr, b, x, rsd, jpvt, qraux );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return ind;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[], 
 | 
				
			||||||
 | 
					  double rsd[], int jpvt[], double qraux[] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLSS solves a linear system in a least squares sense.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRLSS must be preceeded by a call to DQRANK.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    The system is to be solved is
 | 
				
			||||||
 | 
					      A * X = B
 | 
				
			||||||
 | 
					    where
 | 
				
			||||||
 | 
					      A is an M by N matrix with rank KR, as determined by DQRANK,
 | 
				
			||||||
 | 
					      B is a given M-vector,
 | 
				
			||||||
 | 
					      X is the N-vector to be computed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    A solution X, with at most KR nonzero components, is found which
 | 
				
			||||||
 | 
					    minimizes the 2-norm of the residual (A*X-B).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Once the matrix A has been formed, DQRANK should be
 | 
				
			||||||
 | 
					    called once to decompose it.  Then, for each right hand
 | 
				
			||||||
 | 
					    side B, DQRLSS should be called once to obtain the
 | 
				
			||||||
 | 
					    solution and residual.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    10 September 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double A[LDA*N], the QR factorization information
 | 
				
			||||||
 | 
					    from DQRANK.  The triangular matrix R of the QR factorization is
 | 
				
			||||||
 | 
					    contained in the upper triangle and information needed to recover
 | 
				
			||||||
 | 
					    the orthogonal matrix Q is stored below the diagonal in A and in
 | 
				
			||||||
 | 
					    the vector QRAUX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int LDA, the leading dimension of A, which must
 | 
				
			||||||
 | 
					    be at least M.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, the number of rows of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of columns of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int KR, the rank of the matrix, as estimated by DQRANK.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double B[M], the right hand side of the linear system.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double X[N], a least squares solution to the
 | 
				
			||||||
 | 
					    linear system.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double RSD[M], the residual, B - A*X.  RSD may
 | 
				
			||||||
 | 
					    overwite B.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int JPVT[N], the pivot information from DQRANK.
 | 
				
			||||||
 | 
					    Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
 | 
				
			||||||
 | 
					    independent to within the tolerance TOL and the remaining columns
 | 
				
			||||||
 | 
					    are linearly dependent.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double QRAUX[N], auxiliary information from DQRANK
 | 
				
			||||||
 | 
					    defining the QR factorization.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int info;
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					  int job;
 | 
				
			||||||
 | 
					  int k;
 | 
				
			||||||
 | 
					  double t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( kr != 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    job = 110;
 | 
				
			||||||
 | 
					    info = dqrsl ( a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job );
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    jpvt[i] = - jpvt[i];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( i = kr; i < n; i++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    x[i] = 0.0;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for ( j = 1; j <= n; j++ )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( jpvt[j-1] <= 0 )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      k = - jpvt[j-1];
 | 
				
			||||||
 | 
					      jpvt[j-1] = k;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      while ( k != j )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        t = x[j-1];
 | 
				
			||||||
 | 
					        x[j-1] = x[k-1];
 | 
				
			||||||
 | 
					        x[k-1] = t;
 | 
				
			||||||
 | 
					        jpvt[k-1] = -jpvt[k-1];
 | 
				
			||||||
 | 
					        k = jpvt[k-1];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[], 
 | 
				
			||||||
 | 
					  double qy[], double qty[], double b[], double rsd[], double ab[], int job )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRSL computes transformations, projections, and least squares solutions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DQRSL requires the output of DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    For K <= min(N,P), let AK be the matrix
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    formed from columns JPVT[0], ..., JPVT(K) of the original
 | 
				
			||||||
 | 
					    N by P matrix A that was input to DQRDC.  If no pivoting was
 | 
				
			||||||
 | 
					    done, AK consists of the first K columns of A in their
 | 
				
			||||||
 | 
					    original order.  DQRDC produces a factored orthogonal matrix Q
 | 
				
			||||||
 | 
					    and an upper triangular matrix R such that
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      AK = Q * (R)
 | 
				
			||||||
 | 
					               (0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This information is contained in coded form in the arrays
 | 
				
			||||||
 | 
					    A and QRAUX.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    The parameters QY, QTY, B, RSD, and AB are not referenced
 | 
				
			||||||
 | 
					    if their computation is not requested and in this case
 | 
				
			||||||
 | 
					    can be replaced by dummy variables in the calling program.
 | 
				
			||||||
 | 
					    To save storage, the user may in some cases use the same
 | 
				
			||||||
 | 
					    array for different parameters in the calling sequence.  A
 | 
				
			||||||
 | 
					    frequently occuring example is when one wishes to compute
 | 
				
			||||||
 | 
					    any of B, RSD, or AB and does not need Y or QTY.  In this
 | 
				
			||||||
 | 
					    case one may identify Y, QTY, and one of B, RSD, or AB, while
 | 
				
			||||||
 | 
					    providing separate arrays for anything else that is to be
 | 
				
			||||||
 | 
					    computed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Thus the calling sequence
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    will result in the computation of B and RSD, with RSD
 | 
				
			||||||
 | 
					    overwriting Y.  More generally, each item in the following
 | 
				
			||||||
 | 
					    list contains groups of permissible identifications for
 | 
				
			||||||
 | 
					    a single calling sequence.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      1. (Y,QTY,B) (RSD) (AB) (QY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      2. (Y,QTY,RSD) (B) (AB) (QY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      3. (Y,QTY,AB) (B) (RSD) (QY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      4. (Y,QY) (QTY,B) (RSD) (AB)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      5. (Y,QY) (QTY,RSD) (B) (AB)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      6. (Y,QY) (QTY,AB) (B) (RSD)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    In any group the value returned in the array allocated to
 | 
				
			||||||
 | 
					    the group corresponds to the last member of the group.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    07 June 2005
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, (Society for Industrial and Applied Mathematics),
 | 
				
			||||||
 | 
					    3600 University City Science Center,
 | 
				
			||||||
 | 
					    Philadelphia, PA, 19104-2688.
 | 
				
			||||||
 | 
					    ISBN 0-89871-172-X
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double A[LDA*P], contains the output of DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int LDA, the leading dimension of the array A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of rows of the matrix AK.  It must
 | 
				
			||||||
 | 
					    have the same value as N in DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int K, the number of columns of the matrix AK.  K
 | 
				
			||||||
 | 
					    must not be greater than min(N,P), where P is the same as in the
 | 
				
			||||||
 | 
					    calling sequence to DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double QRAUX[P], the auxiliary output from DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double Y[N], a vector to be manipulated by DQRSL.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double QY[N], contains Q * Y, if requested.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double QTY[N], contains Q' * Y, if requested.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double B[K], the solution of the least squares problem
 | 
				
			||||||
 | 
					      minimize norm2 ( Y - AK * B),
 | 
				
			||||||
 | 
					    if its computation has been requested.  Note that if pivoting was
 | 
				
			||||||
 | 
					    requested in DQRDC, the J-th component of B will be associated with
 | 
				
			||||||
 | 
					    column JPVT(J) of the original matrix A that was input into DQRDC.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double RSD[N], the least squares residual Y - AK * B,
 | 
				
			||||||
 | 
					    if its computation has been requested.  RSD is also the orthogonal
 | 
				
			||||||
 | 
					    projection of Y onto the orthogonal complement of the column space
 | 
				
			||||||
 | 
					    of AK.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double AB[N], the least squares approximation Ak * B,
 | 
				
			||||||
 | 
					    if its computation has been requested.  AB is also the orthogonal
 | 
				
			||||||
 | 
					    projection of Y onto the column space of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, integer JOB, specifies what is to be computed.  JOB has
 | 
				
			||||||
 | 
					    the decimal expansion ABCDE, with the following meaning:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if A != 0, compute QY.
 | 
				
			||||||
 | 
					      if B != 0, compute QTY.
 | 
				
			||||||
 | 
					      if C != 0, compute QTY and B.
 | 
				
			||||||
 | 
					      if D != 0, compute QTY and RSD.
 | 
				
			||||||
 | 
					      if E != 0, compute QTY and AB.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Note that a request to compute B, RSD, or AB automatically triggers
 | 
				
			||||||
 | 
					    the computation of QTY, for which an array must be provided in the
 | 
				
			||||||
 | 
					    calling sequence.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, int DQRSL, is zero unless the computation of B has
 | 
				
			||||||
 | 
					    been requested and R is exactly singular.  In this case, INFO is the
 | 
				
			||||||
 | 
					    index of the first zero diagonal element of R, and B is left unaltered.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int cab;
 | 
				
			||||||
 | 
					  int cb;
 | 
				
			||||||
 | 
					  int cqty;
 | 
				
			||||||
 | 
					  int cqy;
 | 
				
			||||||
 | 
					  int cr;
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int info;
 | 
				
			||||||
 | 
					  int j;
 | 
				
			||||||
 | 
					  int jj;
 | 
				
			||||||
 | 
					  int ju;
 | 
				
			||||||
 | 
					  double t;
 | 
				
			||||||
 | 
					  double temp;
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Set INFO flag.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  info = 0;
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Determine what is to be computed.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  cqy =  (   job / 10000          != 0 );
 | 
				
			||||||
 | 
					  cqty = ( ( job %  10000 )       != 0 );
 | 
				
			||||||
 | 
					  cb =   ( ( job %   1000 ) / 100 != 0 );
 | 
				
			||||||
 | 
					  cr =   ( ( job %    100 ) /  10 != 0 );
 | 
				
			||||||
 | 
					  cab =  ( ( job %     10 )       != 0 );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ju = i4_min ( k, n-1 );
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Special action when N = 1.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( ju == 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( cqy )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      qy[0] = y[0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( cqty )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      qty[0] = y[0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( cab )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ab[0] = y[0];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( cb )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      if ( a[0+0*lda] == 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        info = 1;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      else
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        b[0] = y[0] / a[0+0*lda];
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( cr )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      rsd[0] = 0.0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    return info;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Set up to compute QY or QTY.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cqy )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 1; i <= n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      qy[i-1] = y[i-1];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( cqty )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 1; i <= n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      qty[i-1] = y[i-1];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute QY.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cqy )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( jj = 1; jj <= ju; jj++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      j = ju - jj + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( qraux[j-1] != 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        temp = a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = qraux[j-1];
 | 
				
			||||||
 | 
					        t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qy+j-1, 1 ) / a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					        daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qy+j-1, 1 );
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = temp;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute Q'*Y.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cqty )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( j = 1; j <= ju; j++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      if ( qraux[j-1] != 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        temp = a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = qraux[j-1];
 | 
				
			||||||
 | 
					        t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qty+j-1, 1 ) / a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					        daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qty+j-1, 1 );
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = temp;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Set up to compute B, RSD, or AB.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cb )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 1; i <= k; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      b[i-1] = qty[i-1];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( cab )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 1; i <= k; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ab[i-1] = qty[i-1];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( cr && k < n )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = k+1; i <= n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      rsd[i-1] = qty[i-1];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( cab && k+1 <= n )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = k+1; i <= n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ab[i-1] = 0.0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( cr )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( i = 1; i <= k; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      rsd[i-1] = 0.0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute B.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cb )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( jj = 1; jj <= k; jj++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      j = k - jj + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( a[j-1+(j-1)*lda] == 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        info = j;
 | 
				
			||||||
 | 
					        break;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      b[j-1] = b[j-1] / a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( j != 1 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        t = -b[j-1];
 | 
				
			||||||
 | 
					        daxpy ( j-1, t, a+0+(j-1)*lda, 1, b, 1 );
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Compute RSD or AB as required.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					  if ( cr || cab )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    for ( jj = 1; jj <= ju; jj++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      j = ju - jj + 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      if ( qraux[j-1] != 0.0 )
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        temp = a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = qraux[j-1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if ( cr )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 ) 
 | 
				
			||||||
 | 
					            / a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					          daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 );
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if ( cab )
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					          t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, ab+j-1, 1 ) 
 | 
				
			||||||
 | 
					            / a[j-1+(j-1)*lda];
 | 
				
			||||||
 | 
					          daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, ab+j-1, 1 );
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        a[j-1+(j-1)*lda] = temp;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return info;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void dscal ( int n, double sa, double x[], int incx )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DSCAL scales a vector by a constant.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    30 March 2007
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
				
			||||||
 | 
					    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
				
			||||||
 | 
					    Algorithm 539,
 | 
				
			||||||
 | 
					    ACM Transactions on Mathematical Software,
 | 
				
			||||||
 | 
					    Volume 5, Number 3, September 1979, pages 308-323.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of entries in the vector.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double SA, the multiplier.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double X[*], the vector to be scaled.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCX, the increment between successive entries of X.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int ix;
 | 
				
			||||||
 | 
					  int m;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n <= 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else if ( incx == 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    m = n % 5;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      x[i] = sa * x[i];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = m; i < n; i = i + 5 )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      x[i]   = sa * x[i];
 | 
				
			||||||
 | 
					      x[i+1] = sa * x[i+1];
 | 
				
			||||||
 | 
					      x[i+2] = sa * x[i+2];
 | 
				
			||||||
 | 
					      x[i+3] = sa * x[i+3];
 | 
				
			||||||
 | 
					      x[i+4] = sa * x[i+4];
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( 0 <= incx )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = ( - n + 1 ) * incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      x[ix] = sa * x[ix];
 | 
				
			||||||
 | 
					      ix = ix + incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void dswap ( int n, double x[], int incx, double y[], int incy )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DSWAP interchanges two vectors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    30 March 2007
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    C version by John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
				
			||||||
 | 
					    LINPACK User's Guide,
 | 
				
			||||||
 | 
					    SIAM, 1979.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
				
			||||||
 | 
					    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
				
			||||||
 | 
					    Algorithm 539, 
 | 
				
			||||||
 | 
					    ACM Transactions on Mathematical Software, 
 | 
				
			||||||
 | 
					    Volume 5, Number 3, September 1979, pages 308-323.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of entries in the vectors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double X[*], one of the vectors to swap.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCX, the increment between successive entries of X.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input/output, double Y[*], one of the vectors to swap.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int INCY, the increment between successive elements of Y.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  int i;
 | 
				
			||||||
 | 
					  int ix;
 | 
				
			||||||
 | 
					  int iy;
 | 
				
			||||||
 | 
					  int m;
 | 
				
			||||||
 | 
					  double temp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  if ( n <= 0 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else if ( incx == 1 && incy == 1 )
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    m = n % 3;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < m; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      temp = x[i];
 | 
				
			||||||
 | 
					      x[i] = y[i];
 | 
				
			||||||
 | 
					      y[i] = temp;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = m; i < n; i = i + 3 )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      temp = x[i];
 | 
				
			||||||
 | 
					      x[i] = y[i];
 | 
				
			||||||
 | 
					      y[i] = temp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      temp = x[i+1];
 | 
				
			||||||
 | 
					      x[i+1] = y[i+1];
 | 
				
			||||||
 | 
					      y[i+1] = temp;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      temp = x[i+2];
 | 
				
			||||||
 | 
					      x[i+2] = y[i+2];
 | 
				
			||||||
 | 
					      y[i+2] = temp;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  else
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					    if ( 0 <= incx )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      ix = ( - n + 1 ) * incx;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if ( 0 <= incy )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = 0;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      iy = ( - n + 1 ) * incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for ( i = 0; i < n; i++ )
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      temp = x[ix];
 | 
				
			||||||
 | 
					      x[ix] = y[iy];
 | 
				
			||||||
 | 
					      y[iy] = temp;
 | 
				
			||||||
 | 
					      ix = ix + incx;
 | 
				
			||||||
 | 
					      iy = iy + incy;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					double *qr_solve ( int m, int n, double a[], double b[] )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					/*
 | 
				
			||||||
 | 
					  Purpose:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    QR_SOLVE solves a linear system in the least squares sense.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Discussion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    If the matrix A has full column rank, then the solution X should be the
 | 
				
			||||||
 | 
					    unique vector that minimizes the Euclidean norm of the residual.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    If the matrix A does not have full column rank, then the solution is
 | 
				
			||||||
 | 
					    not unique; the vector X will minimize the residual norm, but so will
 | 
				
			||||||
 | 
					    various other vectors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Licensing:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    This code is distributed under the GNU LGPL license.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Modified:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    11 September 2012
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Author:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    John Burkardt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Reference:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    David Kahaner, Cleve Moler, Steven Nash,
 | 
				
			||||||
 | 
					    Numerical Methods and Software,
 | 
				
			||||||
 | 
					    Prentice Hall, 1989,
 | 
				
			||||||
 | 
					    ISBN: 0-13-627258-4,
 | 
				
			||||||
 | 
					    LC: TA345.K34.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Parameters:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int M, the number of rows of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, int N, the number of columns of A.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double A[M*N], the matrix.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Input, double B[M], the right hand side.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Output, double QR_SOLVE[N], the least squares solution.
 | 
				
			||||||
 | 
					*/
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					  double *a_qr;
 | 
				
			||||||
 | 
					  int ind;
 | 
				
			||||||
 | 
					  int itask;
 | 
				
			||||||
 | 
					  int *jpvt;
 | 
				
			||||||
 | 
					  int kr;
 | 
				
			||||||
 | 
					  int lda;
 | 
				
			||||||
 | 
					  double *qraux;
 | 
				
			||||||
 | 
					  double *r;
 | 
				
			||||||
 | 
					  double tol;
 | 
				
			||||||
 | 
					  double *x;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  a_qr = r8mat_copy_new ( m, n, a );
 | 
				
			||||||
 | 
					  lda = m;
 | 
				
			||||||
 | 
					  tol = r8_epsilon ( ) / r8mat_amax ( m, n, a_qr );
 | 
				
			||||||
 | 
					  x = ( double * ) malloc ( n * sizeof ( double ) );
 | 
				
			||||||
 | 
					  jpvt = ( int * ) malloc ( n * sizeof ( int ) );
 | 
				
			||||||
 | 
					  qraux = ( double * ) malloc ( n * sizeof ( double ) );
 | 
				
			||||||
 | 
					  r = ( double * ) malloc ( m * sizeof ( double ) );
 | 
				
			||||||
 | 
					  itask = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  ind = dqrls ( a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  free ( a_qr );
 | 
				
			||||||
 | 
					  free ( jpvt );
 | 
				
			||||||
 | 
					  free ( qraux ); 
 | 
				
			||||||
 | 
					  free ( r );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  return x;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					/******************************************************************************/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
@ -0,0 +1,22 @@
 | 
				
			|||||||
 | 
					#include "Configuration.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifdef ACCURATE_BED_LEVELING
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy );
 | 
				
			||||||
 | 
					double ddot ( int n, double dx[], int incx, double dy[], int incy );
 | 
				
			||||||
 | 
					double dnrm2 ( int n, double x[], int incx );
 | 
				
			||||||
 | 
					void dqrank ( double a[], int lda, int m, int n, double tol, int *kr, 
 | 
				
			||||||
 | 
					  int jpvt[], double qraux[] );
 | 
				
			||||||
 | 
					void dqrdc ( double a[], int lda, int n, int p, double qraux[], int jpvt[], 
 | 
				
			||||||
 | 
					  double work[], int job );
 | 
				
			||||||
 | 
					int dqrls ( double a[], int lda, int m, int n, double tol, int *kr, double b[], 
 | 
				
			||||||
 | 
					  double x[], double rsd[], int jpvt[], double qraux[], int itask );
 | 
				
			||||||
 | 
					void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[], 
 | 
				
			||||||
 | 
					  double rsd[], int jpvt[], double qraux[] );
 | 
				
			||||||
 | 
					int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[], 
 | 
				
			||||||
 | 
					  double qy[], double qty[], double b[], double rsd[], double ab[], int job );
 | 
				
			||||||
 | 
					void dscal ( int n, double sa, double x[], int incx );
 | 
				
			||||||
 | 
					void dswap ( int n, double x[], int incx, double y[], int incy );
 | 
				
			||||||
 | 
					double *qr_solve ( int m, int n, double a[], double b[] );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
					Loading…
					
					
				
		Reference in new issue