Merge pull request #8613 from thinkyhead/bf1_planner_parity

[1.1.x] Fix some planner bugs
master
Scott Lahteine 7 years ago committed by GitHub
commit ab43113f73
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -8714,12 +8714,8 @@ inline void gcode_M200() {
// setting any extruder filament size disables volumetric on the assumption that // setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds // slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders // for all extruders
if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) { if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) )
planner.filament_size[target_extruder] = parser.value_linear_units(); planner.set_filament_size(target_extruder, parser.value_linear_units());
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(planner.filament_size); i++)
if (!planner.filament_size[i]) planner.filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
} }
planner.calculate_volumetric_multipliers(); planner.calculate_volumetric_multipliers();
} }

@ -153,8 +153,7 @@ float Planner::previous_speed[NUM_AXIS],
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_k, // Initialized by settings.load() float Planner::extruder_advance_k, // Initialized by settings.load()
Planner::advance_ed_ratio, // Initialized by settings.load() Planner::advance_ed_ratio; // Initialized by settings.load()
Planner::position_float[NUM_AXIS] = { 0 };
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -170,9 +169,6 @@ Planner::Planner() { init(); }
void Planner::init() { void Planner::init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
ZERO(position); ZERO(position);
#if ENABLED(LIN_ADVANCE)
ZERO(position_float);
#endif
ZERO(previous_speed); ZERO(previous_speed);
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
#if ABL_PLANAR #if ABL_PLANAR
@ -554,34 +550,13 @@ void Planner::calculate_volumetric_multipliers() {
#if PLANNER_LEVELING #if PLANNER_LEVELING
/** /**
* rx, ry, rz - cartesian position in mm * rx, ry, rz - Cartesian positions in mm
*/ */
void Planner::apply_leveling(float &rx, float &ry, float &rz) { void Planner::apply_leveling(float &rx, float &ry, float &rz) {
if (!leveling_active) return; if (!leveling_active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ABL_PLANAR
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
if (!fade_scaling_factor) return;
#else
constexpr float fade_scaling_factor = 1.0;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
#elif ENABLED(MESH_BED_LEVELING)
rz += mbl.get_z(rx, ry
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
);
#elif ABL_PLANAR
UNUSED(fade_scaling_factor);
float dx = rx - (X_TILT_FULCRUM), float dx = rx - (X_TILT_FULCRUM),
dy = ry - (Y_TILT_FULCRUM); dy = ry - (Y_TILT_FULCRUM);
@ -591,68 +566,43 @@ void Planner::calculate_volumetric_multipliers() {
rx = dx + X_TILT_FULCRUM; rx = dx + X_TILT_FULCRUM;
ry = dy + Y_TILT_FULCRUM; ry = dy + Y_TILT_FULCRUM;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #else
float tmp[XYZ] = { rx, ry, 0 };
rz += bilinear_z_offset(tmp) * fade_scaling_factor;
#endif
}
void Planner::unapply_leveling(float raw[XYZ]) {
#if HAS_LEVELING #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (!leveling_active) return; const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
if (!fade_scaling_factor) return;
#elif HAS_MESH
constexpr float fade_scaling_factor = 1.0;
#endif #endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!leveling_active_at_z(raw[Z_AXIS])) return; const float raw[XYZ] = { rx, ry, 0 };
#endif #endif
rz += (
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.get_z_correction(rx, ry) * fade_scaling_factor
const float z_physical = raw[Z_AXIS], #elif ENABLED(MESH_BED_LEVELING)
z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]), mbl.get_z(rx, ry
z_virtual = z_physical - z_correct;
float z_raw = z_virtual;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
// for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
// then L=P-M(1-L/H)
// so L=P-M+ML/H
// so L-ML/H=P-M
// so L(1-M/H)=P-M
// so L=(P-M)/(1-M/H) for L<H
if (planner.z_fade_height) {
if (z_raw >= planner.z_fade_height)
z_raw = z_physical;
else
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
}
#endif // ENABLE_LEVELING_FADE_HEIGHT
raw[Z_AXIS] = z_raw;
return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic
#endif #endif
)
#if ENABLED(MESH_BED_LEVELING) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_z_offset(raw) * fade_scaling_factor
if (leveling_active) {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
#else #else
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]); 0
#endif
);
#endif #endif
} }
#elif ABL_PLANAR void Planner::unapply_leveling(float raw[XYZ]) {
if (!leveling_active) return;
#if ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
@ -664,14 +614,30 @@ void Planner::calculate_volumetric_multipliers() {
raw[X_AXIS] = dx + X_TILT_FULCRUM; raw[X_AXIS] = dx + X_TILT_FULCRUM;
raw[Y_AXIS] = dy + Y_TILT_FULCRUM; raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #else
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = bilinear_z_offset(raw); const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c); if (!fade_scaling_factor) return;
#elif HAS_MESH
constexpr float fade_scaling_factor = 1.0;
#endif
raw[Z_AXIS] -= (
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
#elif ENABLED(MESH_BED_LEVELING)
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
)
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_z_offset(raw) * fade_scaling_factor
#else #else
raw[Z_AXIS] -= bilinear_z_offset(raw); 0
#endif #endif
);
#endif #endif
} }
@ -709,10 +675,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
} }
#endif #endif
#if ENABLED(LIN_ADVANCE)
const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
#endif
const long da = target[X_AXIS] - position[X_AXIS], const long da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS], db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS]; dc = target[Z_AXIS] - position[Z_AXIS];
@ -741,29 +703,17 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
//*/ //*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN)) { if (DEBUGGING(DRYRUN))
position[E_AXIS] = target[E_AXIS]; position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
long de = target[E_AXIS] - position[E_AXIS]; long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) { if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
@ -772,10 +722,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
@ -783,6 +729,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
} }
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
#if ENABLED(LIN_ADVANCE)
float de_float = de * steps_to_mm[E_AXIS_N];
#endif
// Compute direction bit-mask for this block // Compute direction bit-mask for this block
uint8_t dm = 0; uint8_t dm = 0;
#if CORE_IS_XY #if CORE_IS_XY
@ -1380,30 +1330,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
// /**
// Use LIN_ADVANCE for blocks if all these are true: *
// * Use LIN_ADVANCE for blocks if all these are true:
// esteps : We have E steps todo (a printing move) *
// * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime). *
// * extruder_advance_k : There is an advance factor set.
// extruder_advance_k : There is an advance factor set. *
// * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small. * In that case, the retract and move will be executed together.
// In that case, the retract and move will be executed together. * This leads to too many advance steps due to a huge e_acceleration.
// This leads to too many advance steps due to a huge e_acceleration. * The math is good, but we must avoid retract moves with advance!
// The math is good, but we must avoid retract moves with advance! * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) */
// block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
block->use_advance_lead = esteps
&& (block->steps[X_AXIS] || block->steps[Y_AXIS])
&& extruder_advance_k && extruder_advance_k
&& (uint32_t)esteps != block->step_event_count && (uint32_t)esteps != block->step_event_count
&& de_float > 0.0; && de > 0;
if (block->use_advance_lead) if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = LROUND( block->abs_adv_steps_multiplier8 = LROUND(
extruder_advance_k extruder_advance_k
* (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
* (block->nominal_speed / (float)block->nominal_rate) * (block->nominal_speed / (float)block->nominal_rate)
* axis_steps_per_mm[E_AXIS_N] * 256.0 * axis_steps_per_mm[E_AXIS_N] * 256.0
); );
@ -1417,12 +1365,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
COPY(position, target); COPY(position, target);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
recalculate(); recalculate();
@ -1448,12 +1390,6 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]), nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]), nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne); stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed); ZERO(previous_speed);
@ -1478,16 +1414,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
* Sync from the stepper positions. (e.g., after an interrupted move) * Sync from the stepper positions. (e.g., after an interrupted move)
*/ */
void Planner::sync_from_steppers() { void Planner::sync_from_steppers() {
LOOP_XYZE(i) { LOOP_XYZE(i)
position[i] = stepper.position((AxisEnum)i); position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
#endif
];
#endif
}
} }
/** /**
@ -1501,9 +1429,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
const uint8_t axis_index = axis; const uint8_t axis_index = axis;
#endif #endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v); stepper.set_position(axis, v);
previous_speed[axis] = 0.0; previous_speed[axis] = 0.0;
} }

@ -219,10 +219,6 @@ class Planner {
static uint32_t axis_segment_time_us[2][3]; static uint32_t axis_segment_time_us[2][3];
#endif #endif
#if ENABLED(LIN_ADVANCE)
static float position_float[NUM_AXIS];
#endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
#endif #endif
@ -251,8 +247,6 @@ class Planner {
// Manage fans, paste pressure, etc. // Manage fans, paste pressure, etc.
static void check_axes_activity(); static void check_axes_activity();
static void calculate_volumetric_multipliers();
/** /**
* Number of moves currently in the planner * Number of moves currently in the planner
*/ */
@ -260,6 +254,16 @@ class Planner {
static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); } static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers();
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
filament_size[e] = v;
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/** /**

Loading…
Cancel
Save