In some cases the Bed Heater FET heats up more then stepper drivers, so
this change add the bed monitoring to the controller fan. As soon as the
bed heater is turned on, the controller fan will run as well.
In previous version, even with PWM = 127, the system turns the FET off
and then on in the next cycle. This bevavior may increase the FET heat
dissipation.
It was fixed keeping the FET always On when PWM=127.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
Reviert previous change of #if BLAH_PIN > 0 to #if defined(BLAH_PIN) &&
BLAH_PIN > -1. Unfortunately some times pin 0 is used. For my sins I've
gone through and replaced all unsafe checks of #if BLAH_PIN > -1 with
the safe version.
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
This allows PID_FUNCTIONAL_RANGE to use a maximum duty cycle higher
than PID_MAX. This is useful for powerful heaters to heat quickly in
bang-bang mode, but use a lower duty cycle that is easier to stabilize
in PID mode.
This change allows fan outputs to automatically turn on/off when the
associated nozzle temperature of an extruder is above/below a threshold
temperature.
Multiple extruders can be assigned to the same pin in which case the fan
will turn on when any selected extruder is above the threshold.
It also makes the M42 command compatible with the M106/M107 command.
The majority of the logic in this change will be evaluated by the
compiler at build time (i.e, low code space requirements).