Complete initial working revision of PDI programming in the AVRISP project (XMEGAs can now be programmed by the firmware).

pull/1469/head
Dean Camera 15 years ago
parent 79efd8c79e
commit 2f6c096050

@ -18,18 +18,20 @@
* The following is a list of known AVR USB development boards, which recommend using LUFA for the USB stack. Some of these * The following is a list of known AVR USB development boards, which recommend using LUFA for the USB stack. Some of these
* are open design, and all are available for purchase as completed development boards suitable for project development. * are open design, and all are available for purchase as completed development boards suitable for project development.
* *
* - Micropendous, an open design/source set of AVR USB development boards: http://micropendous.org/
* - Benito #7, a no-frills USB board: http://www.dorkbotpdx.org/wiki/benito * - Benito #7, a no-frills USB board: http://www.dorkbotpdx.org/wiki/benito
* - Bumble-B, yet another AT90USB162 development board: http://fletchtronics.net/bumble-b * - Bumble-B, yet another AT90USB162 development board: http://fletchtronics.net/bumble-b
* - Micropendous, an open design/source set of AVR USB development boards: http://micropendous.org/
* - Nanduino, a do-it-yourself AT90USB162 board: http://www.makestuff.eu/wordpress/?page_id=569
* - Teensy and Teensy++, two other AVR USB development boards: http://www.pjrc.com/teensy/index.html
* - USB10 AKA "The Ferret", a AT90USB162 development board: http://www.soc-machines.com * - USB10 AKA "The Ferret", a AT90USB162 development board: http://www.soc-machines.com
* - USBFoo, an AT90USB162 based development board: http://shop.kernelconcepts.de/product_info.php?products_id=102 * - USBFoo, an AT90USB162 based development board: http://shop.kernelconcepts.de/product_info.php?products_id=102
* - Teensy and Teensy++, two other AVR USB development boards: http://www.pjrc.com/teensy/index.html
* *
* \section Sec_LUFAProjects Projects Using LUFA (Hobbyist) * \section Sec_LUFAProjects Projects Using LUFA (Hobbyist)
* *
* The following are known hobbyist projects using LUFA. Most are open source, and show off interesting ways that the LUFA library * The following are known hobbyist projects using LUFA. Most are open source, and show off interesting ways that the LUFA library
* can be incorporated into many different applications. * can be incorporated into many different applications.
* *
* - Arcade Controller: http://fletchtronics.net/arcade-controller-made-petunia
* - Bicycle POV: http://www.code.google.com/p/bicycleledpov/ * - Bicycle POV: http://www.code.google.com/p/bicycleledpov/
* - CAMTRIG, a remote Camera Trigger device: http://code.astraw.com/projects/motmot/camtrig * - CAMTRIG, a remote Camera Trigger device: http://code.astraw.com/projects/motmot/camtrig
* - "Fingerlicking Wingdinger" (WARNING: Bad Language if no Javascript), a MIDI controller - http://noisybox.net/electronics/wingdinger/ * - "Fingerlicking Wingdinger" (WARNING: Bad Language if no Javascript), a MIDI controller - http://noisybox.net/electronics/wingdinger/

@ -96,7 +96,7 @@ bool NVMTarget_WaitWhileNVMControllerBusy(void)
* \param[in] CRCCommand NVM CRC command to issue to the target * \param[in] CRCCommand NVM CRC command to issue to the target
* \param[out] CRCDest CRC Destination when read from the target * \param[out] CRCDest CRC Destination when read from the target
* *
* \return Boolean true if the command sequence complete sucessfully * \return Boolean true if the command sequence complete successfully
*/ */
bool NVMTarget_GetMemoryCRC(uint8_t CRCCommand, uint32_t* CRCDest) bool NVMTarget_GetMemoryCRC(uint8_t CRCCommand, uint32_t* CRCDest)
{ {
@ -148,7 +148,7 @@ bool NVMTarget_GetMemoryCRC(uint8_t CRCCommand, uint32_t* CRCDest)
* \param[out] ReadBuffer Buffer to store read data into * \param[out] ReadBuffer Buffer to store read data into
* \param[in] ReadSize Number of bytes to read * \param[in] ReadSize Number of bytes to read
* *
* \return Boolean true if the command sequence complete sucessfully * \return Boolean true if the command sequence complete successfully
*/ */
bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t ReadSize) bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t ReadSize)
{ {
@ -156,7 +156,7 @@ bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t Re
if (!(NVMTarget_WaitWhileNVMControllerBusy())) if (!(NVMTarget_WaitWhileNVMControllerBusy()))
return false; return false;
/* Send the READNVM command to the NVM controller for reading of an aribtrary location */ /* Send the READNVM command to the NVM controller for reading of an arbitrary location */
PDITarget_SendByte(PDI_CMD_STS | (PDI_DATSIZE_4BYTES << 2)); PDITarget_SendByte(PDI_CMD_STS | (PDI_DATSIZE_4BYTES << 2));
NVMTarget_SendNVMRegAddress(NVM_REG_CMD); NVMTarget_SendNVMRegAddress(NVM_REG_CMD);
PDITarget_SendByte(NVM_CMD_READNVM); PDITarget_SendByte(NVM_CMD_READNVM);
@ -166,9 +166,8 @@ bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t Re
NVMTarget_SendAddress(ReadAddress); NVMTarget_SendAddress(ReadAddress);
/* Send the REPEAT command with the specified number of bytes to read */ /* Send the REPEAT command with the specified number of bytes to read */
PDITarget_SendByte(PDI_CMD_REPEAT | PDI_DATSIZE_2BYTES); PDITarget_SendByte(PDI_CMD_REPEAT | PDI_DATSIZE_1BYTE);
PDITarget_SendByte(ReadSize & 0xFF); PDITarget_SendByte(ReadSize - 1);
PDITarget_SendByte(ReadSize >> 8);
/* Send a LD command with indirect access and postincrement to read out the bytes */ /* Send a LD command with indirect access and postincrement to read out the bytes */
PDITarget_SendByte(PDI_CMD_LD | (PDI_POINTER_INDIRECT_PI << 2) | PDI_DATSIZE_1BYTE); PDITarget_SendByte(PDI_CMD_LD | (PDI_POINTER_INDIRECT_PI << 2) | PDI_DATSIZE_1BYTE);
@ -185,12 +184,10 @@ bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t Re
* \param[in] WriteBuffer Buffer to source data from * \param[in] WriteBuffer Buffer to source data from
* \param[in] WriteSize Number of bytes to write * \param[in] WriteSize Number of bytes to write
* *
* \return Boolean true if the command sequence complete sucessfully * \return Boolean true if the command sequence complete successfully
*/ */
bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint8_t* WriteBuffer, uint16_t WriteSize) bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint8_t* WriteBuffer)
{ {
for (uint16_t i = 0; i < WriteSize; i++)
{
/* Wait until the NVM controller is no longer busy */ /* Wait until the NVM controller is no longer busy */
if (!(NVMTarget_WaitWhileNVMControllerBusy())) if (!(NVMTarget_WaitWhileNVMControllerBusy()))
return false; return false;
@ -200,11 +197,10 @@ bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint
NVMTarget_SendNVMRegAddress(NVM_REG_CMD); NVMTarget_SendNVMRegAddress(NVM_REG_CMD);
PDITarget_SendByte(WriteCommand); PDITarget_SendByte(WriteCommand);
/* Send each new memory byte to the memory to the target */ /* Send new memory byte to the memory to the target */
PDITarget_SendByte(PDI_CMD_STS | (PDI_DATSIZE_4BYTES << 2)); PDITarget_SendByte(PDI_CMD_STS | (PDI_DATSIZE_4BYTES << 2));
NVMTarget_SendAddress(WriteAddress++); NVMTarget_SendAddress(WriteAddress++);
PDITarget_SendByte(*(WriteBuffer++)); PDITarget_SendByte(*(WriteBuffer++));
}
return true; return true;
} }
@ -219,7 +215,7 @@ bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint
* \param[in] WriteBuffer Buffer to source data from * \param[in] WriteBuffer Buffer to source data from
* \param[in] WriteSize Number of bytes to write * \param[in] WriteSize Number of bytes to write
* *
* \return Boolean true if the command sequence complete sucessfully * \return Boolean true if the command sequence complete successfully
*/ */
bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffCommand, uint8_t WritePageCommand, bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffCommand, uint8_t WritePageCommand,
uint8_t PageMode, uint32_t WriteAddress, uint8_t* WriteBuffer, uint16_t WriteSize) uint8_t PageMode, uint32_t WriteAddress, uint8_t* WriteBuffer, uint16_t WriteSize)
@ -257,22 +253,13 @@ bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffComman
NVMTarget_SendAddress(WriteAddress); NVMTarget_SendAddress(WriteAddress);
/* Send the REPEAT command with the specified number of bytes to write */ /* Send the REPEAT command with the specified number of bytes to write */
PDITarget_SendByte(PDI_CMD_REPEAT | PDI_DATSIZE_2BYTES); PDITarget_SendByte(PDI_CMD_REPEAT | PDI_DATSIZE_1BYTE);
PDITarget_SendByte(WriteSize & 0xFF); PDITarget_SendByte(WriteSize - 1);
PDITarget_SendByte(WriteSize >> 8);
/* Send a ST command with indirect access and postincrement to write the bytes */ /* Send a ST command with indirect access and postincrement to write the bytes */
PDITarget_SendByte(PDI_CMD_ST | (PDI_POINTER_INDIRECT_PI << 2) | PDI_DATSIZE_1BYTE); PDITarget_SendByte(PDI_CMD_ST | (PDI_POINTER_INDIRECT_PI << 2) | PDI_DATSIZE_1BYTE);
for (uint16_t i = 0; i < WriteSize; i++) for (uint16_t i = 0; i < WriteSize; i++)
PDITarget_SendByte(*(WriteBuffer++)); PDITarget_SendByte(*(WriteBuffer++));
// TEMP
PDITarget_SendByte(PDI_CMD_LDS | (PDI_DATSIZE_4BYTES << 2));
NVMTarget_SendNVMRegAddress(NVM_REG_STATUS);
GPIOR0 = PDITarget_ReceiveByte();
if (!(GPIOR0 & (1 << 0)))
JTAG_DEBUG_POINT();
// END TEMP
} }
if (PageMode & XPRG_PAGEMODE_WRITE) if (PageMode & XPRG_PAGEMODE_WRITE)
@ -300,7 +287,7 @@ bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffComman
* \param[in] EraseCommand NVM erase command to send to the device * \param[in] EraseCommand NVM erase command to send to the device
* \param[in] Address Address inside the memory space to erase * \param[in] Address Address inside the memory space to erase
* *
* \return Boolean true if the command sequence complete sucessfully * \return Boolean true if the command sequence complete successfully
*/ */
bool NVMTarget_EraseMemory(uint8_t EraseCommand, uint32_t Address) bool NVMTarget_EraseMemory(uint8_t EraseCommand, uint32_t Address)
{ {
@ -313,7 +300,7 @@ bool NVMTarget_EraseMemory(uint8_t EraseCommand, uint32_t Address)
NVMTarget_SendNVMRegAddress(NVM_REG_CMD); NVMTarget_SendNVMRegAddress(NVM_REG_CMD);
PDITarget_SendByte(EraseCommand); PDITarget_SendByte(EraseCommand);
/* Chip erase is handled seperately, since it's procedure is different to other erase types */ /* Chip erase is handled separately, since it's procedure is different to other erase types */
if (EraseCommand == NVM_CMD_CHIPERASE) if (EraseCommand == NVM_CMD_CHIPERASE)
{ {
/* Set CMDEX bit in NVM CTRLA register to start the chip erase */ /* Set CMDEX bit in NVM CTRLA register to start the chip erase */

@ -77,7 +77,7 @@
#define NVM_CMD_LOADFLASHPAGEBUFF 0x23 #define NVM_CMD_LOADFLASHPAGEBUFF 0x23
#define NVM_CMD_ERASEFLASHPAGEBUFF 0x26 #define NVM_CMD_ERASEFLASHPAGEBUFF 0x26
#define NVM_CMD_ERASEFLASHPAGE 0x2B #define NVM_CMD_ERASEFLASHPAGE 0x2B
#define NVM_CMD_FLASHPAGEWRITE 0x2E #define NVM_CMD_WRITEFLASHPAGE 0x2E
#define NVM_CMD_ERASEWRITEFLASH 0x2F #define NVM_CMD_ERASEWRITEFLASH 0x2F
#define NVM_CMD_FLASHCRC 0x78 #define NVM_CMD_FLASHCRC 0x78
#define NVM_CMD_ERASEAPPSEC 0x20 #define NVM_CMD_ERASEAPPSEC 0x20
@ -111,8 +111,7 @@
bool NVMTarget_WaitWhileNVMControllerBusy(void); bool NVMTarget_WaitWhileNVMControllerBusy(void);
bool NVMTarget_GetMemoryCRC(uint8_t CRCCommand, uint32_t* CRCDest); bool NVMTarget_GetMemoryCRC(uint8_t CRCCommand, uint32_t* CRCDest);
bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t ReadSize); bool NVMTarget_ReadMemory(uint32_t ReadAddress, uint8_t* ReadBuffer, uint16_t ReadSize);
bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint8_t* WriteBuffer, bool NVMTarget_WriteByteMemory(uint8_t WriteCommand, uint32_t WriteAddress, uint8_t* WriteBuffer);
uint16_t WriteSize);
bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffCommand, uint8_t WritePageCommand, bool NVMTarget_WritePageMemory(uint8_t WriteBuffCommand, uint8_t EraseBuffCommand, uint8_t WritePageCommand,
uint8_t PageMode, uint32_t WriteAddress, uint8_t* WriteBuffer, uint16_t WriteSize); uint8_t PageMode, uint32_t WriteAddress, uint8_t* WriteBuffer, uint16_t WriteSize);
bool NVMTarget_EraseMemory(uint8_t EraseCommand, uint32_t Address); bool NVMTarget_EraseMemory(uint8_t EraseCommand, uint32_t Address);

@ -37,8 +37,6 @@
#include "PDIProtocol.h" #include "PDIProtocol.h"
#if defined(ENABLE_PDI_PROTOCOL) || defined(__DOXYGEN__) #if defined(ENABLE_PDI_PROTOCOL) || defined(__DOXYGEN__)
#warning PDI Programming Protocol support is incomplete and not currently suitable for general use.
/** Base absolute address for the target's NVM controller */ /** Base absolute address for the target's NVM controller */
uint32_t XPROG_Param_NVMBase; uint32_t XPROG_Param_NVMBase;
@ -164,6 +162,7 @@ static void PDIProtocol_Erase(void)
uint8_t EraseCommand = NVM_CMD_NOOP; uint8_t EraseCommand = NVM_CMD_NOOP;
/* Determine which NVM command to send to the device depending on the memory to erase */
if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_CHIP) if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_CHIP)
EraseCommand = NVM_CMD_CHIPERASE; EraseCommand = NVM_CMD_CHIPERASE;
else if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_APP) else if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_APP)
@ -181,6 +180,7 @@ static void PDIProtocol_Erase(void)
else if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_USERSIG) else if (Erase_XPROG_Params.MemoryType == XPRG_ERASE_USERSIG)
EraseCommand = NVM_CMD_ERASEUSERSIG; EraseCommand = NVM_CMD_ERASEUSERSIG;
/* Erase the target memory, indicate timeout if ocurred */
if (!(NVMTarget_EraseMemory(EraseCommand, Erase_XPROG_Params.Address))) if (!(NVMTarget_EraseMemory(EraseCommand, Erase_XPROG_Params.Address)))
ReturnStatus = XPRG_ERR_TIMEOUT; ReturnStatus = XPRG_ERR_TIMEOUT;
@ -213,66 +213,52 @@ static void PDIProtocol_WriteMemory(void)
Endpoint_ClearOUT(); Endpoint_ClearOUT();
Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
/* Assume FLASH page programming by default, as it is the common case */
uint8_t WriteCommand = NVM_CMD_NOOP; uint8_t WriteCommand = NVM_CMD_WRITEFLASHPAGE;
uint8_t WriteBuffCommand = NVM_CMD_NOOP; uint8_t WriteBuffCommand = NVM_CMD_LOADFLASHPAGEBUFF;
uint8_t EraseBuffCommand = NVM_CMD_NOOP; uint8_t EraseBuffCommand = NVM_CMD_ERASEFLASHPAGEBUFF;
bool PagedMemory = false; bool PagedMemory = true;
if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_APPL) if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_APPL)
{ {
WriteCommand = NVM_CMD_ERASEWRITEFLASH; WriteCommand = NVM_CMD_WRITEAPPSECPAGE;
WriteBuffCommand = NVM_CMD_LOADFLASHPAGEBUFF;
EraseBuffCommand = NVM_CMD_ERASEFLASHPAGEBUFF;
PagedMemory = true;
} }
else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_BOOT) else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_BOOT)
{ {
WriteCommand = NVM_CMD_ERASEWRITEFLASH; WriteCommand = NVM_CMD_WRITEBOOTSECPAGE;
WriteBuffCommand = NVM_CMD_LOADFLASHPAGEBUFF;
EraseBuffCommand = NVM_CMD_ERASEFLASHPAGEBUFF;
PagedMemory = true;
} }
else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_EEPROM) else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_EEPROM)
{ {
WriteCommand = NVM_CMD_ERASEWRITEEEPROMPAGE; WriteCommand = NVM_CMD_WRITEEEPROMPAGE;
WriteBuffCommand = NVM_CMD_LOADEEPROMPAGEBUFF; WriteBuffCommand = NVM_CMD_LOADEEPROMPAGEBUFF;
EraseBuffCommand = NVM_CMD_ERASEEEPROMPAGEBUFF; EraseBuffCommand = NVM_CMD_ERASEEEPROMPAGEBUFF;
PagedMemory = true;
} }
else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_USERSIG) else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_USERSIG)
{ {
/* User signature is paged, but needs us to manually indicate the mode bits since the host doesn't set them */
WriteMemory_XPROG_Params.PageMode = (XPRG_PAGEMODE_ERASE | XPRG_PAGEMODE_WRITE);
WriteCommand = NVM_CMD_WRITEUSERSIG; WriteCommand = NVM_CMD_WRITEUSERSIG;
WriteBuffCommand = NVM_CMD_LOADFLASHPAGEBUFF;
EraseBuffCommand = NVM_CMD_ERASEFLASHPAGEBUFF;
PagedMemory = true;
} }
else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_FUSE) else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_FUSE)
{ {
WriteCommand = NVM_CMD_WRITEFUSE; WriteCommand = NVM_CMD_WRITEFUSE;
PagedMemory = false;
} }
else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_LOCKBITS) else if (WriteMemory_XPROG_Params.MemoryType == XPRG_MEM_TYPE_LOCKBITS)
{ {
WriteCommand = NVM_CMD_WRITELOCK; WriteCommand = NVM_CMD_WRITELOCK;
PagedMemory = false;
} }
if (PagedMemory) /* Send the appropriate memory write commands to the device, indicate timeout if occurred */
{ if ((PagedMemory && !NVMTarget_WritePageMemory(WriteBuffCommand, EraseBuffCommand, WriteCommand,
if (!(NVMTarget_WritePageMemory(WriteBuffCommand, EraseBuffCommand, WriteCommand,
WriteMemory_XPROG_Params.PageMode, WriteMemory_XPROG_Params.Address, WriteMemory_XPROG_Params.PageMode, WriteMemory_XPROG_Params.Address,
WriteMemory_XPROG_Params.ProgData, WriteMemory_XPROG_Params.Length))) WriteMemory_XPROG_Params.ProgData, WriteMemory_XPROG_Params.Length)) ||
{ (!PagedMemory && !NVMTarget_WriteByteMemory(WriteCommand, WriteMemory_XPROG_Params.Address,
ReturnStatus = XPRG_ERR_TIMEOUT; WriteMemory_XPROG_Params.ProgData)))
}
}
else
{
if (!(NVMTarget_WriteByteMemory(WriteCommand, WriteMemory_XPROG_Params.Address, WriteMemory_XPROG_Params.ProgData,
WriteMemory_XPROG_Params.Length)))
{ {
ReturnStatus = XPRG_ERR_TIMEOUT; ReturnStatus = XPRG_ERR_TIMEOUT;
} }
}
Endpoint_Write_Byte(CMD_XPROG); Endpoint_Write_Byte(CMD_XPROG);
Endpoint_Write_Byte(XPRG_CMD_WRITE_MEM); Endpoint_Write_Byte(XPRG_CMD_WRITE_MEM);
@ -301,8 +287,9 @@ static void PDIProtocol_ReadMemory(void)
Endpoint_ClearOUT(); Endpoint_ClearOUT();
Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
uint8_t ReadBuffer[ReadMemory_XPROG_Params.Length]; uint8_t ReadBuffer[256];
/* Read the target's memory, indicate timeout if occurred */
if (!(NVMTarget_ReadMemory(ReadMemory_XPROG_Params.Address, ReadBuffer, ReadMemory_XPROG_Params.Length))) if (!(NVMTarget_ReadMemory(ReadMemory_XPROG_Params.Address, ReadBuffer, ReadMemory_XPROG_Params.Length)))
ReturnStatus = XPRG_ERR_TIMEOUT; ReturnStatus = XPRG_ERR_TIMEOUT;
@ -335,6 +322,7 @@ static void PDIProtocol_ReadCRC(void)
uint8_t CRCCommand = NVM_CMD_NOOP; uint8_t CRCCommand = NVM_CMD_NOOP;
uint32_t MemoryCRC; uint32_t MemoryCRC;
/* Determine which NVM command to send to the device depending on the memory to CRC */
if (ReadCRC_XPROG_Params.CRCType == XPRG_CRC_APP) if (ReadCRC_XPROG_Params.CRCType == XPRG_CRC_APP)
CRCCommand = NVM_CMD_APPCRC; CRCCommand = NVM_CMD_APPCRC;
else if (ReadCRC_XPROG_Params.CRCType == XPRG_CRC_BOOT) else if (ReadCRC_XPROG_Params.CRCType == XPRG_CRC_BOOT)
@ -342,6 +330,7 @@ static void PDIProtocol_ReadCRC(void)
else else
CRCCommand = NVM_CMD_FLASHCRC; CRCCommand = NVM_CMD_FLASHCRC;
/* Perform and retrieve the memory CRC, indicate timeout if occurred */
if (!(NVMTarget_GetMemoryCRC(CRCCommand, &MemoryCRC))) if (!(NVMTarget_GetMemoryCRC(CRCCommand, &MemoryCRC)))
ReturnStatus = XPRG_ERR_TIMEOUT; ReturnStatus = XPRG_ERR_TIMEOUT;
@ -367,6 +356,7 @@ static void PDIProtocol_SetParam(void)
uint8_t XPROGParam = Endpoint_Read_Byte(); uint8_t XPROGParam = Endpoint_Read_Byte();
/* Determine which parameter is being set, store the new parameter value */
if (XPROGParam == XPRG_PARAM_NVMBASE) if (XPROGParam == XPRG_PARAM_NVMBASE)
XPROG_Param_NVMBase = Endpoint_Read_DWord_BE(); XPROG_Param_NVMBase = Endpoint_Read_DWord_BE();
else if (XPROGParam == XPRG_PARAM_EEPPAGESIZE) else if (XPROGParam == XPRG_PARAM_EEPPAGESIZE)

@ -98,8 +98,8 @@
#define XPRG_PROTOCOL_PDI 0x00 #define XPRG_PROTOCOL_PDI 0x00
#define XPRG_PROTOCOL_JTAG 0x01 #define XPRG_PROTOCOL_JTAG 0x01
#define XPRG_PAGEMODE_WRITE (1 << 0) #define XPRG_PAGEMODE_WRITE (1 << 1)
#define XPRG_PAGEMODE_ERASE (1 << 1) #define XPRG_PAGEMODE_ERASE (1 << 0)
/* External Variables: */ /* External Variables: */
extern uint32_t XPROG_Param_NVMBase; extern uint32_t XPROG_Param_NVMBase;

Loading…
Cancel
Save