/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
* stepper . cpp - A singleton object to execute motion plans using stepper motors
* Marlin Firmware
*
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < http : //www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher . */
# include "Marlin.h"
# include "stepper.h"
# include "endstops.h"
# include "planner.h"
# include "temperature.h"
# include "ultralcd.h"
# include "language.h"
# include "cardreader.h"
# include "speed_lookuptable.h"
# if HAS_DIGIPOTSS
# include <SPI.h>
# endif
Stepper stepper ; // Singleton
// public:
block_t * Stepper : : current_block = NULL ; // A pointer to the block currently being traced
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
bool Stepper : : abort_on_endstop_hit = false ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
bool Stepper : : performing_homing = false ;
# endif
// private:
unsigned char Stepper : : last_direction_bits = 0 ; // The next stepping-bits to be output
unsigned int Stepper : : cleaning_buffer_counter = 0 ;
# if ENABLED(Z_DUAL_ENDSTOPS)
bool Stepper : : locked_z_motor = false ;
bool Stepper : : locked_z2_motor = false ;
# endif
long Stepper : : counter_X = 0 ,
Stepper : : counter_Y = 0 ,
Stepper : : counter_Z = 0 ,
Stepper : : counter_E = 0 ;
volatile uint32_t Stepper : : step_events_completed = 0 ; // The number of step events executed in the current block
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
unsigned char Stepper : : old_OCR0A = 0 ;
volatile unsigned char Stepper : : eISR_Rate = 200 ; // Keep the ISR at a low rate until needed
# if ENABLED(LIN_ADVANCE)
volatile int Stepper : : e_steps [ E_STEPPERS ] ;
int Stepper : : final_estep_rate ,
Stepper : : current_estep_rate [ E_STEPPERS ] ,
Stepper : : current_adv_steps [ E_STEPPERS ] ;
# else
long Stepper : : e_steps [ E_STEPPERS ] ,
Stepper : : final_advance = 0 ,
Stepper : : old_advance = 0 ,
Stepper : : advance_rate ,
Stepper : : advance ;
# endif
# endif
long Stepper : : acceleration_time , Stepper : : deceleration_time ;
volatile long Stepper : : count_position [ NUM_AXIS ] = { 0 } ;
volatile signed char Stepper : : count_direction [ NUM_AXIS ] = { 1 , 1 , 1 , 1 } ;
# if ENABLED(MIXING_EXTRUDER)
long Stepper : : counter_m [ MIXING_STEPPERS ] ;
# endif
unsigned short Stepper : : acc_step_rate ; // needed for deceleration start point
uint8_t Stepper : : step_loops , Stepper : : step_loops_nominal ;
unsigned short Stepper : : OCR1A_nominal ;
volatile long Stepper : : endstops_trigsteps [ XYZ ] ;
# if ENABLED(X_DUAL_STEPPER_DRIVERS)
# define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
# define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
# elif ENABLED(DUAL_X_CARRIAGE)
# define X_APPLY_DIR(v,ALWAYS) \
if ( extruder_duplication_enabled | | ALWAYS ) { \
X_DIR_WRITE ( v ) ; \
X2_DIR_WRITE ( v ) ; \
} \
else { \
if ( current_block - > active_extruder ) X2_DIR_WRITE ( v ) ; else X_DIR_WRITE ( v ) ; \
}
# define X_APPLY_STEP(v,ALWAYS) \
if ( extruder_duplication_enabled | | ALWAYS ) { \
X_STEP_WRITE ( v ) ; \
X2_STEP_WRITE ( v ) ; \
} \
else { \
if ( current_block - > active_extruder ! = 0 ) X2_STEP_WRITE ( v ) ; else X_STEP_WRITE ( v ) ; \
}
# else
# define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
# define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
# endif
# if ENABLED(Y_DUAL_STEPPER_DRIVERS)
# define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
# define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
# else
# define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
# define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
# endif
# if ENABLED(Z_DUAL_STEPPER_DRIVERS)
# define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
# if ENABLED(Z_DUAL_ENDSTOPS)
# define Z_APPLY_STEP(v,Q) \
if ( performing_homing ) { \
if ( Z_HOME_DIR < 0 ) { \
if ( ! ( TEST ( endstops . old_endstop_bits , Z_MIN ) & & ( count_direction [ Z_AXIS ] < 0 ) ) & & ! locked_z_motor ) Z_STEP_WRITE ( v ) ; \
if ( ! ( TEST ( endstops . old_endstop_bits , Z2_MIN ) & & ( count_direction [ Z_AXIS ] < 0 ) ) & & ! locked_z2_motor ) Z2_STEP_WRITE ( v ) ; \
} \
else { \
if ( ! ( TEST ( endstops . old_endstop_bits , Z_MAX ) & & ( count_direction [ Z_AXIS ] > 0 ) ) & & ! locked_z_motor ) Z_STEP_WRITE ( v ) ; \
if ( ! ( TEST ( endstops . old_endstop_bits , Z2_MAX ) & & ( count_direction [ Z_AXIS ] > 0 ) ) & & ! locked_z2_motor ) Z2_STEP_WRITE ( v ) ; \
} \
} \
else { \
Z_STEP_WRITE ( v ) ; \
Z2_STEP_WRITE ( v ) ; \
}
# else
# define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
# endif
# else
# define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
# define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
# endif
# if DISABLED(MIXING_EXTRUDER)
# define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
# endif
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
// B0 A0 are bits 24-39 and are the returned value
// C1 B1 A1 is longIn1
// D2 C2 B2 A2 is longIn2
//
# define MultiU24X32toH16(intRes, longIn1, longIn2) \
asm volatile ( \
" clr r26 \n \t " \
" mul %A1, %B2 \n \t " \
" mov r27, r1 \n \t " \
" mul %B1, %C2 \n \t " \
" movw %A0, r0 \n \t " \
" mul %C1, %C2 \n \t " \
" add %B0, r0 \n \t " \
" mul %C1, %B2 \n \t " \
" add %A0, r0 \n \t " \
" adc %B0, r1 \n \t " \
" mul %A1, %C2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %B1, %B2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %C1, %A2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %B1, %A2 \n \t " \
" add r27, r1 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" lsr r27 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" mul %D2, %A1 \n \t " \
" add %A0, r0 \n \t " \
" adc %B0, r1 \n \t " \
" mul %D2, %B1 \n \t " \
" add %B0, r0 \n \t " \
" clr r1 \n \t " \
: \
" =&r " ( intRes ) \
: \
" d " ( longIn1 ) , \
" d " ( longIn2 ) \
: \
" r26 " , " r27 " \
)
// Some useful constants
# define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
# define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
/**
* __________________________
* / | | \ _________________ ^
* / | | \ / | | \ |
* / | | \ / | | \ s
* / | | | | | \ p
* / | | | | | \ e
* + - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - + - - - + - - + - - - - - - - - - - - - - - - + - - - - + e
* | BLOCK 1 | BLOCK 2 | d
*
* time - - - - - >
*
* The trapezoid is the shape the speed curve over time . It starts at block - > initial_rate , accelerates
* first block - > accelerate_until step_events_completed , then keeps going at constant speed until
* step_events_completed reaches block - > decelerate_after after which it decelerates until the trapezoid generator is reset .
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far .
*/
void Stepper : : wake_up ( ) {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
}
/**
* Set the stepper direction of each axis
*
* COREXY : X_AXIS = A_AXIS and Y_AXIS = B_AXIS
* COREXZ : X_AXIS = A_AXIS and Z_AXIS = C_AXIS
* COREYZ : Y_AXIS = B_AXIS and Z_AXIS = C_AXIS
*/
void Stepper : : set_directions ( ) {
# define SET_STEP_DIR(AXIS) \
if ( motor_direction ( AXIS # # _AXIS ) ) { \
AXIS # # _APPLY_DIR ( INVERT_ # # AXIS # # _DIR , false ) ; \
count_direction [ AXIS # # _AXIS ] = - 1 ; \
} \
else { \
AXIS # # _APPLY_DIR ( ! INVERT_ # # AXIS # # _DIR , false ) ; \
count_direction [ AXIS # # _AXIS ] = 1 ; \
}
# if HAS_X_DIR
SET_STEP_DIR ( X ) ; // A
# endif
# if HAS_Y_DIR
SET_STEP_DIR ( Y ) ; // B
# endif
# if HAS_Z_DIR
SET_STEP_DIR ( Z ) ; // C
# endif
# if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
if ( motor_direction ( E_AXIS ) ) {
REV_E_DIR ( ) ;
count_direction [ E_AXIS ] = - 1 ;
}
else {
NORM_E_DIR ( ) ;
count_direction [ E_AXIS ] = 1 ;
}
# endif // !ADVANCE && !LIN_ADVANCE
}
# if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
extern volatile uint8_t e_hit ;
# endif
/**
* Stepper Driver Interrupt
*
* Directly pulses the stepper motors at high frequency .
* Timer 1 runs at a base frequency of 2 MHz , with this ISR using OCR1A compare mode .
*
* OCR1A Frequency
* 1 2 MHz
* 50 40 KHz
* 100 20 KHz - capped max rate
* 200 10 KHz - nominal max rate
* 2000 1 KHz - sleep rate
* 4000 500 Hz - init rate
*/
ISR ( TIMER1_COMPA_vect ) { Stepper : : isr ( ) ; }
void Stepper : : isr ( ) {
if ( cleaning_buffer_counter ) {
current_block = NULL ;
planner . discard_current_block ( ) ;
# ifdef SD_FINISHED_RELEASECOMMAND
if ( ( cleaning_buffer_counter = = 1 ) & & ( SD_FINISHED_STEPPERRELEASE ) ) enqueue_and_echo_commands_P ( PSTR ( SD_FINISHED_RELEASECOMMAND ) ) ;
# endif
cleaning_buffer_counter - - ;
OCR1A = 200 ; // Run at max speed - 10 KHz
return ;
}
// If there is no current block, attempt to pop one from the buffer
if ( ! current_block ) {
// Anything in the buffer?
current_block = planner . get_current_block ( ) ;
if ( current_block ) {
trapezoid_generator_reset ( ) ;
// Initialize Bresenham counters to 1/2 the ceiling
counter_X = counter_Y = counter_Z = counter_E = - ( current_block - > step_event_count > > 1 ) ;
# if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP ( i )
counter_m [ i ] = - ( current_block - > mix_event_count [ i ] > > 1 ) ;
# endif
step_events_completed = 0 ;
# if ENABLED(Z_LATE_ENABLE)
if ( current_block - > steps [ Z_AXIS ] > 0 ) {
enable_z ( ) ;
OCR1A = 2000 ; // Run at slow speed - 1 KHz
return ;
}
# endif
// #if ENABLED(ADVANCE)
// e_steps[TOOL_E_INDEX] = 0;
// #endif
}
else {
OCR1A = 2000 ; // Run at slow speed - 1 KHz
return ;
}
}
// Update endstops state, if enabled
if ( ( endstops . enabled
# if HAS_BED_PROBE
| | endstops . z_probe_enabled
# endif
)
# if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
& & e_hit
# endif
) {
endstops . update ( ) ;
# if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
e_hit - - ;
# endif
}
// Take multiple steps per interrupt (For high speed moves)
bool all_steps_done = false ;
for ( int8_t i = 0 ; i < step_loops ; i + + ) {
# ifndef USBCON
customizedSerial . checkRx ( ) ; // Check for serial chars.
# endif
# if ENABLED(LIN_ADVANCE)
counter_E + = current_block - > steps [ E_AXIS ] ;
if ( counter_E > 0 ) {
counter_E - = current_block - > step_event_count ;
# if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
count_position [ E_AXIS ] + = count_direction [ E_AXIS ] ;
motor_direction ( E_AXIS ) ? - - e_steps [ TOOL_E_INDEX ] : + + e_steps [ TOOL_E_INDEX ] ;
# endif
}
# if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
const bool dir = motor_direction ( E_AXIS ) ;
MIXING_STEPPERS_LOOP ( j ) {
counter_m [ j ] + = current_block - > steps [ E_AXIS ] ;
if ( counter_m [ j ] > 0 ) {
counter_m [ j ] - = current_block - > mix_event_count [ j ] ;
dir ? - - e_steps [ j ] : + + e_steps [ j ] ;
}
}
# endif
# elif ENABLED(ADVANCE)
// Always count the unified E axis
counter_E + = current_block - > steps [ E_AXIS ] ;
if ( counter_E > 0 ) {
counter_E - = current_block - > step_event_count ;
# if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
motor_direction ( E_AXIS ) ? - - e_steps [ TOOL_E_INDEX ] : + + e_steps [ TOOL_E_INDEX ] ;
# endif
}
# if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
const bool dir = motor_direction ( E_AXIS ) ;
MIXING_STEPPERS_LOOP ( j ) {
counter_m [ j ] + = current_block - > steps [ E_AXIS ] ;
if ( counter_m [ j ] > 0 ) {
counter_m [ j ] - = current_block - > mix_event_count [ j ] ;
dir ? - - e_steps [ j ] : + + e_steps [ j ] ;
}
}
# endif // MIXING_EXTRUDER
# endif // ADVANCE or LIN_ADVANCE
# define _COUNTER(AXIS) counter_## AXIS
# define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
# define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
// Advance the Bresenham counter; start a pulse if the axis needs a step
# define PULSE_START(AXIS) \
_COUNTER ( AXIS ) + = current_block - > steps [ _AXIS ( AXIS ) ] ; \
if ( _COUNTER ( AXIS ) > 0 ) { _APPLY_STEP ( AXIS ) ( ! _INVERT_STEP_PIN ( AXIS ) , 0 ) ; }
// Stop an active pulse, reset the Bresenham counter, update the position
# define PULSE_STOP(AXIS) \
if ( _COUNTER ( AXIS ) > 0 ) { \
_COUNTER ( AXIS ) - = current_block - > step_event_count ; \
count_position [ _AXIS ( AXIS ) ] + = count_direction [ _AXIS ( AXIS ) ] ; \
_APPLY_STEP ( AXIS ) ( _INVERT_STEP_PIN ( AXIS ) , 0 ) ; \
}
# define CYCLES_EATEN_BY_CODE 240
// If a minimum pulse time was specified get the CPU clock
# if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
static uint32_t pulse_start ;
pulse_start = TCNT0 ;
# endif
# if HAS_X_STEP
PULSE_START ( X ) ;
# endif
# if HAS_Y_STEP
PULSE_START ( Y ) ;
# endif
# if HAS_Z_STEP
PULSE_START ( Z ) ;
# endif
// For non-advance use linear interpolation for E also
# if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
# if ENABLED(MIXING_EXTRUDER)
// Keep updating the single E axis
counter_E + = current_block - > steps [ E_AXIS ] ;
// Tick the counters used for this mix
MIXING_STEPPERS_LOOP ( j ) {
// Step mixing steppers (proportionally)
counter_m [ j ] + = current_block - > steps [ E_AXIS ] ;
// Step when the counter goes over zero
if ( counter_m [ j ] > 0 ) En_STEP_WRITE ( j , ! INVERT_E_STEP_PIN ) ;
}
# else // !MIXING_EXTRUDER
PULSE_START ( E ) ;
# endif
# endif // !ADVANCE && !LIN_ADVANCE
// For a minimum pulse time wait before stopping pulses
# if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
while ( ( uint32_t ) ( TCNT0 - pulse_start ) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE ) { /* nada */ }
# endif
# if HAS_X_STEP
PULSE_STOP ( X ) ;
# endif
# if HAS_Y_STEP
PULSE_STOP ( Y ) ;
# endif
# if HAS_Z_STEP
PULSE_STOP ( Z ) ;
# endif
# if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
# if ENABLED(MIXING_EXTRUDER)
// Always step the single E axis
if ( counter_E > 0 ) {
counter_E - = current_block - > step_event_count ;
count_position [ E_AXIS ] + = count_direction [ E_AXIS ] ;
}
MIXING_STEPPERS_LOOP ( j ) {
if ( counter_m [ j ] > 0 ) {
counter_m [ j ] - = current_block - > mix_event_count [ j ] ;
En_STEP_WRITE ( j , INVERT_E_STEP_PIN ) ;
}
}
# else // !MIXING_EXTRUDER
PULSE_STOP ( E ) ;
# endif
# endif // !ADVANCE && !LIN_ADVANCE
if ( + + step_events_completed > = current_block - > step_event_count ) {
all_steps_done = true ;
break ;
}
}
# if ENABLED(LIN_ADVANCE)
if ( current_block - > use_advance_lead ) {
int delta_adv_steps = current_estep_rate [ TOOL_E_INDEX ] - current_adv_steps [ TOOL_E_INDEX ] ;
current_adv_steps [ TOOL_E_INDEX ] + = delta_adv_steps ;
# if ENABLED(MIXING_EXTRUDER)
// Mixing extruders apply advance lead proportionally
MIXING_STEPPERS_LOOP ( j )
e_steps [ j ] + = delta_adv_steps * current_block - > step_event_count / current_block - > mix_event_count [ j ] ;
# else
// For most extruders, advance the single E stepper
e_steps [ TOOL_E_INDEX ] + = delta_adv_steps ;
# endif
}
# endif
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next advance_isr "now"
if ( e_steps [ TOOL_E_INDEX ] ) OCR0A = TCNT0 + 2 ;
# endif
// Calculate new timer value
uint16_t timer , step_rate ;
if ( step_events_completed < = ( uint32_t ) current_block - > accelerate_until ) {
MultiU24X32toH16 ( acc_step_rate , acceleration_time , current_block - > acceleration_rate ) ;
acc_step_rate + = current_block - > initial_rate ;
// upper limit
NOMORE ( acc_step_rate , current_block - > nominal_rate ) ;
// step_rate to timer interval
timer = calc_timer ( acc_step_rate ) ;
OCR1A = timer ;
acceleration_time + = timer ;
# if ENABLED(LIN_ADVANCE)
if ( current_block - > use_advance_lead ) {
# if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP ( j )
current_estep_rate [ j ] = ( ( uint32_t ) acc_step_rate * current_block - > abs_adv_steps_multiplier8 * current_block - > step_event_count / current_block - > mix_event_count [ j ] ) > > 17 ;
# else
current_estep_rate [ TOOL_E_INDEX ] = ( ( uint32_t ) acc_step_rate * current_block - > abs_adv_steps_multiplier8 ) > > 17 ;
# endif
}
# elif ENABLED(ADVANCE)
advance + = advance_rate * step_loops ;
//NOLESS(advance, current_block->advance);
long advance_whole = advance > > 8 ,
advance_factor = advance_whole - old_advance ;
// Do E steps + advance steps
# if ENABLED(MIXING_EXTRUDER)
// ...for mixing steppers proportionally
MIXING_STEPPERS_LOOP ( j )
e_steps [ j ] + = advance_factor * current_block - > step_event_count / current_block - > mix_event_count [ j ] ;
# else
// ...for the active extruder
e_steps [ TOOL_E_INDEX ] + = advance_factor ;
# endif
old_advance = advance_whole ;
# endif // ADVANCE or LIN_ADVANCE
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = ( timer > > 3 ) * step_loops / abs ( e_steps [ TOOL_E_INDEX ] ) ; //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
# endif
}
else if ( step_events_completed > ( uint32_t ) current_block - > decelerate_after ) {
MultiU24X32toH16 ( step_rate , deceleration_time , current_block - > acceleration_rate ) ;
if ( step_rate < acc_step_rate ) { // Still decelerating?
step_rate = acc_step_rate - step_rate ;
NOLESS ( step_rate , current_block - > final_rate ) ;
}
else
step_rate = current_block - > final_rate ;
// step_rate to timer interval
timer = calc_timer ( step_rate ) ;
OCR1A = timer ;
deceleration_time + = timer ;
# if ENABLED(LIN_ADVANCE)
if ( current_block - > use_advance_lead ) {
# if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP ( j )
current_estep_rate [ j ] = ( ( uint32_t ) step_rate * current_block - > abs_adv_steps_multiplier8 * current_block - > step_event_count / current_block - > mix_event_count [ j ] ) > > 17 ;
# else
current_estep_rate [ TOOL_E_INDEX ] = ( ( uint32_t ) step_rate * current_block - > abs_adv_steps_multiplier8 ) > > 17 ;
# endif
}
# elif ENABLED(ADVANCE)
advance - = advance_rate * step_loops ;
NOLESS ( advance , final_advance ) ;
// Do E steps + advance steps
long advance_whole = advance > > 8 ,
advance_factor = advance_whole - old_advance ;
# if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP ( j )
e_steps [ j ] + = advance_factor * current_block - > step_event_count / current_block - > mix_event_count [ j ] ;
# else
e_steps [ TOOL_E_INDEX ] + = advance_factor ;
# endif
old_advance = advance_whole ;
# endif // ADVANCE or LIN_ADVANCE
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = ( timer > > 3 ) * step_loops / abs ( e_steps [ TOOL_E_INDEX ] ) ;
# endif
}
else {
# if ENABLED(LIN_ADVANCE)
if ( current_block - > use_advance_lead )
current_estep_rate [ TOOL_E_INDEX ] = final_estep_rate ;
eISR_Rate = ( OCR1A_nominal > > 3 ) * step_loops_nominal / abs ( e_steps [ TOOL_E_INDEX ] ) ;
# endif
OCR1A = OCR1A_nominal ;
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal ;
}
NOLESS ( OCR1A , TCNT1 + 16 ) ;
// If current block is finished, reset pointer
if ( all_steps_done ) {
current_block = NULL ;
planner . discard_current_block ( ) ;
}
}
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR ( TIMER0_COMPA_vect ) { Stepper : : advance_isr ( ) ; }
void Stepper : : advance_isr ( ) {
old_OCR0A + = eISR_Rate ;
OCR0A = old_OCR0A ;
# define SET_E_STEP_DIR(INDEX) \
if ( e_steps [ INDEX ] ) E # # INDEX # # _DIR_WRITE ( e_steps [ INDEX ] < 0 ? INVERT_E # # INDEX # # _DIR : ! INVERT_E # # INDEX # # _DIR )
# define START_E_PULSE(INDEX) \
if ( e_steps [ INDEX ] ) E # # INDEX # # _STEP_WRITE ( ! INVERT_E_STEP_PIN )
# define STOP_E_PULSE(INDEX) \
if ( e_steps [ INDEX ] ) { \
e_steps [ INDEX ] < 0 ? + + e_steps [ INDEX ] : - - e_steps [ INDEX ] ; \
E # # INDEX # # _STEP_WRITE ( INVERT_E_STEP_PIN ) ; \
}
SET_E_STEP_DIR ( 0 ) ;
# if E_STEPPERS > 1
SET_E_STEP_DIR ( 1 ) ;
# if E_STEPPERS > 2
SET_E_STEP_DIR ( 2 ) ;
# if E_STEPPERS > 3
SET_E_STEP_DIR ( 3 ) ;
# endif
# endif
# endif
# define CYCLES_EATEN_BY_E 60
// Step all E steppers that have steps
for ( uint8_t i = 0 ; i < step_loops ; i + + ) {
# if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
static uint32_t pulse_start ;
pulse_start = TCNT0 ;
# endif
START_E_PULSE ( 0 ) ;
# if E_STEPPERS > 1
START_E_PULSE ( 1 ) ;
# if E_STEPPERS > 2
START_E_PULSE ( 2 ) ;
# if E_STEPPERS > 3
START_E_PULSE ( 3 ) ;
# endif
# endif
# endif
// For a minimum pulse time wait before stopping pulses
# if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
while ( ( uint32_t ) ( TCNT0 - pulse_start ) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E ) { /* nada */ }
# endif
STOP_E_PULSE ( 0 ) ;
# if E_STEPPERS > 1
STOP_E_PULSE ( 1 ) ;
# if E_STEPPERS > 2
STOP_E_PULSE ( 2 ) ;
# if E_STEPPERS > 3
STOP_E_PULSE ( 3 ) ;
# endif
# endif
# endif
}
}
# endif // ADVANCE or LIN_ADVANCE
void Stepper : : init ( ) {
// Init Digipot Motor Current
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
digipot_init ( ) ;
# endif
// Init Microstepping Pins
# if HAS_MICROSTEPS
microstep_init ( ) ;
# endif
// Init TMC Steppers
# if ENABLED(HAVE_TMCDRIVER)
tmc_init ( ) ;
# endif
// Init TMC2130 Steppers
# if ENABLED(HAVE_TMC2130DRIVER)
tmc2130_init ( ) ;
# endif
// Init L6470 Steppers
# if ENABLED(HAVE_L6470DRIVER)
L6470_init ( ) ;
# endif
// Init Dir Pins
# if HAS_X_DIR
X_DIR_INIT ;
# endif
# if HAS_X2_DIR
X2_DIR_INIT ;
# endif
# if HAS_Y_DIR
Y_DIR_INIT ;
# if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
Y2_DIR_INIT ;
# endif
# endif
# if HAS_Z_DIR
Z_DIR_INIT ;
# if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
Z2_DIR_INIT ;
# endif
# endif
# if HAS_E0_DIR
E0_DIR_INIT ;
# endif
# if HAS_E1_DIR
E1_DIR_INIT ;
# endif
# if HAS_E2_DIR
E2_DIR_INIT ;
# endif
# if HAS_E3_DIR
E3_DIR_INIT ;
# endif
// Init Enable Pins - steppers default to disabled.
# if HAS_X_ENABLE
X_ENABLE_INIT ;
if ( ! X_ENABLE_ON ) X_ENABLE_WRITE ( HIGH ) ;
# if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
X2_ENABLE_INIT ;
if ( ! X_ENABLE_ON ) X2_ENABLE_WRITE ( HIGH ) ;
# endif
# endif
# if HAS_Y_ENABLE
Y_ENABLE_INIT ;
if ( ! Y_ENABLE_ON ) Y_ENABLE_WRITE ( HIGH ) ;
# if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
Y2_ENABLE_INIT ;
if ( ! Y_ENABLE_ON ) Y2_ENABLE_WRITE ( HIGH ) ;
# endif
# endif
# if HAS_Z_ENABLE
Z_ENABLE_INIT ;
if ( ! Z_ENABLE_ON ) Z_ENABLE_WRITE ( HIGH ) ;
# if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
Z2_ENABLE_INIT ;
if ( ! Z_ENABLE_ON ) Z2_ENABLE_WRITE ( HIGH ) ;
# endif
# endif
# if HAS_E0_ENABLE
E0_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E0_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E1_ENABLE
E1_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E1_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E2_ENABLE
E2_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E2_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E3_ENABLE
E3_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E3_ENABLE_WRITE ( HIGH ) ;
# endif
// Init endstops and pullups
endstops . init ( ) ;
# define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
# define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
# define _DISABLE(axis) disable_## axis()
# define AXIS_INIT(axis, AXIS, PIN) \
_STEP_INIT ( AXIS ) ; \
_WRITE_STEP ( AXIS , _INVERT_STEP_PIN ( PIN ) ) ; \
_DISABLE ( axis )
# define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
// Init Step Pins
# if HAS_X_STEP
# if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
X2_STEP_INIT ;
X2_STEP_WRITE ( INVERT_X_STEP_PIN ) ;
# endif
AXIS_INIT ( x , X , X ) ;
# endif
# if HAS_Y_STEP
# if ENABLED(Y_DUAL_STEPPER_DRIVERS)
Y2_STEP_INIT ;
Y2_STEP_WRITE ( INVERT_Y_STEP_PIN ) ;
# endif
AXIS_INIT ( y , Y , Y ) ;
# endif
# if HAS_Z_STEP
# if ENABLED(Z_DUAL_STEPPER_DRIVERS)
Z2_STEP_INIT ;
Z2_STEP_WRITE ( INVERT_Z_STEP_PIN ) ;
# endif
AXIS_INIT ( z , Z , Z ) ;
# endif
# if HAS_E0_STEP
E_AXIS_INIT ( 0 ) ;
# endif
# if HAS_E1_STEP
E_AXIS_INIT ( 1 ) ;
# endif
# if HAS_E2_STEP
E_AXIS_INIT ( 2 ) ;
# endif
# if HAS_E3_STEP
E_AXIS_INIT ( 3 ) ;
# endif
// waveform generation = 0100 = CTC
CBI ( TCCR1B , WGM13 ) ;
SBI ( TCCR1B , WGM12 ) ;
CBI ( TCCR1A , WGM11 ) ;
CBI ( TCCR1A , WGM10 ) ;
// output mode = 00 (disconnected)
TCCR1A & = ~ ( 3 < < COM1A0 ) ;
TCCR1A & = ~ ( 3 < < COM1B0 ) ;
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = ( TCCR1B & ~ ( 0x07 < < CS10 ) ) | ( 2 < < CS10 ) ;
// Init Stepper ISR to 122 Hz for quick starting
OCR1A = 0x4000 ;
TCNT1 = 0 ;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
for ( int i = 0 ; i < E_STEPPERS ; i + + ) {
e_steps [ i ] = 0 ;
# if ENABLED(LIN_ADVANCE)
current_adv_steps [ i ] = 0 ;
# endif
}
# if defined(TCCR0A) && defined(WGM01)
CBI ( TCCR0A , WGM01 ) ;
CBI ( TCCR0A , WGM00 ) ;
# endif
SBI ( TIMSK0 , OCIE0A ) ;
# endif // ADVANCE or LIN_ADVANCE
endstops . enable ( true ) ; // Start with endstops active. After homing they can be disabled
sei ( ) ;
set_directions ( ) ; // Init directions to last_direction_bits = 0
}
/**
* Block until all buffered steps are executed
*/
void Stepper : : synchronize ( ) { while ( planner . blocks_queued ( ) ) idle ( ) ; }
/**
* Set the stepper positions directly in steps
*
* The input is based on the typical per - axis XYZ steps .
* For CORE machines XYZ needs to be translated to ABC .
*
* This allows get_axis_position_mm to correctly
* derive the current XYZ position later on .
*/
void Stepper : : set_position ( const long & a , const long & b , const long & c , const long & e ) {
synchronize ( ) ; // Bad to set stepper counts in the middle of a move
CRITICAL_SECTION_START ;
# if ENABLED(COREXY)
// corexy positioning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
count_position [ A_AXIS ] = a + b ;
count_position [ B_AXIS ] = a - b ;
count_position [ Z_AXIS ] = c ;
# elif ENABLED(COREXZ)
// corexz planning
count_position [ A_AXIS ] = a + c ;
count_position [ Y_AXIS ] = b ;
count_position [ C_AXIS ] = a - c ;
# elif ENABLED(COREYZ)
// coreyz planning
count_position [ X_AXIS ] = a ;
count_position [ B_AXIS ] = b + c ;
count_position [ C_AXIS ] = b - c ;
# else
// default non-h-bot planning
count_position [ X_AXIS ] = a ;
count_position [ Y_AXIS ] = b ;
count_position [ Z_AXIS ] = c ;
# endif
count_position [ E_AXIS ] = e ;
CRITICAL_SECTION_END ;
}
void Stepper : : set_position ( const AxisEnum & axis , const long & v ) {
CRITICAL_SECTION_START ;
count_position [ axis ] = v ;
CRITICAL_SECTION_END ;
}
void Stepper : : set_e_position ( const long & e ) {
CRITICAL_SECTION_START ;
count_position [ E_AXIS ] = e ;
CRITICAL_SECTION_END ;
}
/**
* Get a stepper ' s position in steps .
*/
long Stepper : : position ( AxisEnum axis ) {
CRITICAL_SECTION_START ;
long count_pos = count_position [ axis ] ;
CRITICAL_SECTION_END ;
return count_pos ;
}
/**
* Get an axis position according to stepper position ( s )
* For CORE machines apply translation from ABC to XYZ .
*/
float Stepper : : get_axis_position_mm ( AxisEnum axis ) {
float axis_steps ;
# if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
// Requesting one of the "core" axes?
if ( axis = = CORE_AXIS_1 | | axis = = CORE_AXIS_2 ) {
CRITICAL_SECTION_START ;
long pos1 = count_position [ CORE_AXIS_1 ] ,
pos2 = count_position [ CORE_AXIS_2 ] ;
CRITICAL_SECTION_END ;
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
axis_steps = ( pos1 + ( ( axis = = CORE_AXIS_1 ) ? pos2 : - pos2 ) ) * 0.5f ;
}
else
axis_steps = position ( axis ) ;
# else
axis_steps = position ( axis ) ;
# endif
return axis_steps * planner . steps_to_mm [ axis ] ;
}
void Stepper : : finish_and_disable ( ) {
synchronize ( ) ;
disable_all_steppers ( ) ;
}
void Stepper : : quick_stop ( ) {
cleaning_buffer_counter = 5000 ;
DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
while ( planner . blocks_queued ( ) ) planner . discard_current_block ( ) ;
current_block = NULL ;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
}
void Stepper : : endstop_triggered ( AxisEnum axis ) {
# if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
float axis_pos = count_position [ axis ] ;
if ( axis = = CORE_AXIS_1 )
axis_pos = ( axis_pos + count_position [ CORE_AXIS_2 ] ) * 0.5 ;
else if ( axis = = CORE_AXIS_2 )
axis_pos = ( count_position [ CORE_AXIS_1 ] - axis_pos ) * 0.5 ;
endstops_trigsteps [ axis ] = axis_pos ;
# else // !COREXY && !COREXZ && !COREYZ
endstops_trigsteps [ axis ] = count_position [ axis ] ;
# endif // !COREXY && !COREXZ && !COREYZ
kill_current_block ( ) ;
}
void Stepper : : report_positions ( ) {
CRITICAL_SECTION_START ;
long xpos = count_position [ X_AXIS ] ,
ypos = count_position [ Y_AXIS ] ,
zpos = count_position [ Z_AXIS ] ;
CRITICAL_SECTION_END ;
# if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
SERIAL_PROTOCOLPGM ( MSG_COUNT_A ) ;
# else
SERIAL_PROTOCOLPGM ( MSG_COUNT_X ) ;
# endif
SERIAL_PROTOCOL ( xpos ) ;
# if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
SERIAL_PROTOCOLPGM ( " B: " ) ;
# else
SERIAL_PROTOCOLPGM ( " Y: " ) ;
# endif
SERIAL_PROTOCOL ( ypos ) ;
# if ENABLED(COREXZ) || ENABLED(COREYZ)
SERIAL_PROTOCOLPGM ( " C: " ) ;
# else
SERIAL_PROTOCOLPGM ( " Z: " ) ;
# endif
SERIAL_PROTOCOL ( zpos ) ;
SERIAL_EOL ;
}
# if ENABLED(BABYSTEPPING)
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# define _ENABLE(axis) enable_## axis()
# define _READ_DIR(AXIS) AXIS ##_DIR_READ
# define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
# define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
# define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
_ENABLE ( axis ) ; \
uint8_t old_pin = _READ_DIR ( AXIS ) ; \
_APPLY_DIR ( AXIS , _INVERT_DIR ( AXIS ) ^ direction ^ INVERT ) ; \
_APPLY_STEP ( AXIS ) ( ! _INVERT_STEP_PIN ( AXIS ) , true ) ; \
delayMicroseconds ( 2 ) ; \
_APPLY_STEP ( AXIS ) ( _INVERT_STEP_PIN ( AXIS ) , true ) ; \
_APPLY_DIR ( AXIS , old_pin ) ; \
}
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void Stepper : : babystep ( const AxisEnum axis , const bool direction ) {
switch ( axis ) {
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
case X_AXIS :
BABYSTEP_AXIS ( x , X , false ) ;
break ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
case Y_AXIS :
BABYSTEP_AXIS ( y , Y , false ) ;
break ;
case Z_AXIS : {
# if DISABLED(DELTA)
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
BABYSTEP_AXIS ( z , Z , BABYSTEP_INVERT_Z ) ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# else // DELTA
bool z_direction = direction ^ BABYSTEP_INVERT_Z ;
enable_x ( ) ;
enable_y ( ) ;
enable_z ( ) ;
uint8_t old_x_dir_pin = X_DIR_READ ,
old_y_dir_pin = Y_DIR_READ ,
old_z_dir_pin = Z_DIR_READ ;
//setup new step
X_DIR_WRITE ( INVERT_X_DIR ^ z_direction ) ;
Y_DIR_WRITE ( INVERT_Y_DIR ^ z_direction ) ;
Z_DIR_WRITE ( INVERT_Z_DIR ^ z_direction ) ;
//perform step
X_STEP_WRITE ( ! INVERT_X_STEP_PIN ) ;
Y_STEP_WRITE ( ! INVERT_Y_STEP_PIN ) ;
Z_STEP_WRITE ( ! INVERT_Z_STEP_PIN ) ;
delayMicroseconds ( 2 ) ;
X_STEP_WRITE ( INVERT_X_STEP_PIN ) ;
Y_STEP_WRITE ( INVERT_Y_STEP_PIN ) ;
Z_STEP_WRITE ( INVERT_Z_STEP_PIN ) ;
//get old pin state back.
X_DIR_WRITE ( old_x_dir_pin ) ;
Y_DIR_WRITE ( old_y_dir_pin ) ;
Z_DIR_WRITE ( old_z_dir_pin ) ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
} break ;
default : break ;
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif //BABYSTEPPING
/**
* Software - controlled Stepper Motor Current
*/
# if HAS_DIGIPOTSS
// From Arduino DigitalPotControl example
void Stepper : : digitalPotWrite ( int address , int value ) {
WRITE ( DIGIPOTSS_PIN , LOW ) ; // take the SS pin low to select the chip
SPI . transfer ( address ) ; // send in the address and value via SPI:
SPI . transfer ( value ) ;
WRITE ( DIGIPOTSS_PIN , HIGH ) ; // take the SS pin high to de-select the chip:
//delay(10);
}
# endif //HAS_DIGIPOTSS
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
void Stepper : : digipot_init ( ) {
# if HAS_DIGIPOTSS
static const uint8_t digipot_motor_current [ ] = DIGIPOT_MOTOR_CURRENT ;
SPI . begin ( ) ;
SET_OUTPUT ( DIGIPOTSS_PIN ) ;
for ( uint8_t i = 0 ; i < COUNT ( digipot_motor_current ) ; i + + ) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current ( i , digipot_motor_current [ i ] ) ;
}
# elif HAS_MOTOR_CURRENT_PWM
# if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
SET_OUTPUT ( MOTOR_CURRENT_PWM_XY_PIN ) ;
digipot_current ( 0 , motor_current_setting [ 0 ] ) ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
SET_OUTPUT ( MOTOR_CURRENT_PWM_Z_PIN ) ;
digipot_current ( 1 , motor_current_setting [ 1 ] ) ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
SET_OUTPUT ( MOTOR_CURRENT_PWM_E_PIN ) ;
digipot_current ( 2 , motor_current_setting [ 2 ] ) ;
# endif
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = ( TCCR5B & ~ ( _BV ( CS50 ) | _BV ( CS51 ) | _BV ( CS52 ) ) ) | _BV ( CS50 ) ;
# endif
}
void Stepper : : digipot_current ( uint8_t driver , int current ) {
# if HAS_DIGIPOTSS
const uint8_t digipot_ch [ ] = DIGIPOT_CHANNELS ;
digitalPotWrite ( digipot_ch [ driver ] , current ) ;
# elif HAS_MOTOR_CURRENT_PWM
# define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
switch ( driver ) {
# if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
case 0 : _WRITE_CURRENT_PWM ( MOTOR_CURRENT_PWM_XY_PIN ) ; break ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
case 1 : _WRITE_CURRENT_PWM ( MOTOR_CURRENT_PWM_Z_PIN ) ; break ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
case 2 : _WRITE_CURRENT_PWM ( MOTOR_CURRENT_PWM_E_PIN ) ; break ;
# endif
}
# endif
}
# endif
# if HAS_MICROSTEPS
/**
* Software - controlled Microstepping
*/
void Stepper : : microstep_init ( ) {
SET_OUTPUT ( X_MS1_PIN ) ;
SET_OUTPUT ( X_MS2_PIN ) ;
# if HAS_MICROSTEPS_Y
SET_OUTPUT ( Y_MS1_PIN ) ;
SET_OUTPUT ( Y_MS2_PIN ) ;
# endif
# if HAS_MICROSTEPS_Z
SET_OUTPUT ( Z_MS1_PIN ) ;
SET_OUTPUT ( Z_MS2_PIN ) ;
# endif
# if HAS_MICROSTEPS_E0
SET_OUTPUT ( E0_MS1_PIN ) ;
SET_OUTPUT ( E0_MS2_PIN ) ;
# endif
# if HAS_MICROSTEPS_E1
SET_OUTPUT ( E1_MS1_PIN ) ;
SET_OUTPUT ( E1_MS2_PIN ) ;
# endif
static const uint8_t microstep_modes [ ] = MICROSTEP_MODES ;
for ( uint16_t i = 0 ; i < COUNT ( microstep_modes ) ; i + + )
microstep_mode ( i , microstep_modes [ i ] ) ;
}
void Stepper : : microstep_ms ( uint8_t driver , int8_t ms1 , int8_t ms2 ) {
if ( ms1 > = 0 ) switch ( driver ) {
case 0 : digitalWrite ( X_MS1_PIN , ms1 ) ; break ;
# if HAS_MICROSTEPS_Y
case 1 : digitalWrite ( Y_MS1_PIN , ms1 ) ; break ;
# endif
# if HAS_MICROSTEPS_Z
case 2 : digitalWrite ( Z_MS1_PIN , ms1 ) ; break ;
# endif
# if HAS_MICROSTEPS_E0
case 3 : digitalWrite ( E0_MS1_PIN , ms1 ) ; break ;
# endif
# if HAS_MICROSTEPS_E1
case 4 : digitalWrite ( E1_MS1_PIN , ms1 ) ; break ;
# endif
}
if ( ms2 > = 0 ) switch ( driver ) {
case 0 : digitalWrite ( X_MS2_PIN , ms2 ) ; break ;
# if HAS_MICROSTEPS_Y
case 1 : digitalWrite ( Y_MS2_PIN , ms2 ) ; break ;
# endif
# if HAS_MICROSTEPS_Z
case 2 : digitalWrite ( Z_MS2_PIN , ms2 ) ; break ;
# endif
# if HAS_MICROSTEPS_E0
case 3 : digitalWrite ( E0_MS2_PIN , ms2 ) ; break ;
# endif
# if HAS_MICROSTEPS_E1
case 4 : digitalWrite ( E1_MS2_PIN , ms2 ) ; break ;
# endif
}
}
void Stepper : : microstep_mode ( uint8_t driver , uint8_t stepping_mode ) {
switch ( stepping_mode ) {
case 1 : microstep_ms ( driver , MICROSTEP1 ) ; break ;
case 2 : microstep_ms ( driver , MICROSTEP2 ) ; break ;
case 4 : microstep_ms ( driver , MICROSTEP4 ) ; break ;
case 8 : microstep_ms ( driver , MICROSTEP8 ) ; break ;
case 16 : microstep_ms ( driver , MICROSTEP16 ) ; break ;
}
}
void Stepper : : microstep_readings ( ) {
SERIAL_PROTOCOLLNPGM ( " MS1,MS2 Pins " ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL ( READ ( X_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( READ ( X_MS2_PIN ) ) ;
# if HAS_MICROSTEPS_Y
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( READ ( Y_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( READ ( Y_MS2_PIN ) ) ;
# endif
# if HAS_MICROSTEPS_Z
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( READ ( Z_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( READ ( Z_MS2_PIN ) ) ;
# endif
# if HAS_MICROSTEPS_E0
SERIAL_PROTOCOLPGM ( " E0: " ) ;
SERIAL_PROTOCOL ( READ ( E0_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( READ ( E0_MS2_PIN ) ) ;
# endif
# if HAS_MICROSTEPS_E1
SERIAL_PROTOCOLPGM ( " E1: " ) ;
SERIAL_PROTOCOL ( READ ( E1_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( READ ( E1_MS2_PIN ) ) ;
# endif
}
# endif // HAS_MICROSTEPS