|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
|
|
|
* Marlin Firmware
|
|
|
|
*
|
|
|
|
* Derived from Grbl
|
|
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
*
|
|
|
|
* Grbl is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Grbl is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
|
|
and Philipp Tiefenbacher. */
|
|
|
|
|
|
|
|
#include "Marlin.h"
|
|
|
|
#include "stepper.h"
|
|
|
|
#include "endstops.h"
|
|
|
|
#include "planner.h"
|
|
|
|
#include "temperature.h"
|
|
|
|
#include "ultralcd.h"
|
|
|
|
#include "language.h"
|
|
|
|
#include "cardreader.h"
|
|
|
|
#include "speed_lookuptable.h"
|
|
|
|
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
#include <SPI.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Stepper stepper; // Singleton
|
|
|
|
|
|
|
|
// public:
|
|
|
|
|
|
|
|
block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
|
|
|
|
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
bool Stepper::abort_on_endstop_hit = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
bool Stepper::performing_homing = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// private:
|
|
|
|
|
|
|
|
unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
|
|
|
|
unsigned int Stepper::cleaning_buffer_counter = 0;
|
|
|
|
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
bool Stepper::locked_z_motor = false;
|
|
|
|
bool Stepper::locked_z2_motor = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
long Stepper::counter_X = 0,
|
|
|
|
Stepper::counter_Y = 0,
|
|
|
|
Stepper::counter_Z = 0,
|
|
|
|
Stepper::counter_E = 0;
|
|
|
|
|
|
|
|
volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
unsigned char Stepper::old_OCR0A;
|
|
|
|
long Stepper::final_advance = 0,
|
|
|
|
Stepper::old_advance = 0,
|
|
|
|
Stepper::e_steps[EXTRUDERS],
|
|
|
|
Stepper::advance_rate,
|
|
|
|
Stepper::advance;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
long Stepper::acceleration_time, Stepper::deceleration_time;
|
|
|
|
|
|
|
|
volatile long Stepper::count_position[NUM_AXIS] = { 0 };
|
|
|
|
volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
|
|
|
|
|
|
|
unsigned short Stepper::acc_step_rate; // needed for deceleration start point
|
|
|
|
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
|
|
|
|
unsigned short Stepper::OCR1A_nominal;
|
|
|
|
|
|
|
|
volatile long Stepper::endstops_trigsteps[3];
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#define X_APPLY_DIR(v,ALWAYS) \
|
|
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
|
|
X_DIR_WRITE(v); \
|
|
|
|
X2_DIR_WRITE(v); \
|
|
|
|
} \
|
|
|
|
else { \
|
|
|
|
if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
|
|
|
|
}
|
|
|
|
#define X_APPLY_STEP(v,ALWAYS) \
|
|
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
|
|
X_STEP_WRITE(v); \
|
|
|
|
X2_STEP_WRITE(v); \
|
|
|
|
} \
|
|
|
|
else { \
|
|
|
|
if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
|
|
|
|
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
|
|
#define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
|
|
|
|
#define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
|
|
|
|
#else
|
|
|
|
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
|
|
|
|
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
|
|
#define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
#define Z_APPLY_STEP(v,Q) \
|
|
|
|
if (performing_homing) { \
|
|
|
|
if (Z_HOME_DIR > 0) {\
|
|
|
|
if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
|
|
|
if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
|
|
|
} \
|
|
|
|
else { \
|
|
|
|
if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
|
|
|
if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
else { \
|
|
|
|
Z_STEP_WRITE(v); \
|
|
|
|
Z2_STEP_WRITE(v); \
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
|
|
|
|
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
|
|
|
|
|
|
|
|
// intRes = longIn1 * longIn2 >> 24
|
|
|
|
// uses:
|
|
|
|
// r26 to store 0
|
|
|
|
// r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
|
|
|
|
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
|
|
|
|
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
|
|
|
|
// B0 A0 are bits 24-39 and are the returned value
|
|
|
|
// C1 B1 A1 is longIn1
|
|
|
|
// D2 C2 B2 A2 is longIn2
|
|
|
|
//
|
|
|
|
#define MultiU24X32toH16(intRes, longIn1, longIn2) \
|
|
|
|
asm volatile ( \
|
|
|
|
"clr r26 \n\t" \
|
|
|
|
"mul %A1, %B2 \n\t" \
|
|
|
|
"mov r27, r1 \n\t" \
|
|
|
|
"mul %B1, %C2 \n\t" \
|
|
|
|
"movw %A0, r0 \n\t" \
|
|
|
|
"mul %C1, %C2 \n\t" \
|
|
|
|
"add %B0, r0 \n\t" \
|
|
|
|
"mul %C1, %B2 \n\t" \
|
|
|
|
"add %A0, r0 \n\t" \
|
|
|
|
"adc %B0, r1 \n\t" \
|
|
|
|
"mul %A1, %C2 \n\t" \
|
|
|
|
"add r27, r0 \n\t" \
|
|
|
|
"adc %A0, r1 \n\t" \
|
|
|
|
"adc %B0, r26 \n\t" \
|
|
|
|
"mul %B1, %B2 \n\t" \
|
|
|
|
"add r27, r0 \n\t" \
|
|
|
|
"adc %A0, r1 \n\t" \
|
|
|
|
"adc %B0, r26 \n\t" \
|
|
|
|
"mul %C1, %A2 \n\t" \
|
|
|
|
"add r27, r0 \n\t" \
|
|
|
|
"adc %A0, r1 \n\t" \
|
|
|
|
"adc %B0, r26 \n\t" \
|
|
|
|
"mul %B1, %A2 \n\t" \
|
|
|
|
"add r27, r1 \n\t" \
|
|
|
|
"adc %A0, r26 \n\t" \
|
|
|
|
"adc %B0, r26 \n\t" \
|
|
|
|
"lsr r27 \n\t" \
|
|
|
|
"adc %A0, r26 \n\t" \
|
|
|
|
"adc %B0, r26 \n\t" \
|
|
|
|
"mul %D2, %A1 \n\t" \
|
|
|
|
"add %A0, r0 \n\t" \
|
|
|
|
"adc %B0, r1 \n\t" \
|
|
|
|
"mul %D2, %B1 \n\t" \
|
|
|
|
"add %B0, r0 \n\t" \
|
|
|
|
"clr r1 \n\t" \
|
|
|
|
: \
|
|
|
|
"=&r" (intRes) \
|
|
|
|
: \
|
|
|
|
"d" (longIn1), \
|
|
|
|
"d" (longIn2) \
|
|
|
|
: \
|
|
|
|
"r26" , "r27" \
|
|
|
|
)
|
|
|
|
|
|
|
|
// Some useful constants
|
|
|
|
|
|
|
|
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
|
|
|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __________________________
|
|
|
|
* /| |\ _________________ ^
|
|
|
|
* / | | \ /| |\ |
|
|
|
|
* / | | \ / | | \ s
|
|
|
|
* / | | | | | \ p
|
|
|
|
* / | | | | | \ e
|
|
|
|
* +-----+------------------------+---+--+---------------+----+ e
|
|
|
|
* | BLOCK 1 | BLOCK 2 | d
|
|
|
|
*
|
|
|
|
* time ----->
|
|
|
|
*
|
|
|
|
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
|
|
|
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
|
|
|
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
|
|
|
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
|
|
|
*/
|
|
|
|
void Stepper::wake_up() {
|
|
|
|
// TCNT1 = 0;
|
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set the stepper direction of each axis
|
|
|
|
*
|
|
|
|
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
|
|
|
|
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
|
|
|
|
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
|
|
|
|
*/
|
|
|
|
void Stepper::set_directions() {
|
|
|
|
|
|
|
|
#define SET_STEP_DIR(AXIS) \
|
|
|
|
if (motor_direction(AXIS ##_AXIS)) { \
|
|
|
|
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
|
|
|
|
count_direction[AXIS ##_AXIS] = -1; \
|
|
|
|
} \
|
|
|
|
else { \
|
|
|
|
AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
|
|
|
|
count_direction[AXIS ##_AXIS] = 1; \
|
|
|
|
}
|
|
|
|
|
|
|
|
SET_STEP_DIR(X); // A
|
|
|
|
SET_STEP_DIR(Y); // B
|
|
|
|
SET_STEP_DIR(Z); // C
|
|
|
|
|
|
|
|
#if DISABLED(ADVANCE)
|
|
|
|
if (motor_direction(E_AXIS)) {
|
|
|
|
REV_E_DIR();
|
|
|
|
count_direction[E_AXIS] = -1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
NORM_E_DIR();
|
|
|
|
count_direction[E_AXIS] = 1;
|
|
|
|
}
|
|
|
|
#endif //!ADVANCE
|
|
|
|
}
|
|
|
|
|
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
|
|
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
|
|
|
ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
|
|
|
|
|
|
|
|
void Stepper::isr() {
|
|
|
|
if (cleaning_buffer_counter) {
|
|
|
|
current_block = NULL;
|
|
|
|
planner.discard_current_block();
|
|
|
|
#ifdef SD_FINISHED_RELEASECOMMAND
|
|
|
|
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
|
|
|
#endif
|
|
|
|
cleaning_buffer_counter--;
|
|
|
|
OCR1A = 200;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there is no current block, attempt to pop one from the buffer
|
|
|
|
if (!current_block) {
|
|
|
|
// Anything in the buffer?
|
|
|
|
current_block = planner.get_current_block();
|
|
|
|
if (current_block) {
|
|
|
|
current_block->busy = true;
|
|
|
|
trapezoid_generator_reset();
|
|
|
|
counter_X = -(current_block->step_event_count >> 1);
|
|
|
|
counter_Y = counter_Z = counter_E = counter_X;
|
|
|
|
step_events_completed = 0;
|
|
|
|
|
|
|
|
#if ENABLED(Z_LATE_ENABLE)
|
|
|
|
if (current_block->steps[Z_AXIS] > 0) {
|
|
|
|
enable_z();
|
|
|
|
OCR1A = 2000; //1ms wait
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// #if ENABLED(ADVANCE)
|
|
|
|
// e_steps[current_block->active_extruder] = 0;
|
|
|
|
// #endif
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
OCR1A = 2000; // 1kHz.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (current_block != NULL) {
|
|
|
|
|
|
|
|
// Update endstops state, if enabled
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
|
|
|
|
#else
|
|
|
|
if (endstops.enabled) endstops.update();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
for (int8_t i = 0; i < step_loops; i++) {
|
|
|
|
#ifndef USBCON
|
|
|
|
customizedSerial.checkRx(); // Check for serial chars.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
counter_E += current_block->steps[E_AXIS];
|
|
|
|
if (counter_E > 0) {
|
|
|
|
counter_E -= current_block->step_event_count;
|
|
|
|
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
|
|
|
|
}
|
|
|
|
#endif //ADVANCE
|
|
|
|
|
|
|
|
#define _COUNTER(AXIS) counter_## AXIS
|
|
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
|
|
|
|
|
#define STEP_ADD(AXIS) \
|
|
|
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
|
|
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
|
|
|
|
|
|
STEP_ADD(X);
|
|
|
|
STEP_ADD(Y);
|
|
|
|
STEP_ADD(Z);
|
|
|
|
#if DISABLED(ADVANCE)
|
|
|
|
STEP_ADD(E);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define STEP_IF_COUNTER(AXIS) \
|
|
|
|
if (_COUNTER(AXIS) > 0) { \
|
|
|
|
_COUNTER(AXIS) -= current_block->step_event_count; \
|
|
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
|
|
}
|
|
|
|
|
|
|
|
STEP_IF_COUNTER(X);
|
|
|
|
STEP_IF_COUNTER(Y);
|
|
|
|
STEP_IF_COUNTER(Z);
|
|
|
|
#if DISABLED(ADVANCE)
|
|
|
|
STEP_IF_COUNTER(E);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
step_events_completed++;
|
|
|
|
if (step_events_completed >= current_block->step_event_count) break;
|
|
|
|
}
|
|
|
|
// Calculate new timer value
|
|
|
|
unsigned short timer, step_rate;
|
|
|
|
if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
|
|
|
|
|
|
|
|
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
|
|
acc_step_rate += current_block->initial_rate;
|
|
|
|
|
|
|
|
// upper limit
|
|
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
|
|
|
|
|
|
// step_rate to timer interval
|
|
|
|
timer = calc_timer(acc_step_rate);
|
|
|
|
OCR1A = timer;
|
|
|
|
acceleration_time += timer;
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
|
|
|
|
advance += advance_rate * step_loops;
|
|
|
|
//NOLESS(advance, current_block->advance);
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
|
|
|
|
old_advance = advance >> 8;
|
|
|
|
|
|
|
|
#endif //ADVANCE
|
|
|
|
}
|
|
|
|
else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
|
|
|
|
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
|
|
|
|
|
if (step_rate <= acc_step_rate) { // Still decelerating?
|
|
|
|
step_rate = acc_step_rate - step_rate;
|
|
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
step_rate = current_block->final_rate;
|
|
|
|
|
|
|
|
// step_rate to timer interval
|
|
|
|
timer = calc_timer(step_rate);
|
|
|
|
OCR1A = timer;
|
|
|
|
deceleration_time += timer;
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
advance -= advance_rate * step_loops;
|
|
|
|
NOLESS(advance, final_advance);
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
uint32_t advance_whole = advance >> 8;
|
|
|
|
e_steps[current_block->active_extruder] += advance_whole - old_advance;
|
|
|
|
old_advance = advance_whole;
|
|
|
|
#endif //ADVANCE
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
OCR1A = OCR1A_nominal;
|
|
|
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
|
|
step_loops = step_loops_nominal;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
|
|
|
|
|
|
|
|
// If current block is finished, reset pointer
|
|
|
|
if (step_events_completed >= current_block->step_event_count) {
|
|
|
|
current_block = NULL;
|
|
|
|
planner.discard_current_block();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
// Timer interrupt for E. e_steps is set in the main routine;
|
|
|
|
// Timer 0 is shared with millies
|
|
|
|
ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
|
|
|
|
|
|
|
|
void Stepper::advance_isr() {
|
|
|
|
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
|
|
|
OCR0A = old_OCR0A;
|
|
|
|
|
|
|
|
#define STEP_E_ONCE(INDEX) \
|
|
|
|
if (e_steps[INDEX] != 0) { \
|
|
|
|
E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
|
|
|
|
if (e_steps[INDEX] < 0) { \
|
|
|
|
E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
|
|
|
|
e_steps[INDEX]++; \
|
|
|
|
} \
|
|
|
|
else if (e_steps[INDEX] > 0) { \
|
|
|
|
E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
|
|
|
|
e_steps[INDEX]--; \
|
|
|
|
} \
|
|
|
|
E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
|
|
|
|
}
|
|
|
|
|
|
|
|
// Step all E steppers that have steps, up to 4 steps per interrupt
|
|
|
|
for (unsigned char i = 0; i < 4; i++) {
|
|
|
|
STEP_E_ONCE(0);
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
STEP_E_ONCE(1);
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
STEP_E_ONCE(2);
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
STEP_E_ONCE(3);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
void Stepper::init() {
|
|
|
|
|
|
|
|
digipot_init(); //Initialize Digipot Motor Current
|
|
|
|
microstep_init(); //Initialize Microstepping Pins
|
|
|
|
|
|
|
|
// initialise TMC Steppers
|
|
|
|
#if ENABLED(HAVE_TMCDRIVER)
|
|
|
|
tmc_init();
|
|
|
|
#endif
|
|
|
|
// initialise L6470 Steppers
|
|
|
|
#if ENABLED(HAVE_L6470DRIVER)
|
|
|
|
L6470_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Initialize Dir Pins
|
|
|
|
#if HAS_X_DIR
|
|
|
|
X_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#if HAS_X2_DIR
|
|
|
|
X2_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#if HAS_Y_DIR
|
|
|
|
Y_DIR_INIT;
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
|
|
|
|
Y2_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if HAS_Z_DIR
|
|
|
|
Z_DIR_INIT;
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
|
|
|
|
Z2_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if HAS_E0_DIR
|
|
|
|
E0_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#if HAS_E1_DIR
|
|
|
|
E1_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#if HAS_E2_DIR
|
|
|
|
E2_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
#if HAS_E3_DIR
|
|
|
|
E3_DIR_INIT;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//Initialize Enable Pins - steppers default to disabled.
|
|
|
|
|
|
|
|
#if HAS_X_ENABLE
|
|
|
|
X_ENABLE_INIT;
|
|
|
|
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
|
|
|
|
X2_ENABLE_INIT;
|
|
|
|
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Y_ENABLE
|
|
|
|
Y_ENABLE_INIT;
|
|
|
|
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
|
|
|
|
Y2_ENABLE_INIT;
|
|
|
|
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_ENABLE
|
|
|
|
Z_ENABLE_INIT;
|
|
|
|
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
|
|
|
|
Z2_ENABLE_INIT;
|
|
|
|
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_E0_ENABLE
|
|
|
|
E0_ENABLE_INIT;
|
|
|
|
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#if HAS_E1_ENABLE
|
|
|
|
E1_ENABLE_INIT;
|
|
|
|
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#if HAS_E2_ENABLE
|
|
|
|
E2_ENABLE_INIT;
|
|
|
|
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
#if HAS_E3_ENABLE
|
|
|
|
E3_ENABLE_INIT;
|
|
|
|
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Init endstops and pullups here
|
|
|
|
//
|
|
|
|
endstops.init();
|
|
|
|
|
|
|
|
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
|
|
|
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
|
|
|
#define _DISABLE(axis) disable_## axis()
|
|
|
|
|
|
|
|
#define AXIS_INIT(axis, AXIS, PIN) \
|
|
|
|
_STEP_INIT(AXIS); \
|
|
|
|
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
|
|
|
|
_DISABLE(axis)
|
|
|
|
|
|
|
|
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
|
|
|
|
|
|
|
|
// Initialize Step Pins
|
|
|
|
#if HAS_X_STEP
|
|
|
|
AXIS_INIT(x, X, X);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_STEP
|
|
|
|
AXIS_INIT(x, X2, X);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Y_STEP
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
|
|
|
|
Y2_STEP_INIT;
|
|
|
|
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
|
|
#endif
|
|
|
|
AXIS_INIT(y, Y, Y);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_STEP
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
|
|
|
|
Z2_STEP_INIT;
|
|
|
|
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
|
|
#endif
|
|
|
|
AXIS_INIT(z, Z, Z);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_E0_STEP
|
|
|
|
E_AXIS_INIT(0);
|
|
|
|
#endif
|
|
|
|
#if HAS_E1_STEP
|
|
|
|
E_AXIS_INIT(1);
|
|
|
|
#endif
|
|
|
|
#if HAS_E2_STEP
|
|
|
|
E_AXIS_INIT(2);
|
|
|
|
#endif
|
|
|
|
#if HAS_E3_STEP
|
|
|
|
E_AXIS_INIT(3);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// waveform generation = 0100 = CTC
|
|
|
|
CBI(TCCR1B, WGM13);
|
|
|
|
SBI(TCCR1B, WGM12);
|
|
|
|
CBI(TCCR1A, WGM11);
|
|
|
|
CBI(TCCR1A, WGM10);
|
|
|
|
|
|
|
|
// output mode = 00 (disconnected)
|
|
|
|
TCCR1A &= ~(3 << COM1A0);
|
|
|
|
TCCR1A &= ~(3 << COM1B0);
|
|
|
|
// Set the timer pre-scaler
|
|
|
|
// Generally we use a divider of 8, resulting in a 2MHz timer
|
|
|
|
// frequency on a 16MHz MCU. If you are going to change this, be
|
|
|
|
// sure to regenerate speed_lookuptable.h with
|
|
|
|
// create_speed_lookuptable.py
|
|
|
|
TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
|
|
|
|
|
|
|
|
OCR1A = 0x4000;
|
|
|
|
TCNT1 = 0;
|
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
#if defined(TCCR0A) && defined(WGM01)
|
|
|
|
CBI(TCCR0A, WGM01);
|
|
|
|
CBI(TCCR0A, WGM00);
|
|
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
|
|
|
|
SBI(TIMSK0, OCIE0A);
|
|
|
|
#endif //ADVANCE
|
|
|
|
|
|
|
|
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
|
|
|
sei();
|
|
|
|
|
|
|
|
set_directions(); // Init directions to last_direction_bits = 0
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Block until all buffered steps are executed
|
|
|
|
*/
|
|
|
|
void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set the stepper positions directly in steps
|
|
|
|
*
|
|
|
|
* The input is based on the typical per-axis XYZ steps.
|
|
|
|
* For CORE machines XYZ needs to be translated to ABC.
|
|
|
|
*
|
|
|
|
* This allows get_axis_position_mm to correctly
|
|
|
|
* derive the current XYZ position later on.
|
|
|
|
*/
|
|
|
|
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
// corexy positioning
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
count_position[A_AXIS] = x + y;
|
|
|
|
count_position[B_AXIS] = x - y;
|
|
|
|
count_position[Z_AXIS] = z;
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
// corexz planning
|
|
|
|
count_position[A_AXIS] = x + z;
|
|
|
|
count_position[Y_AXIS] = y;
|
|
|
|
count_position[C_AXIS] = x - z;
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
// coreyz planning
|
|
|
|
count_position[X_AXIS] = x;
|
|
|
|
count_position[B_AXIS] = y + z;
|
|
|
|
count_position[C_AXIS] = y - z;
|
|
|
|
#else
|
|
|
|
// default non-h-bot planning
|
|
|
|
count_position[X_AXIS] = x;
|
|
|
|
count_position[Y_AXIS] = y;
|
|
|
|
count_position[Z_AXIS] = z;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
count_position[E_AXIS] = e;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::set_e_position(const long& e) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
count_position[E_AXIS] = e;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get a stepper's position in steps.
|
|
|
|
*/
|
|
|
|
long Stepper::position(AxisEnum axis) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
long count_pos = count_position[axis];
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
return count_pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get an axis position according to stepper position(s)
|
|
|
|
* For CORE machines apply translation from ABC to XYZ.
|
|
|
|
*/
|
|
|
|
float Stepper::get_axis_position_mm(AxisEnum axis) {
|
|
|
|
float axis_steps;
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
// Requesting one of the "core" axes?
|
|
|
|
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
long pos1 = count_position[CORE_AXIS_1],
|
|
|
|
pos2 = count_position[CORE_AXIS_2];
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
|
|
|
|
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
|
|
|
|
axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) / 2.0f;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
axis_steps = position(axis);
|
|
|
|
#else
|
|
|
|
axis_steps = position(axis);
|
|
|
|
#endif
|
|
|
|
return axis_steps / planner.axis_steps_per_unit[axis];
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::finish_and_disable() {
|
|
|
|
synchronize();
|
|
|
|
disable_all_steppers();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::quick_stop() {
|
|
|
|
cleaning_buffer_counter = 5000;
|
|
|
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
while (planner.blocks_queued()) planner.discard_current_block();
|
|
|
|
current_block = NULL;
|
|
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::endstop_triggered(AxisEnum axis) {
|
|
|
|
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
|
|
|
|
float axis_pos = count_position[axis];
|
|
|
|
if (axis == CORE_AXIS_1)
|
|
|
|
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
|
|
|
|
else if (axis == CORE_AXIS_2)
|
|
|
|
axis_pos = (count_position[CORE_AXIS_1] - axis_pos) / 2;
|
|
|
|
endstops_trigsteps[axis] = axis_pos;
|
|
|
|
|
|
|
|
#else // !COREXY && !COREXZ && !COREYZ
|
|
|
|
|
|
|
|
endstops_trigsteps[axis] = count_position[axis];
|
|
|
|
|
|
|
|
#endif // !COREXY && !COREXZ && !COREYZ
|
|
|
|
|
|
|
|
kill_current_block();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::report_positions() {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
long xpos = count_position[X_AXIS],
|
|
|
|
ypos = count_position[Y_AXIS],
|
|
|
|
zpos = count_position[Z_AXIS];
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
|
|
|
#else
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
|
|
#endif
|
|
|
|
SERIAL_PROTOCOL(xpos);
|
|
|
|
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREYZ)
|
|
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
#else
|
|
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
#endif
|
|
|
|
SERIAL_PROTOCOL(ypos);
|
|
|
|
|
|
|
|
#if ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
SERIAL_PROTOCOLPGM(" C:");
|
|
|
|
#else
|
|
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
#endif
|
|
|
|
SERIAL_PROTOCOL(zpos);
|
|
|
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
// MUST ONLY BE CALLED BY AN ISR,
|
|
|
|
// No other ISR should ever interrupt this!
|
|
|
|
void Stepper::babystep(const uint8_t axis, const bool direction) {
|
|
|
|
|
|
|
|
#define _ENABLE(axis) enable_## axis()
|
|
|
|
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
|
|
|
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
|
|
|
|
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
|
|
|
|
|
|
|
|
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
|
|
|
|
_ENABLE(axis); \
|
|
|
|
uint8_t old_pin = _READ_DIR(AXIS); \
|
|
|
|
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
|
|
|
|
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
|
|
|
|
delayMicroseconds(2); \
|
|
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
|
|
|
|
_APPLY_DIR(AXIS, old_pin); \
|
|
|
|
}
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
switch (axis) {
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
case X_AXIS:
|
|
|
|
BABYSTEP_AXIS(x, X, false);
|
|
|
|
break;
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
case Y_AXIS:
|
|
|
|
BABYSTEP_AXIS(y, Y, false);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Z_AXIS: {
|
|
|
|
|
|
|
|
#if DISABLED(DELTA)
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
#else // DELTA
|
|
|
|
|
|
|
|
bool z_direction = direction ^ BABYSTEP_INVERT_Z;
|
|
|
|
|
|
|
|
enable_x();
|
|
|
|
enable_y();
|
|
|
|
enable_z();
|
|
|
|
uint8_t old_x_dir_pin = X_DIR_READ,
|
|
|
|
old_y_dir_pin = Y_DIR_READ,
|
|
|
|
old_z_dir_pin = Z_DIR_READ;
|
|
|
|
//setup new step
|
|
|
|
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
|
|
|
|
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
|
|
|
|
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
|
|
|
|
//perform step
|
|
|
|
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
|
|
|
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
|
|
|
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
|
|
|
delayMicroseconds(2);
|
|
|
|
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
|
|
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
|
|
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
|
|
//get old pin state back.
|
|
|
|
X_DIR_WRITE(old_x_dir_pin);
|
|
|
|
Y_DIR_WRITE(old_y_dir_pin);
|
|
|
|
Z_DIR_WRITE(old_z_dir_pin);
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
#endif
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
|
|
|
|
} break;
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
}
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
}
|
|
|
|
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
#endif //BABYSTEPPING
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Software-controlled Stepper Motor Current
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
|
|
|
|
// From Arduino DigitalPotControl example
|
|
|
|
void Stepper::digitalPotWrite(int address, int value) {
|
|
|
|
digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
|
|
|
|
SPI.transfer(address); // send in the address and value via SPI:
|
|
|
|
SPI.transfer(value);
|
|
|
|
digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
|
|
|
|
//delay(10);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //HAS_DIGIPOTSS
|
|
|
|
|
|
|
|
void Stepper::digipot_init() {
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
|
|
|
|
|
|
|
SPI.begin();
|
|
|
|
pinMode(DIGIPOTSS_PIN, OUTPUT);
|
|
|
|
for (int i = 0; i < COUNT(digipot_motor_current); i++) {
|
|
|
|
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
|
|
|
digipot_current(i, digipot_motor_current[i]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
|
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
|
|
|
|
digipot_current(0, motor_current_setting[0]);
|
|
|
|
#endif
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
|
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
|
|
|
|
digipot_current(1, motor_current_setting[1]);
|
|
|
|
#endif
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
|
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
|
|
|
|
digipot_current(2, motor_current_setting[2]);
|
|
|
|
#endif
|
|
|
|
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
|
|
|
|
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::digipot_current(uint8_t driver, int current) {
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
|
|
|
digitalPotWrite(digipot_ch[driver], current);
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
#define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
|
|
|
switch (driver) {
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
|
|
case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
|
|
|
|
#endif
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
|
|
case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
|
|
|
|
#endif
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
|
|
case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
UNUSED(driver);
|
|
|
|
UNUSED(current);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::microstep_init() {
|
|
|
|
#if HAS_MICROSTEPS_E1
|
|
|
|
pinMode(E1_MS1_PIN, OUTPUT);
|
|
|
|
pinMode(E1_MS2_PIN, OUTPUT);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
pinMode(X_MS1_PIN, OUTPUT);
|
|
|
|
pinMode(X_MS2_PIN, OUTPUT);
|
|
|
|
pinMode(Y_MS1_PIN, OUTPUT);
|
|
|
|
pinMode(Y_MS2_PIN, OUTPUT);
|
|
|
|
pinMode(Z_MS1_PIN, OUTPUT);
|
|
|
|
pinMode(Z_MS2_PIN, OUTPUT);
|
|
|
|
pinMode(E0_MS1_PIN, OUTPUT);
|
|
|
|
pinMode(E0_MS2_PIN, OUTPUT);
|
|
|
|
const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
|
|
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
|
|
|
|
microstep_mode(i, microstep_modes[i]);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Software-controlled Microstepping
|
|
|
|
*/
|
|
|
|
|
|
|
|
void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
|
|
|
if (ms1 >= 0) switch (driver) {
|
|
|
|
case 0: digitalWrite(X_MS1_PIN, ms1); break;
|
|
|
|
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
|
|
|
case 2: digitalWrite(Z_MS1_PIN, ms1); break;
|
|
|
|
case 3: digitalWrite(E0_MS1_PIN, ms1); break;
|
|
|
|
#if HAS_MICROSTEPS_E1
|
|
|
|
case 4: digitalWrite(E1_MS1_PIN, ms1); break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (ms2 >= 0) switch (driver) {
|
|
|
|
case 0: digitalWrite(X_MS2_PIN, ms2); break;
|
|
|
|
case 1: digitalWrite(Y_MS2_PIN, ms2); break;
|
|
|
|
case 2: digitalWrite(Z_MS2_PIN, ms2); break;
|
|
|
|
case 3: digitalWrite(E0_MS2_PIN, ms2); break;
|
|
|
|
#if PIN_EXISTS(E1_MS2)
|
|
|
|
case 4: digitalWrite(E1_MS2_PIN, ms2); break;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
|
|
|
switch (stepping_mode) {
|
|
|
|
case 1: microstep_ms(driver, MICROSTEP1); break;
|
|
|
|
case 2: microstep_ms(driver, MICROSTEP2); break;
|
|
|
|
case 4: microstep_ms(driver, MICROSTEP4); break;
|
|
|
|
case 8: microstep_ms(driver, MICROSTEP8); break;
|
|
|
|
case 16: microstep_ms(driver, MICROSTEP16); break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Stepper::microstep_readings() {
|
|
|
|
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
|
|
|
|
SERIAL_PROTOCOLPGM("X: ");
|
|
|
|
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
|
|
|
|
SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
|
|
|
|
SERIAL_PROTOCOLPGM("Y: ");
|
|
|
|
SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
|
|
|
|
SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
|
|
|
|
SERIAL_PROTOCOLPGM("Z: ");
|
|
|
|
SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
|
|
|
|
SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
|
|
|
|
SERIAL_PROTOCOLPGM("E0: ");
|
|
|
|
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
|
|
|
|
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
|
|
|
|
#if HAS_MICROSTEPS_E1
|
|
|
|
SERIAL_PROTOCOLPGM("E1: ");
|
|
|
|
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
|
|
|
|
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
|
|
|
|
#endif
|
|
|
|
}
|