|  |  |  | /**
 | 
					
						
							|  |  |  |  * Marlin 3D Printer Firmware | 
					
						
							|  |  |  |  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Based on Sprinter and grbl. | 
					
						
							|  |  |  |  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |  * it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |  * the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |  * (at your option) any later version. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |  * GNU General Public License for more details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * stepper.cpp - A singleton object to execute motion plans using stepper motors | 
					
						
							|  |  |  |  * Marlin Firmware | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Derived from Grbl | 
					
						
							|  |  |  |  * Copyright (c) 2009-2011 Simen Svale Skogsrud | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Grbl is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |  * it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |  * the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |  * (at your option) any later version. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Grbl is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |  * GNU General Public License for more details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |  * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | 
					
						
							|  |  |  |    and Philipp Tiefenbacher. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "Marlin.h"
 | 
					
						
							|  |  |  | #include "stepper.h"
 | 
					
						
							|  |  |  | #include "endstops.h"
 | 
					
						
							|  |  |  | #include "planner.h"
 | 
					
						
							|  |  |  | #include "temperature.h"
 | 
					
						
							|  |  |  | #include "ultralcd.h"
 | 
					
						
							|  |  |  | #include "language.h"
 | 
					
						
							|  |  |  | #include "cardreader.h"
 | 
					
						
							|  |  |  | #include "speed_lookuptable.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |   #include <SPI.h>
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Stepper stepper; // Singleton
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // public:
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | block_t* Stepper::current_block = NULL;  // A pointer to the block currently being traced
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | 
					
						
							|  |  |  |   bool Stepper::abort_on_endstop_hit = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |   bool Stepper::performing_homing = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // private:
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | unsigned char Stepper::last_direction_bits = 0;        // The next stepping-bits to be output
 | 
					
						
							|  |  |  | unsigned int Stepper::cleaning_buffer_counter = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |   bool Stepper::locked_z_motor = false; | 
					
						
							|  |  |  |   bool Stepper::locked_z2_motor = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | long  Stepper::counter_X = 0, | 
					
						
							|  |  |  |       Stepper::counter_Y = 0, | 
					
						
							|  |  |  |       Stepper::counter_Z = 0, | 
					
						
							|  |  |  |       Stepper::counter_E = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   unsigned char Stepper::old_OCR0A; | 
					
						
							|  |  |  |   volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     volatile int Stepper::e_steps[EXTRUDERS]; | 
					
						
							|  |  |  |     int Stepper::extruder_advance_k = LIN_ADVANCE_K, | 
					
						
							|  |  |  |         Stepper::final_estep_rate, | 
					
						
							|  |  |  |         Stepper::current_estep_rate[EXTRUDERS], | 
					
						
							|  |  |  |         Stepper::current_adv_steps[EXTRUDERS]; | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     long  Stepper::e_steps[EXTRUDERS], | 
					
						
							|  |  |  |           Stepper::final_advance = 0, | 
					
						
							|  |  |  |           Stepper::old_advance = 0, | 
					
						
							|  |  |  |           Stepper::advance_rate, | 
					
						
							|  |  |  |           Stepper::advance; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | long Stepper::acceleration_time, Stepper::deceleration_time; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long Stepper::count_position[NUM_AXIS] = { 0 }; | 
					
						
							|  |  |  | volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | unsigned short Stepper::acc_step_rate; // needed for deceleration start point
 | 
					
						
							|  |  |  | uint8_t Stepper::step_loops, Stepper::step_loops_nominal; | 
					
						
							|  |  |  | unsigned short Stepper::OCR1A_nominal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long Stepper::endstops_trigsteps[3]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(DUAL_X_CARRIAGE)
 | 
					
						
							|  |  |  |   #define X_APPLY_DIR(v,ALWAYS) \
 | 
					
						
							|  |  |  |     if (extruder_duplication_enabled || ALWAYS) { \ | 
					
						
							|  |  |  |       X_DIR_WRITE(v); \ | 
					
						
							|  |  |  |       X2_DIR_WRITE(v); \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #define X_APPLY_STEP(v,ALWAYS) \
 | 
					
						
							|  |  |  |     if (extruder_duplication_enabled || ALWAYS) { \ | 
					
						
							|  |  |  |       X_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       X2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |   #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
 | 
					
						
							|  |  |  |   #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |   #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
 | 
					
						
							|  |  |  |   #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |     #define Z_APPLY_STEP(v,Q) \
 | 
					
						
							|  |  |  |     if (performing_homing) { \ | 
					
						
							|  |  |  |       if (Z_HOME_DIR > 0) {\ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       } \ | 
					
						
							|  |  |  |       else { \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       } \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // intRes = longIn1 * longIn2 >> 24
 | 
					
						
							|  |  |  | // uses:
 | 
					
						
							|  |  |  | // r26 to store 0
 | 
					
						
							|  |  |  | // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
 | 
					
						
							|  |  |  | // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
 | 
					
						
							|  |  |  | // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
 | 
					
						
							|  |  |  | // B0 A0 are bits 24-39 and are the returned value
 | 
					
						
							|  |  |  | // C1 B1 A1 is longIn1
 | 
					
						
							|  |  |  | // D2 C2 B2 A2 is longIn2
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | #define MultiU24X32toH16(intRes, longIn1, longIn2) \
 | 
					
						
							|  |  |  |   asm volatile ( \ | 
					
						
							|  |  |  |                  "clr r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %A1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "mov r27, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "movw %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "add %B0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "add %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %A1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %A2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %A2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "lsr r27 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %D2, %A1 \n\t" \ | 
					
						
							|  |  |  |                  "add %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %D2, %B1 \n\t" \ | 
					
						
							|  |  |  |                  "add %B0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "clr r1 \n\t" \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "=&r" (intRes) \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "d" (longIn1), \ | 
					
						
							|  |  |  |                  "d" (longIn2) \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "r26" , "r27" \ | 
					
						
							|  |  |  |                ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Some useful constants
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
 | 
					
						
							|  |  |  | #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *         __________________________ | 
					
						
							|  |  |  |  *        /|                        |\     _________________         ^ | 
					
						
							|  |  |  |  *       / |                        | \   /|               |\        | | 
					
						
							|  |  |  |  *      /  |                        |  \ / |               | \       s | 
					
						
							|  |  |  |  *     /   |                        |   |  |               |  \      p | 
					
						
							|  |  |  |  *    /    |                        |   |  |               |   \     e | 
					
						
							|  |  |  |  *   +-----+------------------------+---+--+---------------+----+    e | 
					
						
							|  |  |  |  *   |               BLOCK 1            |      BLOCK 2          |    d | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *                           time -----> | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates | 
					
						
							|  |  |  |  *  first block->accelerate_until step_events_completed, then keeps going at constant speed until | 
					
						
							|  |  |  |  *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. | 
					
						
							|  |  |  |  *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::wake_up() { | 
					
						
							|  |  |  |   //  TCNT1 = 0;
 | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Set the stepper direction of each axis | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *   COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS | 
					
						
							|  |  |  |  *   COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS | 
					
						
							|  |  |  |  *   COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::set_directions() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define SET_STEP_DIR(AXIS) \
 | 
					
						
							|  |  |  |     if (motor_direction(AXIS ##_AXIS)) { \ | 
					
						
							|  |  |  |       AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \ | 
					
						
							|  |  |  |       count_direction[AXIS ##_AXIS] = -1; \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \ | 
					
						
							|  |  |  |       count_direction[AXIS ##_AXIS] = 1; \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   SET_STEP_DIR(X); // A
 | 
					
						
							|  |  |  |   SET_STEP_DIR(Y); // B
 | 
					
						
							|  |  |  |   SET_STEP_DIR(Z); // C
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if DISABLED(ADVANCE)
 | 
					
						
							|  |  |  |     if (motor_direction(E_AXIS)) { | 
					
						
							|  |  |  |       REV_E_DIR(); | 
					
						
							|  |  |  |       count_direction[E_AXIS] = -1; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       NORM_E_DIR(); | 
					
						
							|  |  |  |       count_direction[E_AXIS] = 1; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #endif //!ADVANCE
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 | 
					
						
							|  |  |  | // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 | 
					
						
							|  |  |  | ISR(TIMER1_COMPA_vect) { Stepper::isr(); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::isr() { | 
					
						
							|  |  |  |   if (cleaning_buffer_counter) { | 
					
						
							|  |  |  |     current_block = NULL; | 
					
						
							|  |  |  |     planner.discard_current_block(); | 
					
						
							|  |  |  |     #ifdef SD_FINISHED_RELEASECOMMAND
 | 
					
						
							|  |  |  |       if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     cleaning_buffer_counter--; | 
					
						
							|  |  |  |     OCR1A = 200; | 
					
						
							|  |  |  |     return; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // If there is no current block, attempt to pop one from the buffer
 | 
					
						
							|  |  |  |   if (!current_block) { | 
					
						
							|  |  |  |     // Anything in the buffer?
 | 
					
						
							|  |  |  |     current_block = planner.get_current_block(); | 
					
						
							|  |  |  |     if (current_block) { | 
					
						
							|  |  |  |       current_block->busy = true; | 
					
						
							|  |  |  |       trapezoid_generator_reset(); | 
					
						
							|  |  |  |       counter_X = -(current_block->step_event_count >> 1); | 
					
						
							|  |  |  |       counter_Y = counter_Z = counter_E = counter_X; | 
					
						
							|  |  |  |       step_events_completed = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(Z_LATE_ENABLE)
 | 
					
						
							|  |  |  |         if (current_block->steps[Z_AXIS] > 0) { | 
					
						
							|  |  |  |           enable_z(); | 
					
						
							|  |  |  |           OCR1A = 2000; //1ms wait
 | 
					
						
							|  |  |  |           return; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // #if ENABLED(ADVANCE)
 | 
					
						
							|  |  |  |       //   e_steps[current_block->active_extruder] = 0;
 | 
					
						
							|  |  |  |       // #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       OCR1A = 2000; // 1kHz.
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if (current_block != NULL) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Update endstops state, if enabled
 | 
					
						
							|  |  |  |     #if HAS_BED_PROBE
 | 
					
						
							|  |  |  |       if (endstops.enabled || endstops.z_probe_enabled) endstops.update(); | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       if (endstops.enabled) endstops.update(); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Take multiple steps per interrupt (For high speed moves)
 | 
					
						
							|  |  |  |     for (int8_t i = 0; i < step_loops; i++) { | 
					
						
							|  |  |  |       #ifndef USBCON
 | 
					
						
							|  |  |  |         customizedSerial.checkRx(); // Check for serial chars.
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         counter_E += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |         if (counter_E > 0) { | 
					
						
							|  |  |  |           counter_E -= current_block->step_event_count; | 
					
						
							|  |  |  |           count_position[E_AXIS] += count_direction[E_AXIS]; | 
					
						
							|  |  |  |           e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (current_block->use_advance_lead) { | 
					
						
							|  |  |  |           int delta_adv_steps; //Maybe a char would be enough?
 | 
					
						
							|  |  |  |           delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[current_block->active_extruder]) >> 9) - current_adv_steps[current_block->active_extruder]; | 
					
						
							|  |  |  |           e_steps[current_block->active_extruder] += delta_adv_steps; | 
					
						
							|  |  |  |           current_adv_steps[current_block->active_extruder] += delta_adv_steps; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         counter_E += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |         if (counter_E > 0) { | 
					
						
							|  |  |  |           counter_E -= current_block->step_event_count; | 
					
						
							|  |  |  |           e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #define _COUNTER(AXIS) counter_## AXIS
 | 
					
						
							|  |  |  |       #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
 | 
					
						
							|  |  |  |       #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #define STEP_ADD(AXIS) \
 | 
					
						
							|  |  |  |         _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ | 
					
						
							|  |  |  |         if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       STEP_ADD(X); | 
					
						
							|  |  |  |       STEP_ADD(Y); | 
					
						
							|  |  |  |       STEP_ADD(Z); | 
					
						
							|  |  |  |       #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |         STEP_ADD(E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #define STEP_IF_COUNTER(AXIS) \
 | 
					
						
							|  |  |  |         if (_COUNTER(AXIS) > 0) { \ | 
					
						
							|  |  |  |           _COUNTER(AXIS) -= current_block->step_event_count; \ | 
					
						
							|  |  |  |           count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ | 
					
						
							|  |  |  |           _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       STEP_IF_COUNTER(X); | 
					
						
							|  |  |  |       STEP_IF_COUNTER(Y); | 
					
						
							|  |  |  |       STEP_IF_COUNTER(Z); | 
					
						
							|  |  |  |       #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |         STEP_IF_COUNTER(E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       step_events_completed++; | 
					
						
							|  |  |  |       if (step_events_completed >= current_block->step_event_count) break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       // If we have esteps to execute, fire the next ISR "now"
 | 
					
						
							|  |  |  |       if (e_steps[current_block->active_extruder]) OCR0A = TCNT0 + 2; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculate new timer value
 | 
					
						
							|  |  |  |     unsigned short timer, step_rate; | 
					
						
							|  |  |  |     if (step_events_completed <= (unsigned long)current_block->accelerate_until) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  |       acc_step_rate += current_block->initial_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // upper limit
 | 
					
						
							|  |  |  |       NOMORE(acc_step_rate, current_block->nominal_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // step_rate to timer interval
 | 
					
						
							|  |  |  |       timer = calc_timer(acc_step_rate); | 
					
						
							|  |  |  |       OCR1A = timer; | 
					
						
							|  |  |  |       acceleration_time += timer; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (current_block->use_advance_lead) | 
					
						
							|  |  |  |           current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         advance += advance_rate * step_loops; | 
					
						
							|  |  |  |         //NOLESS(advance, current_block->advance);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Do E steps + advance steps
 | 
					
						
							|  |  |  |         e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance); | 
					
						
							|  |  |  |         old_advance = advance >> 8; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |         eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else if (step_events_completed > (unsigned long)current_block->decelerate_after) { | 
					
						
							|  |  |  |       MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (step_rate <= acc_step_rate) { // Still decelerating?
 | 
					
						
							|  |  |  |         step_rate = acc_step_rate - step_rate; | 
					
						
							|  |  |  |         NOLESS(step_rate, current_block->final_rate); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |         step_rate = current_block->final_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // step_rate to timer interval
 | 
					
						
							|  |  |  |       timer = calc_timer(step_rate); | 
					
						
							|  |  |  |       OCR1A = timer; | 
					
						
							|  |  |  |       deceleration_time += timer; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (current_block->use_advance_lead) | 
					
						
							|  |  |  |           current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         advance -= advance_rate * step_loops; | 
					
						
							|  |  |  |         NOLESS(advance, final_advance); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Do E steps + advance steps
 | 
					
						
							|  |  |  |         uint32_t advance_whole = advance >> 8; | 
					
						
							|  |  |  |         e_steps[current_block->active_extruder] += advance_whole - old_advance; | 
					
						
							|  |  |  |         old_advance = advance_whole; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |         eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if (current_block->use_advance_lead) | 
					
						
							|  |  |  |           current_estep_rate[current_block->active_extruder] = final_estep_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[current_block->active_extruder]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       OCR1A = OCR1A_nominal; | 
					
						
							|  |  |  |       // ensure we're running at the correct step rate, even if we just came off an acceleration
 | 
					
						
							|  |  |  |       step_loops = step_loops_nominal; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // If current block is finished, reset pointer
 | 
					
						
							|  |  |  |     if (step_events_completed >= current_block->step_event_count) { | 
					
						
							|  |  |  |       current_block = NULL; | 
					
						
							|  |  |  |       planner.discard_current_block(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Timer interrupt for E. e_steps is set in the main routine;
 | 
					
						
							|  |  |  |   // Timer 0 is shared with millies
 | 
					
						
							|  |  |  |   ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::advance_isr() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     old_OCR0A += eISR_Rate; | 
					
						
							|  |  |  |     OCR0A = old_OCR0A; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define STEP_E_ONCE(INDEX) \
 | 
					
						
							|  |  |  |       if (e_steps[INDEX] != 0) { \ | 
					
						
							|  |  |  |         E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \ | 
					
						
							|  |  |  |         if (e_steps[INDEX] < 0) { \ | 
					
						
							|  |  |  |           E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \ | 
					
						
							|  |  |  |           e_steps[INDEX]++; \ | 
					
						
							|  |  |  |         } \ | 
					
						
							|  |  |  |         else if (e_steps[INDEX] > 0) { \ | 
					
						
							|  |  |  |           E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \ | 
					
						
							|  |  |  |           e_steps[INDEX]--; \ | 
					
						
							|  |  |  |         } \ | 
					
						
							|  |  |  |         E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \ | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Step all E steppers that have steps
 | 
					
						
							|  |  |  |     for (uint8_t i = 0; i < step_loops; i++) { | 
					
						
							|  |  |  |       STEP_E_ONCE(0); | 
					
						
							|  |  |  |       #if EXTRUDERS > 1
 | 
					
						
							|  |  |  |         STEP_E_ONCE(1); | 
					
						
							|  |  |  |         #if EXTRUDERS > 2
 | 
					
						
							|  |  |  |           STEP_E_ONCE(2); | 
					
						
							|  |  |  |           #if EXTRUDERS > 3
 | 
					
						
							|  |  |  |             STEP_E_ONCE(3); | 
					
						
							|  |  |  |           #endif
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::init() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   digipot_init(); //Initialize Digipot Motor Current
 | 
					
						
							|  |  |  |   microstep_init(); //Initialize Microstepping Pins
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // initialise TMC Steppers
 | 
					
						
							|  |  |  |   #if ENABLED(HAVE_TMCDRIVER)
 | 
					
						
							|  |  |  |     tmc_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |     // initialise L6470 Steppers
 | 
					
						
							|  |  |  |   #if ENABLED(HAVE_L6470DRIVER)
 | 
					
						
							|  |  |  |     L6470_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Initialize Dir Pins
 | 
					
						
							|  |  |  |   #if HAS_X_DIR
 | 
					
						
							|  |  |  |     X_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_X2_DIR
 | 
					
						
							|  |  |  |     X2_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Y_DIR
 | 
					
						
							|  |  |  |     Y_DIR_INIT; | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
 | 
					
						
							|  |  |  |       Y2_DIR_INIT; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Z_DIR
 | 
					
						
							|  |  |  |     Z_DIR_INIT; | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
 | 
					
						
							|  |  |  |       Z2_DIR_INIT; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E0_DIR
 | 
					
						
							|  |  |  |     E0_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_DIR
 | 
					
						
							|  |  |  |     E1_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_DIR
 | 
					
						
							|  |  |  |     E2_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_DIR
 | 
					
						
							|  |  |  |     E3_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Initialize Enable Pins - steppers default to disabled.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_X_ENABLE
 | 
					
						
							|  |  |  |     X_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
 | 
					
						
							|  |  |  |       X2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Y_ENABLE
 | 
					
						
							|  |  |  |     Y_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
 | 
					
						
							|  |  |  |       Y2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Z_ENABLE
 | 
					
						
							|  |  |  |     Z_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
 | 
					
						
							|  |  |  |       Z2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_E0_ENABLE
 | 
					
						
							|  |  |  |     E0_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_ENABLE
 | 
					
						
							|  |  |  |     E1_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_ENABLE
 | 
					
						
							|  |  |  |     E2_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_ENABLE
 | 
					
						
							|  |  |  |     E3_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //
 | 
					
						
							|  |  |  |   // Init endstops and pullups here
 | 
					
						
							|  |  |  |   //
 | 
					
						
							|  |  |  |   endstops.init(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
 | 
					
						
							|  |  |  |   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
 | 
					
						
							|  |  |  |   #define _DISABLE(axis) disable_## axis()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define AXIS_INIT(axis, AXIS, PIN) \
 | 
					
						
							|  |  |  |     _STEP_INIT(AXIS); \ | 
					
						
							|  |  |  |     _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ | 
					
						
							|  |  |  |     _DISABLE(axis) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Initialize Step Pins
 | 
					
						
							|  |  |  |   #if HAS_X_STEP
 | 
					
						
							|  |  |  |     AXIS_INIT(x, X, X); | 
					
						
							|  |  |  |     #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_STEP
 | 
					
						
							|  |  |  |       AXIS_INIT(x, X2, X); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Y_STEP
 | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
 | 
					
						
							|  |  |  |       Y2_STEP_INIT; | 
					
						
							|  |  |  |       Y2_STEP_WRITE(INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     AXIS_INIT(y, Y, Y); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Z_STEP
 | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
 | 
					
						
							|  |  |  |       Z2_STEP_INIT; | 
					
						
							|  |  |  |       Z2_STEP_WRITE(INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     AXIS_INIT(z, Z, Z); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_E0_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(0); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(1); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(2); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(3); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // waveform generation = 0100 = CTC
 | 
					
						
							|  |  |  |   CBI(TCCR1B, WGM13); | 
					
						
							|  |  |  |   SBI(TCCR1B, WGM12); | 
					
						
							|  |  |  |   CBI(TCCR1A, WGM11); | 
					
						
							|  |  |  |   CBI(TCCR1A, WGM10); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // output mode = 00 (disconnected)
 | 
					
						
							|  |  |  |   TCCR1A &= ~(3 << COM1A0); | 
					
						
							|  |  |  |   TCCR1A &= ~(3 << COM1B0); | 
					
						
							|  |  |  |   // Set the timer pre-scaler
 | 
					
						
							|  |  |  |   // Generally we use a divider of 8, resulting in a 2MHz timer
 | 
					
						
							|  |  |  |   // frequency on a 16MHz MCU. If you are going to change this, be
 | 
					
						
							|  |  |  |   // sure to regenerate speed_lookuptable.h with
 | 
					
						
							|  |  |  |   // create_speed_lookuptable.py
 | 
					
						
							|  |  |  |   TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   OCR1A = 0x4000; | 
					
						
							|  |  |  |   TCNT1 = 0; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       for (int i = 0; i < EXTRUDERS; i++) { | 
					
						
							|  |  |  |         e_steps[i] = 0; | 
					
						
							|  |  |  |         current_adv_steps[i] = 0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if defined(TCCR0A) && defined(WGM01)
 | 
					
						
							|  |  |  |       CBI(TCCR0A, WGM01); | 
					
						
							|  |  |  |       CBI(TCCR0A, WGM00); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     SBI(TIMSK0, OCIE0A); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   endstops.enable(true); // Start with endstops active. After homing they can be disabled
 | 
					
						
							|  |  |  |   sei(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   set_directions(); // Init directions to last_direction_bits = 0
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Block until all buffered steps are executed | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::synchronize() { while (planner.blocks_queued()) idle(); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Set the stepper positions directly in steps | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The input is based on the typical per-axis XYZ steps. | 
					
						
							|  |  |  |  * For CORE machines XYZ needs to be translated to ABC. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This allows get_axis_position_mm to correctly | 
					
						
							|  |  |  |  * derive the current XYZ position later on. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(COREXY)
 | 
					
						
							|  |  |  |     // corexy positioning
 | 
					
						
							|  |  |  |     // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | 
					
						
							|  |  |  |     count_position[A_AXIS] = x + y; | 
					
						
							|  |  |  |     count_position[B_AXIS] = x - y; | 
					
						
							|  |  |  |     count_position[Z_AXIS] = z; | 
					
						
							|  |  |  |   #elif ENABLED(COREXZ)
 | 
					
						
							|  |  |  |     // corexz planning
 | 
					
						
							|  |  |  |     count_position[A_AXIS] = x + z; | 
					
						
							|  |  |  |     count_position[Y_AXIS] = y; | 
					
						
							|  |  |  |     count_position[C_AXIS] = x - z; | 
					
						
							|  |  |  |   #elif ENABLED(COREYZ)
 | 
					
						
							|  |  |  |     // coreyz planning
 | 
					
						
							|  |  |  |     count_position[X_AXIS] = x; | 
					
						
							|  |  |  |     count_position[B_AXIS] = y + z; | 
					
						
							|  |  |  |     count_position[C_AXIS] = y - z; | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     // default non-h-bot planning
 | 
					
						
							|  |  |  |     count_position[X_AXIS] = x; | 
					
						
							|  |  |  |     count_position[Y_AXIS] = y; | 
					
						
							|  |  |  |     count_position[Z_AXIS] = z; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::set_e_position(const long& e) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Get a stepper's position in steps. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | long Stepper::position(AxisEnum axis) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   long count_pos = count_position[axis]; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  |   return count_pos; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Get an axis position according to stepper position(s) | 
					
						
							|  |  |  |  * For CORE machines apply translation from ABC to XYZ. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | float Stepper::get_axis_position_mm(AxisEnum axis) { | 
					
						
							|  |  |  |   float axis_steps; | 
					
						
							|  |  |  |   #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
					
						
							|  |  |  |     // Requesting one of the "core" axes?
 | 
					
						
							|  |  |  |     if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { | 
					
						
							|  |  |  |       CRITICAL_SECTION_START; | 
					
						
							|  |  |  |       long pos1 = count_position[CORE_AXIS_1], | 
					
						
							|  |  |  |            pos2 = count_position[CORE_AXIS_2]; | 
					
						
							|  |  |  |       CRITICAL_SECTION_END; | 
					
						
							|  |  |  |       // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
 | 
					
						
							|  |  |  |       // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
 | 
					
						
							|  |  |  |       axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) / 2.0f; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |       axis_steps = position(axis); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     axis_steps = position(axis); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   return axis_steps / planner.axis_steps_per_mm[axis]; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::finish_and_disable() { | 
					
						
							|  |  |  |   synchronize(); | 
					
						
							|  |  |  |   disable_all_steppers(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::quick_stop() { | 
					
						
							|  |  |  |   cleaning_buffer_counter = 5000; | 
					
						
							|  |  |  |   DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |   while (planner.blocks_queued()) planner.discard_current_block(); | 
					
						
							|  |  |  |   current_block = NULL; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::endstop_triggered(AxisEnum axis) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     float axis_pos = count_position[axis]; | 
					
						
							|  |  |  |     if (axis == CORE_AXIS_1) | 
					
						
							|  |  |  |       axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; | 
					
						
							|  |  |  |     else if (axis == CORE_AXIS_2) | 
					
						
							|  |  |  |       axis_pos = (count_position[CORE_AXIS_1] - axis_pos) / 2; | 
					
						
							|  |  |  |     endstops_trigsteps[axis] = axis_pos; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #else // !COREXY && !COREXZ && !COREYZ
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     endstops_trigsteps[axis] = count_position[axis]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #endif // !COREXY && !COREXZ && !COREYZ
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   kill_current_block(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::report_positions() { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   long xpos = count_position[X_AXIS], | 
					
						
							|  |  |  |        ypos = count_position[Y_AXIS], | 
					
						
							|  |  |  |        zpos = count_position[Z_AXIS]; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(COREXY) || ENABLED(COREXZ)
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(MSG_COUNT_A); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(MSG_COUNT_X); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(xpos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(COREXY) || ENABLED(COREYZ)
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" B:"); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" Y:"); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(ypos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" C:"); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" Z:"); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(zpos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   SERIAL_EOL; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(BABYSTEPPING)
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |   // MUST ONLY BE CALLED BY AN ISR,
 | 
					
						
							|  |  |  |   // No other ISR should ever interrupt this!
 | 
					
						
							|  |  |  |   void Stepper::babystep(const uint8_t axis, const bool direction) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define _ENABLE(axis) enable_## axis()
 | 
					
						
							|  |  |  |     #define _READ_DIR(AXIS) AXIS ##_DIR_READ
 | 
					
						
							|  |  |  |     #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
 | 
					
						
							|  |  |  |     #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
 | 
					
						
							|  |  |  |         _ENABLE(axis); \ | 
					
						
							|  |  |  |         uint8_t old_pin = _READ_DIR(AXIS); \ | 
					
						
							|  |  |  |         _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \ | 
					
						
							|  |  |  |         _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \ | 
					
						
							|  |  |  |         delayMicroseconds(2); \ | 
					
						
							|  |  |  |         _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \ | 
					
						
							|  |  |  |         _APPLY_DIR(AXIS, old_pin); \ | 
					
						
							|  |  |  |       } | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |     switch (axis) { | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |       case X_AXIS: | 
					
						
							|  |  |  |         BABYSTEP_AXIS(x, X, false); | 
					
						
							|  |  |  |         break; | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |       case Y_AXIS: | 
					
						
							|  |  |  |         BABYSTEP_AXIS(y, Y, false); | 
					
						
							|  |  |  |         break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       case Z_AXIS: { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         #if DISABLED(DELTA)
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |           BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z); | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |         #else // DELTA
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           bool z_direction = direction ^ BABYSTEP_INVERT_Z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           enable_x(); | 
					
						
							|  |  |  |           enable_y(); | 
					
						
							|  |  |  |           enable_z(); | 
					
						
							|  |  |  |           uint8_t old_x_dir_pin = X_DIR_READ, | 
					
						
							|  |  |  |                   old_y_dir_pin = Y_DIR_READ, | 
					
						
							|  |  |  |                   old_z_dir_pin = Z_DIR_READ; | 
					
						
							|  |  |  |           //setup new step
 | 
					
						
							|  |  |  |           X_DIR_WRITE(INVERT_X_DIR ^ z_direction); | 
					
						
							|  |  |  |           Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction); | 
					
						
							|  |  |  |           Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction); | 
					
						
							|  |  |  |           //perform step
 | 
					
						
							|  |  |  |           X_STEP_WRITE(!INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           Y_STEP_WRITE(!INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           Z_STEP_WRITE(!INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |           delayMicroseconds(2); | 
					
						
							|  |  |  |           X_STEP_WRITE(INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           Y_STEP_WRITE(INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           Z_STEP_WRITE(INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |           //get old pin state back.
 | 
					
						
							|  |  |  |           X_DIR_WRITE(old_x_dir_pin); | 
					
						
							|  |  |  |           Y_DIR_WRITE(old_y_dir_pin); | 
					
						
							|  |  |  |           Z_DIR_WRITE(old_z_dir_pin); | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |       } break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       default: break; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | #endif //BABYSTEPPING
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Software-controlled Stepper Motor Current | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // From Arduino DigitalPotControl example
 | 
					
						
							|  |  |  |   void Stepper::digitalPotWrite(int address, int value) { | 
					
						
							|  |  |  |     digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
 | 
					
						
							|  |  |  |     SPI.transfer(address); //  send in the address and value via SPI:
 | 
					
						
							|  |  |  |     SPI.transfer(value); | 
					
						
							|  |  |  |     digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
 | 
					
						
							|  |  |  |     //delay(10);
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif //HAS_DIGIPOTSS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::digipot_init() { | 
					
						
							|  |  |  |   #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SPI.begin(); | 
					
						
							|  |  |  |     pinMode(DIGIPOTSS_PIN, OUTPUT); | 
					
						
							|  |  |  |     for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) { | 
					
						
							|  |  |  |       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | 
					
						
							|  |  |  |       digipot_current(i, digipot_motor_current[i]); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  |     #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | 
					
						
							|  |  |  |       pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); | 
					
						
							|  |  |  |       digipot_current(0, motor_current_setting[0]); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | 
					
						
							|  |  |  |       pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT); | 
					
						
							|  |  |  |       digipot_current(1, motor_current_setting[1]); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | 
					
						
							|  |  |  |       pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT); | 
					
						
							|  |  |  |       digipot_current(2, motor_current_setting[2]); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | 
					
						
							|  |  |  |     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::digipot_current(uint8_t driver, int current) { | 
					
						
							|  |  |  |   #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; | 
					
						
							|  |  |  |     digitalPotWrite(digipot_ch[driver], current); | 
					
						
							|  |  |  |   #elif HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  |     #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
 | 
					
						
							|  |  |  |     switch (driver) { | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | 
					
						
							|  |  |  |         case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | 
					
						
							|  |  |  |         case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | 
					
						
							|  |  |  |         case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     UNUSED(driver); | 
					
						
							|  |  |  |     UNUSED(current); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::microstep_init() { | 
					
						
							|  |  |  |   #if HAS_MICROSTEPS_E1
 | 
					
						
							|  |  |  |     pinMode(E1_MS1_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(E1_MS2_PIN, OUTPUT); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_MICROSTEPS
 | 
					
						
							|  |  |  |     pinMode(X_MS1_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(X_MS2_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(Y_MS1_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(Y_MS2_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(Z_MS1_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(Z_MS2_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(E0_MS1_PIN, OUTPUT); | 
					
						
							|  |  |  |     pinMode(E0_MS2_PIN, OUTPUT); | 
					
						
							|  |  |  |     const uint8_t microstep_modes[] = MICROSTEP_MODES; | 
					
						
							|  |  |  |     for (uint16_t i = 0; i < COUNT(microstep_modes); i++) | 
					
						
							|  |  |  |       microstep_mode(i, microstep_modes[i]); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Software-controlled Microstepping | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { | 
					
						
							|  |  |  |   if (ms1 >= 0) switch (driver) { | 
					
						
							|  |  |  |     case 0: digitalWrite(X_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |     case 1: digitalWrite(Y_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |     case 2: digitalWrite(Z_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |     case 3: digitalWrite(E0_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |     #if HAS_MICROSTEPS_E1
 | 
					
						
							|  |  |  |       case 4: digitalWrite(E1_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   if (ms2 >= 0) switch (driver) { | 
					
						
							|  |  |  |     case 0: digitalWrite(X_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |     case 1: digitalWrite(Y_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |     case 2: digitalWrite(Z_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |     case 3: digitalWrite(E0_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |     #if PIN_EXISTS(E1_MS2)
 | 
					
						
							|  |  |  |       case 4: digitalWrite(E1_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) { | 
					
						
							|  |  |  |   switch (stepping_mode) { | 
					
						
							|  |  |  |     case 1: microstep_ms(driver, MICROSTEP1); break; | 
					
						
							|  |  |  |     case 2: microstep_ms(driver, MICROSTEP2); break; | 
					
						
							|  |  |  |     case 4: microstep_ms(driver, MICROSTEP4); break; | 
					
						
							|  |  |  |     case 8: microstep_ms(driver, MICROSTEP8); break; | 
					
						
							|  |  |  |     case 16: microstep_ms(driver, MICROSTEP16); break; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::microstep_readings() { | 
					
						
							|  |  |  |   SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins"); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLPGM("X: "); | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(digitalRead(X_MS1_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLPGM("Y: "); | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLPGM("Z: "); | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLPGM("E0: "); | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN)); | 
					
						
							|  |  |  |   SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN)); | 
					
						
							|  |  |  |   #if HAS_MICROSTEPS_E1
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM("E1: "); | 
					
						
							|  |  |  |     SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN)); | 
					
						
							|  |  |  |     SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN)); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::advance_M905(const float &k) { | 
					
						
							|  |  |  |     if (k >= 0) extruder_advance_k = k; | 
					
						
							|  |  |  |     SERIAL_ECHO_START; | 
					
						
							|  |  |  |     SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k); | 
					
						
							|  |  |  |     SERIAL_EOL; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // LIN_ADVANCE
 |