Fixed AD595 define

master
Erik van der Zalm 13 years ago
parent d3002ef741
commit b67dacdc8f

@ -105,22 +105,28 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
#ifdef XY_FREQUENCY_LIMIT #ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit // Used for the frequency limit
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations static long x_segment_time[3]={
static long y_segment_time[3]={0,0,0}; 0,0,0}; // Segment times (in us). Used for speed calculations
static long y_segment_time[3]={
0,0,0};
#endif #endif
// Returns the index of the next block in the ring buffer // Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static int8_t next_block_index(int8_t block_index) { static int8_t next_block_index(int8_t block_index) {
block_index++; block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } if (block_index == BLOCK_BUFFER_SIZE) {
block_index = 0;
}
return(block_index); return(block_index);
} }
// Returns the index of the previous block in the ring buffer // Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) { static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; } if (block_index == 0) {
block_index = BLOCK_BUFFER_SIZE;
}
block_index--; block_index--;
return(block_index); return(block_index);
} }
@ -165,8 +171,12 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.) // Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) {initial_rate=120; } if(initial_rate <120) {
if(final_rate < 120) {final_rate=120; } initial_rate=120;
}
if(final_rate < 120) {
final_rate=120;
}
long acceleration = block->acceleration_st; long acceleration = block->acceleration_st;
int32_t accelerate_steps = int32_t accelerate_steps =
@ -226,7 +236,9 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
// The kernel called by planner_recalculate() when scanning the plan from last to first entry. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { return; } if(!current) {
return;
}
if (next) { if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
@ -239,7 +251,8 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
current->entry_speed = min( current->max_entry_speed, current->entry_speed = min( current->max_entry_speed,
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
} else { }
else {
current->entry_speed = current->max_entry_speed; current->entry_speed = current->max_entry_speed;
} }
current->recalculate_flag = true; current->recalculate_flag = true;
@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the reverse pass. // implements the reverse pass.
void planner_reverse_pass() { void planner_reverse_pass() {
uint8_t block_index = block_buffer_head; uint8_t block_index = block_buffer_head;
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
//Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
block_t *block[3] = { NULL, NULL, NULL }; block_t *block[3] = {
while(block_index != block_buffer_tail) { NULL, NULL, NULL };
while(block_index != tail) {
block_index = prev_block_index(block_index); block_index = prev_block_index(block_index);
block[2]= block[1]; block[2]= block[1];
block[1]= block[0]; block[1]= block[0];
@ -267,7 +287,9 @@ void planner_reverse_pass() {
// The kernel called by planner_recalculate() when scanning the plan from first to last entry. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!previous) { return; } if(!previous) {
return;
}
// If the previous block is an acceleration block, but it is not long enough to complete the // If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry // full speed change within the block, we need to adjust the entry speed accordingly. Entry
@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the forward pass. // implements the forward pass.
void planner_forward_pass() { void planner_forward_pass() {
uint8_t block_index = block_buffer_tail; uint8_t block_index = block_buffer_tail;
block_t *block[3] = { NULL, NULL, NULL }; block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != block_buffer_head) { while(block_index != block_buffer_head) {
block[0] = block[1]; block[0] = block[1];
@ -445,7 +468,11 @@ void check_axes_activity() {
if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z(); if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); } if((DISABLE_E) && (e_active == 0)) {
disable_e0();
disable_e1();
disable_e2();
}
#if FAN_PIN > -1 #if FAN_PIN > -1
if((FanSpeed == 0) && (fan_speed ==0)) { if((FanSpeed == 0) && (fan_speed ==0)) {
analogWrite(FAN_PIN, 0); analogWrite(FAN_PIN, 0);
@ -521,16 +548,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) { return; }; if (block->step_event_count <= dropsegments) {
return;
};
block->fan_speed = FanSpeed; block->fan_speed = FanSpeed;
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } if (target[X_AXIS] < position[X_AXIS]) {
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } block->direction_bits |= (1<<X_AXIS);
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } }
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
block->active_extruder = extruder; block->active_extruder = extruder;
@ -542,7 +579,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#endif #endif
// Enable all // Enable all
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); } if(block->steps_e != 0) {
enable_e0();
enable_e1();
enable_e2();
}
if (block->steps_e == 0) { if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
@ -558,7 +599,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
} else { }
else {
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
} }
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
@ -698,26 +740,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#endif #endif
// Start with a safe speed // Start with a safe speed
float vmax_junction = max_xy_jerk/2; float vmax_junction = max_xy_jerk/2;
float vmax_junction_factor = 1.0;
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
vmax_junction = max_z_jerk/2; vmax_junction = min(vmax_junction, max_z_jerk/2);
vmax_junction = min(vmax_junction, block->nominal_speed);
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
vmax_junction = min(vmax_junction, max_e_jerk/2); vmax_junction = min(vmax_junction, max_e_jerk/2);
vmax_junction = min(vmax_junction, block->nominal_speed);
float safe_speed = vmax_junction;
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed; vmax_junction = block->nominal_speed;
} // }
if (jerk > max_xy_jerk) { if (jerk > max_xy_jerk) {
vmax_junction *= (max_xy_jerk/jerk); vmax_junction_factor = (max_xy_jerk/jerk);
} }
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])); vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
} }
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])); vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
} }
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
} }
block->max_entry_speed = vmax_junction; block->max_entry_speed = vmax_junction;
@ -733,8 +778,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the // the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks. // the maximum junction speed and may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } if (block->nominal_speed <= v_allowable) {
else { block->nominal_length_flag = false; } block->nominal_length_flag = true;
}
else {
block->nominal_length_flag = false;
}
block->recalculate_flag = true; // Always calculate trapezoid for new block block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed // Update previous path unit_vector and nominal speed
@ -770,7 +819,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#endif // ADVANCE #endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
MINIMUM_PLANNER_SPEED/block->nominal_speed); safe_speed/block->nominal_speed);
// Move buffer head // Move buffer head
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
@ -814,3 +863,4 @@ void allow_cold_extrudes(bool allow)
allow_cold_extrude=allow; allow_cold_extrude=allow;
#endif #endif
} }

@ -261,12 +261,10 @@ FORCE_INLINE void trapezoid_generator_reset() {
#endif #endif
deceleration_time = 0; deceleration_time = 0;
// step_rate to timer interval // step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
acc_step_rate = current_block->initial_rate; acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// SERIAL_ECHO_START; // SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :"); // SERIAL_ECHOPGM("advance :");

@ -957,7 +957,7 @@ enum {
#if EXTRUDERS > 2 #if EXTRUDERS > 2
ItemCT_nozzle2, ItemCT_nozzle2,
#endif #endif
#if defined BED_USES_THERMISTOR || BED_USES_AD595 #if defined BED_USES_THERMISTOR || defined BED_USES_AD595
ItemCT_bed, ItemCT_bed,
#endif #endif
ItemCT_fan, ItemCT_fan,
@ -1212,7 +1212,7 @@ void MainMenu::showControlTemp()
}break; }break;
#endif //autotemp #endif //autotemp
#if defined BED_USES_THERMISTOR || BED_USES_AD595 #if defined BED_USES_THERMISTOR || defined BED_USES_AD595
case ItemCT_bed: case ItemCT_bed:
{ {
if(force_lcd_update) if(force_lcd_update)

Loading…
Cancel
Save