|
|
|
@ -105,22 +105,28 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
|
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
|
// Used for the frequency limit
|
|
|
|
|
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
|
|
|
|
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
|
|
|
|
|
static long y_segment_time[3]={0,0,0};
|
|
|
|
|
static long x_segment_time[3]={
|
|
|
|
|
0,0,0}; // Segment times (in us). Used for speed calculations
|
|
|
|
|
static long y_segment_time[3]={
|
|
|
|
|
0,0,0};
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Returns the index of the next block in the ring buffer
|
|
|
|
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
|
|
|
|
static int8_t next_block_index(int8_t block_index) {
|
|
|
|
|
block_index++;
|
|
|
|
|
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
|
|
|
|
|
if (block_index == BLOCK_BUFFER_SIZE) {
|
|
|
|
|
block_index = 0;
|
|
|
|
|
}
|
|
|
|
|
return(block_index);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the index of the previous block in the ring buffer
|
|
|
|
|
static int8_t prev_block_index(int8_t block_index) {
|
|
|
|
|
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
|
|
|
|
|
if (block_index == 0) {
|
|
|
|
|
block_index = BLOCK_BUFFER_SIZE;
|
|
|
|
|
}
|
|
|
|
|
block_index--;
|
|
|
|
|
return(block_index);
|
|
|
|
|
}
|
|
|
|
@ -165,8 +171,12 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
|
|
|
|
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
|
|
|
|
|
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
|
|
|
if(initial_rate <120) {initial_rate=120; }
|
|
|
|
|
if(final_rate < 120) {final_rate=120; }
|
|
|
|
|
if(initial_rate <120) {
|
|
|
|
|
initial_rate=120;
|
|
|
|
|
}
|
|
|
|
|
if(final_rate < 120) {
|
|
|
|
|
final_rate=120;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
long acceleration = block->acceleration_st;
|
|
|
|
|
int32_t accelerate_steps =
|
|
|
|
@ -226,7 +236,9 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
|
|
|
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
|
|
|
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
|
|
|
if(!current) { return; }
|
|
|
|
|
if(!current) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (next) {
|
|
|
|
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
|
|
|
@ -239,7 +251,8 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|
|
|
|
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
|
|
|
|
current->entry_speed = min( current->max_entry_speed,
|
|
|
|
|
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
|
|
|
|
} else {
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
current->entry_speed = current->max_entry_speed;
|
|
|
|
|
}
|
|
|
|
|
current->recalculate_flag = true;
|
|
|
|
@ -252,10 +265,17 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|
|
|
|
// implements the reverse pass.
|
|
|
|
|
void planner_reverse_pass() {
|
|
|
|
|
uint8_t block_index = block_buffer_head;
|
|
|
|
|
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
|
|
|
|
|
|
|
|
|
//Make a local copy of block_buffer_tail, because the interrupt can alter it
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
unsigned char tail = block_buffer_tail;
|
|
|
|
|
CRITICAL_SECTION_END
|
|
|
|
|
|
|
|
|
|
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
|
|
|
|
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
block_t *block[3] = { NULL, NULL, NULL };
|
|
|
|
|
while(block_index != block_buffer_tail) {
|
|
|
|
|
block_t *block[3] = {
|
|
|
|
|
NULL, NULL, NULL };
|
|
|
|
|
while(block_index != tail) {
|
|
|
|
|
block_index = prev_block_index(block_index);
|
|
|
|
|
block[2]= block[1];
|
|
|
|
|
block[1]= block[0];
|
|
|
|
@ -267,7 +287,9 @@ void planner_reverse_pass() {
|
|
|
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
|
|
|
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
|
|
|
if(!previous) { return; }
|
|
|
|
|
if(!previous) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
|
|
|
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
|
|
|
@ -291,7 +313,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|
|
|
|
// implements the forward pass.
|
|
|
|
|
void planner_forward_pass() {
|
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
|
block_t *block[3] = { NULL, NULL, NULL };
|
|
|
|
|
block_t *block[3] = {
|
|
|
|
|
NULL, NULL, NULL };
|
|
|
|
|
|
|
|
|
|
while(block_index != block_buffer_head) {
|
|
|
|
|
block[0] = block[1];
|
|
|
|
@ -445,7 +468,11 @@ void check_axes_activity() {
|
|
|
|
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
|
|
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
|
|
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
|
|
|
|
if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
|
|
|
|
|
if((DISABLE_E) && (e_active == 0)) {
|
|
|
|
|
disable_e0();
|
|
|
|
|
disable_e1();
|
|
|
|
|
disable_e2();
|
|
|
|
|
}
|
|
|
|
|
#if FAN_PIN > -1
|
|
|
|
|
if((FanSpeed == 0) && (fan_speed ==0)) {
|
|
|
|
|
analogWrite(FAN_PIN, 0);
|
|
|
|
@ -521,16 +548,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
|
|
|
|
|
|
|
|
|
// Bail if this is a zero-length block
|
|
|
|
|
if (block->step_event_count <= dropsegments) { return; };
|
|
|
|
|
if (block->step_event_count <= dropsegments) {
|
|
|
|
|
return;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
block->fan_speed = FanSpeed;
|
|
|
|
|
|
|
|
|
|
// Compute direction bits for this block
|
|
|
|
|
block->direction_bits = 0;
|
|
|
|
|
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
|
|
|
|
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
|
|
|
|
|
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
|
|
|
|
|
if (target[X_AXIS] < position[X_AXIS]) {
|
|
|
|
|
block->direction_bits |= (1<<X_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS]) {
|
|
|
|
|
block->direction_bits |= (1<<Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (target[Z_AXIS] < position[Z_AXIS]) {
|
|
|
|
|
block->direction_bits |= (1<<Z_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (target[E_AXIS] < position[E_AXIS]) {
|
|
|
|
|
block->direction_bits |= (1<<E_AXIS);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
|
|
|
|
|
@ -542,7 +579,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Enable all
|
|
|
|
|
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
|
|
|
|
|
if(block->steps_e != 0) {
|
|
|
|
|
enable_e0();
|
|
|
|
|
enable_e1();
|
|
|
|
|
enable_e2();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (block->steps_e == 0) {
|
|
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
|
|
@ -558,7 +599,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
|
|
|
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
|
|
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
|
|
|
} else {
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
|
|
|
|
}
|
|
|
|
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
@ -698,26 +740,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
#endif
|
|
|
|
|
// Start with a safe speed
|
|
|
|
|
float vmax_junction = max_xy_jerk/2;
|
|
|
|
|
float vmax_junction_factor = 1.0;
|
|
|
|
|
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
|
|
|
|
vmax_junction = max_z_jerk/2;
|
|
|
|
|
vmax_junction = min(vmax_junction, block->nominal_speed);
|
|
|
|
|
vmax_junction = min(vmax_junction, max_z_jerk/2);
|
|
|
|
|
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
|
|
|
|
|
vmax_junction = min(vmax_junction, max_e_jerk/2);
|
|
|
|
|
vmax_junction = min(vmax_junction, block->nominal_speed);
|
|
|
|
|
float safe_speed = vmax_junction;
|
|
|
|
|
|
|
|
|
|
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
|
|
|
|
|
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
|
|
|
|
if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
|
|
|
|
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
|
|
|
|
vmax_junction = block->nominal_speed;
|
|
|
|
|
}
|
|
|
|
|
// }
|
|
|
|
|
if (jerk > max_xy_jerk) {
|
|
|
|
|
vmax_junction *= (max_xy_jerk/jerk);
|
|
|
|
|
vmax_junction_factor = (max_xy_jerk/jerk);
|
|
|
|
|
}
|
|
|
|
|
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
|
|
|
|
vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
|
|
|
|
|
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
|
|
|
|
|
}
|
|
|
|
|
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
|
|
|
|
|
vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]));
|
|
|
|
|
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
|
|
|
|
|
}
|
|
|
|
|
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
|
|
|
|
}
|
|
|
|
|
block->max_entry_speed = vmax_junction;
|
|
|
|
|
|
|
|
|
@ -733,8 +778,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
|
|
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
|
|
|
|
|
else { block->nominal_length_flag = false; }
|
|
|
|
|
if (block->nominal_speed <= v_allowable) {
|
|
|
|
|
block->nominal_length_flag = true;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
block->nominal_length_flag = false;
|
|
|
|
|
}
|
|
|
|
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
|
|
|
|
|
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
|
|
@ -770,7 +819,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
|
|
|
|
MINIMUM_PLANNER_SPEED/block->nominal_speed);
|
|
|
|
|
safe_speed/block->nominal_speed);
|
|
|
|
|
|
|
|
|
|
// Move buffer head
|
|
|
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
@ -814,3 +863,4 @@ void allow_cold_extrudes(bool allow)
|
|
|
|
|
allow_cold_extrude=allow;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|