/**
* stepper . cpp - stepper motor driver : executes motion plans using stepper motors
* Marlin Firmware
*
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < http : //www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher . */
# include "Marlin.h"
# include "stepper.h"
# include "planner.h"
# include "temperature.h"
# include "ultralcd.h"
# include "language.h"
# include "cardreader.h"
# include "speed_lookuptable.h"
# if HAS_DIGIPOTSS
# include <SPI.h>
# endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
block_t * current_block ; // A pointer to the block currently being traced
//===========================================================================
//============================= private variables ===========================
//===========================================================================
//static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits = 0 ; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter ;
# ifdef Z_DUAL_ENDSTOPS
static bool performing_homing = false ,
locked_z_motor = false ,
locked_z2_motor = false ;
# endif
// Counter variables for the Bresenham line tracer
static long counter_x , counter_y , counter_z , counter_e ;
volatile static unsigned long step_events_completed ; // The number of step events executed in the current block
# ifdef ADVANCE
static long advance_rate , advance , final_advance = 0 ;
static long old_advance = 0 ;
static long e_steps [ 4 ] ;
# endif
static long acceleration_time , deceleration_time ;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate ; // needed for deceleration start point
static char step_loops ;
static unsigned short OCR1A_nominal ;
static unsigned short step_loops_nominal ;
volatile long endstops_trigsteps [ 3 ] = { 0 } ;
volatile long endstops_stepsTotal , endstops_stepsDone ;
static volatile char endstop_hit_bits = 0 ; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
# ifndef Z_DUAL_ENDSTOPS
static byte
# else
static uint16_t
# endif
old_endstop_bits = 0 ; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
# ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false ;
# endif
# ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting [ 3 ] = DEFAULT_PWM_MOTOR_CURRENT ;
# endif
static bool check_endstops = true ;
volatile long count_position [ NUM_AXIS ] = { 0 } ;
volatile signed char count_direction [ NUM_AXIS ] = { 1 , 1 , 1 , 1 } ;
//===========================================================================
//================================ functions ================================
//===========================================================================
# ifdef DUAL_X_CARRIAGE
# define X_APPLY_DIR(v,ALWAYS) \
if ( extruder_duplication_enabled | | ALWAYS ) { \
X_DIR_WRITE ( v ) ; \
X2_DIR_WRITE ( v ) ; \
} \
else { \
if ( current_block - > active_extruder ) X2_DIR_WRITE ( v ) ; else X_DIR_WRITE ( v ) ; \
}
# define X_APPLY_STEP(v,ALWAYS) \
if ( extruder_duplication_enabled | | ALWAYS ) { \
X_STEP_WRITE ( v ) ; \
X2_STEP_WRITE ( v ) ; \
} \
else { \
if ( current_block - > active_extruder ! = 0 ) X2_STEP_WRITE ( v ) ; else X_STEP_WRITE ( v ) ; \
}
# else
# define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
# define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
# endif
# ifdef Y_DUAL_STEPPER_DRIVERS
# define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
# define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
# else
# define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
# define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
# endif
# ifdef Z_DUAL_STEPPER_DRIVERS
# define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
# ifdef Z_DUAL_ENDSTOPS
# define Z_APPLY_STEP(v,Q) \
if ( performing_homing ) { \
if ( Z_HOME_DIR > 0 ) { \
if ( ! ( TEST ( old_endstop_bits , Z_MAX ) & & ( count_direction [ Z_AXIS ] > 0 ) ) & & ! locked_z_motor ) Z_STEP_WRITE ( v ) ; \
if ( ! ( TEST ( old_endstop_bits , Z2_MAX ) & & ( count_direction [ Z_AXIS ] > 0 ) ) & & ! locked_z2_motor ) Z2_STEP_WRITE ( v ) ; \
} else { \
if ( ! ( TEST ( old_endstop_bits , Z_MIN ) & & ( count_direction [ Z_AXIS ] < 0 ) ) & & ! locked_z_motor ) Z_STEP_WRITE ( v ) ; \
if ( ! ( TEST ( old_endstop_bits , Z2_MIN ) & & ( count_direction [ Z_AXIS ] < 0 ) ) & & ! locked_z2_motor ) Z2_STEP_WRITE ( v ) ; \
} \
} else { \
Z_STEP_WRITE ( v ) ; \
Z2_STEP_WRITE ( v ) ; \
}
# else
# define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
# endif
# else
# define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
# define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
# endif
# define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
# define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
" clr r26 \n \t " \
" mul %A1, %B2 \n \t " \
" movw %A0, r0 \n \t " \
" mul %A1, %A2 \n \t " \
" add %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" lsr r0 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" clr r1 \n \t " \
: \
" =&r " ( intRes ) \
: \
" d " ( charIn1 ) , \
" d " ( intIn2 ) \
: \
" r26 " \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
// B0 A0 are bits 24-39 and are the returned value
// C1 B1 A1 is longIn1
// D2 C2 B2 A2 is longIn2
//
# define MultiU24X32toH16(intRes, longIn1, longIn2) \
asm volatile ( \
" clr r26 \n \t " \
" mul %A1, %B2 \n \t " \
" mov r27, r1 \n \t " \
" mul %B1, %C2 \n \t " \
" movw %A0, r0 \n \t " \
" mul %C1, %C2 \n \t " \
" add %B0, r0 \n \t " \
" mul %C1, %B2 \n \t " \
" add %A0, r0 \n \t " \
" adc %B0, r1 \n \t " \
" mul %A1, %C2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %B1, %B2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %C1, %A2 \n \t " \
" add r27, r0 \n \t " \
" adc %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" mul %B1, %A2 \n \t " \
" add r27, r1 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" lsr r27 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" mul %D2, %A1 \n \t " \
" add %A0, r0 \n \t " \
" adc %B0, r1 \n \t " \
" mul %D2, %B1 \n \t " \
" add %B0, r0 \n \t " \
" clr r1 \n \t " \
: \
" =&r " ( intRes ) \
: \
" d " ( longIn1 ) , \
" d " ( longIn2 ) \
: \
" r26 " , " r27 " \
)
// Some useful constants
# define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
# define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void endstops_hit_on_purpose ( ) {
endstop_hit_bits = 0 ;
}
void checkHitEndstops ( ) {
if ( endstop_hit_bits ) {
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_ENDSTOPS_HIT ) ;
if ( endstop_hit_bits & BIT ( X_MIN ) ) {
SERIAL_ECHOPAIR ( " X: " , ( float ) endstops_trigsteps [ X_AXIS ] / axis_steps_per_unit [ X_AXIS ] ) ;
LCD_MESSAGEPGM ( MSG_ENDSTOPS_HIT " X " ) ;
}
if ( endstop_hit_bits & BIT ( Y_MIN ) ) {
SERIAL_ECHOPAIR ( " Y: " , ( float ) endstops_trigsteps [ Y_AXIS ] / axis_steps_per_unit [ Y_AXIS ] ) ;
LCD_MESSAGEPGM ( MSG_ENDSTOPS_HIT " Y " ) ;
}
if ( endstop_hit_bits & BIT ( Z_MIN ) ) {
SERIAL_ECHOPAIR ( " Z: " , ( float ) endstops_trigsteps [ Z_AXIS ] / axis_steps_per_unit [ Z_AXIS ] ) ;
LCD_MESSAGEPGM ( MSG_ENDSTOPS_HIT " Z " ) ;
}
# ifdef Z_PROBE_ENDSTOP
if ( endstop_hit_bits & BIT ( Z_PROBE ) ) {
SERIAL_ECHOPAIR ( " Z_PROBE: " , ( float ) endstops_trigsteps [ Z_AXIS ] / axis_steps_per_unit [ Z_AXIS ] ) ;
LCD_MESSAGEPGM ( MSG_ENDSTOPS_HIT " ZP " ) ;
}
# endif
SERIAL_EOL ;
endstops_hit_on_purpose ( ) ;
# if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if ( abort_on_endstop_hit ) {
card . sdprinting = false ;
card . closefile ( ) ;
quickStop ( ) ;
disable_all_heaters ( ) ; // switch off all heaters.
}
# endif
}
}
void enable_endstops ( bool check ) { check_endstops = check ; }
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
void st_wake_up ( ) {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
}
FORCE_INLINE unsigned short calc_timer ( unsigned short step_rate ) {
unsigned short timer ;
if ( step_rate > MAX_STEP_FREQUENCY ) step_rate = MAX_STEP_FREQUENCY ;
if ( step_rate > 20000 ) { // If steprate > 20kHz >> step 4 times
step_rate = ( step_rate > > 2 ) & 0x3fff ;
step_loops = 4 ;
}
else if ( step_rate > 10000 ) { // If steprate > 10kHz >> step 2 times
step_rate = ( step_rate > > 1 ) & 0x7fff ;
step_loops = 2 ;
}
else {
step_loops = 1 ;
}
if ( step_rate < ( F_CPU / 500000 ) ) step_rate = ( F_CPU / 500000 ) ;
step_rate - = ( F_CPU / 500000 ) ; // Correct for minimal speed
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
unsigned short table_address = ( unsigned short ) & speed_lookuptable_fast [ ( unsigned char ) ( step_rate > > 8 ) ] [ 0 ] ;
unsigned char tmp_step_rate = ( step_rate & 0x00ff ) ;
unsigned short gain = ( unsigned short ) pgm_read_word_near ( table_address + 2 ) ;
MultiU16X8toH16 ( timer , tmp_step_rate , gain ) ;
timer = ( unsigned short ) pgm_read_word_near ( table_address ) - timer ;
}
else { // lower step rates
unsigned short table_address = ( unsigned short ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
table_address + = ( ( step_rate ) > > 1 ) & 0xfffc ;
timer = ( unsigned short ) pgm_read_word_near ( table_address ) ;
timer - = ( ( ( unsigned short ) pgm_read_word_near ( table_address + 2 ) * ( unsigned char ) ( step_rate & 0x0007 ) ) > > 3 ) ;
}
if ( timer < 100 ) { timer = 100 ; MYSERIAL . print ( MSG_STEPPER_TOO_HIGH ) ; MYSERIAL . println ( step_rate ) ; } //(20kHz this should never happen)
return timer ;
}
// set the stepper direction of each axis
void set_stepper_direction ( ) {
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if ( TEST ( out_bits , X_AXIS ) ) {
X_APPLY_DIR ( INVERT_X_DIR , 0 ) ;
count_direction [ X_AXIS ] = - 1 ;
}
else {
X_APPLY_DIR ( ! INVERT_X_DIR , 0 ) ;
count_direction [ X_AXIS ] = 1 ;
}
if ( TEST ( out_bits , Y_AXIS ) ) {
Y_APPLY_DIR ( INVERT_Y_DIR , 0 ) ;
count_direction [ Y_AXIS ] = - 1 ;
}
else {
Y_APPLY_DIR ( ! INVERT_Y_DIR , 0 ) ;
count_direction [ Y_AXIS ] = 1 ;
}
if ( TEST ( out_bits , Z_AXIS ) ) {
Z_APPLY_DIR ( INVERT_Z_DIR , 0 ) ;
count_direction [ Z_AXIS ] = - 1 ;
}
else {
Z_APPLY_DIR ( ! INVERT_Z_DIR , 0 ) ;
count_direction [ Z_AXIS ] = 1 ;
}
# ifndef ADVANCE
if ( TEST ( out_bits , E_AXIS ) ) {
REV_E_DIR ( ) ;
count_direction [ E_AXIS ] = - 1 ;
}
else {
NORM_E_DIR ( ) ;
count_direction [ E_AXIS ] = 1 ;
}
# endif //!ADVANCE
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset ( ) {
if ( current_block - > direction_bits ! = out_bits ) {
out_bits = current_block - > direction_bits ;
set_stepper_direction ( ) ;
}
# ifdef ADVANCE
advance = current_block - > initial_advance ;
final_advance = current_block - > final_advance ;
// Do E steps + advance steps
e_steps [ current_block - > active_extruder ] + = ( ( advance > > 8 ) - old_advance ) ;
old_advance = advance > > 8 ;
# endif
deceleration_time = 0 ;
// step_rate to timer interval
OCR1A_nominal = calc_timer ( current_block - > nominal_rate ) ;
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops ;
acc_step_rate = current_block - > initial_rate ;
acceleration_time = calc_timer ( acc_step_rate ) ;
OCR1A = acceleration_time ;
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR ( TIMER1_COMPA_vect ) {
if ( cleaning_buffer_counter )
{
current_block = NULL ;
plan_discard_current_block ( ) ;
# ifdef SD_FINISHED_RELEASECOMMAND
if ( ( cleaning_buffer_counter = = 1 ) & & ( SD_FINISHED_STEPPERRELEASE ) ) enqueuecommands_P ( PSTR ( SD_FINISHED_RELEASECOMMAND ) ) ;
# endif
cleaning_buffer_counter - - ;
OCR1A = 200 ;
return ;
}
// If there is no current block, attempt to pop one from the buffer
if ( ! current_block ) {
// Anything in the buffer?
current_block = plan_get_current_block ( ) ;
if ( current_block ) {
current_block - > busy = true ;
trapezoid_generator_reset ( ) ;
counter_x = - ( current_block - > step_event_count > > 1 ) ;
counter_y = counter_z = counter_e = counter_x ;
step_events_completed = 0 ;
# ifdef Z_LATE_ENABLE
if ( current_block - > steps [ Z_AXIS ] > 0 ) {
enable_z ( ) ;
OCR1A = 2000 ; //1ms wait
return ;
}
# endif
// #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0;
// #endif
}
else {
OCR1A = 2000 ; // 1kHz.
}
}
if ( current_block ! = NULL ) {
// Check endstops
if ( check_endstops ) {
# ifdef Z_DUAL_ENDSTOPS
uint16_t
# else
byte
# endif
current_endstop_bits ;
# define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
# define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
# define _AXIS(AXIS) AXIS ##_AXIS
# define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
# define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
# define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
# define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
// TEST_ENDSTOP: test the old and the current status of an endstop
# define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
# define UPDATE_ENDSTOP(AXIS,MINMAX) \
SET_ENDSTOP_BIT ( AXIS , MINMAX ) ; \
if ( TEST_ENDSTOP ( _ENDSTOP ( AXIS , MINMAX ) ) & & ( current_block - > steps [ _AXIS ( AXIS ) ] > 0 ) ) { \
endstops_trigsteps [ _AXIS ( AXIS ) ] = count_position [ _AXIS ( AXIS ) ] ; \
_ENDSTOP_HIT ( AXIS ) ; \
step_events_completed = current_block - > step_event_count ; \
}
# ifdef COREXY
// Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis
if ( ( current_block - > steps [ A_AXIS ] ! = current_block - > steps [ B_AXIS ] ) | | ( TEST ( out_bits , A_AXIS ) = = TEST ( out_bits , B_AXIS ) ) ) {
if ( TEST ( out_bits , X_HEAD ) )
# else
if ( TEST ( out_bits , X_AXIS ) ) // stepping along -X axis (regular Cartesian bot)
# endif
{ // -direction
# ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ( ( current_block - > active_extruder = = 0 & & X_HOME_DIR = = - 1 ) | | ( current_block - > active_extruder ! = 0 & & X2_HOME_DIR = = - 1 ) )
# endif
{
# if HAS_X_MIN
UPDATE_ENDSTOP ( X , MIN ) ;
# endif
}
}
else { // +direction
# ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ( ( current_block - > active_extruder = = 0 & & X_HOME_DIR = = 1 ) | | ( current_block - > active_extruder ! = 0 & & X2_HOME_DIR = = 1 ) )
# endif
{
# if HAS_X_MAX
UPDATE_ENDSTOP ( X , MAX ) ;
# endif
}
}
# ifdef COREXY
}
// Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis
if ( ( current_block - > steps [ A_AXIS ] ! = current_block - > steps [ B_AXIS ] ) | | ( TEST ( out_bits , A_AXIS ) ! = TEST ( out_bits , B_AXIS ) ) ) {
if ( TEST ( out_bits , Y_HEAD ) )
# else
if ( TEST ( out_bits , Y_AXIS ) ) // -direction
# endif
{ // -direction
# if HAS_Y_MIN
UPDATE_ENDSTOP ( Y , MIN ) ;
# endif
}
else { // +direction
# if HAS_Y_MAX
UPDATE_ENDSTOP ( Y , MAX ) ;
# endif
}
# ifdef COREXY
}
# endif
if ( TEST ( out_bits , Z_AXIS ) ) { // z -direction
# if HAS_Z_MIN
# ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT ( Z , MIN ) ;
# if HAS_Z2_MIN
SET_ENDSTOP_BIT ( Z2 , MIN ) ;
# else
COPY_BIT ( current_endstop_bits , Z_MIN , Z2_MIN )
# endif
byte z_test = TEST_ENDSTOP ( Z_MIN ) < < 0 + TEST_ENDSTOP ( Z2_MIN ) < < 1 ; // bit 0 for Z, bit 1 for Z2
if ( z_test & & current_block - > steps [ Z_AXIS ] > 0 ) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps [ Z_AXIS ] = count_position [ Z_AXIS ] ;
endstop_hit_bits | = BIT ( Z_MIN ) ;
if ( ! performing_homing | | ( z_test = = 0x3 ) ) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block - > step_event_count ;
}
# else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP ( Z , MIN ) ;
# endif // !Z_DUAL_ENDSTOPS
# endif // Z_MIN_PIN
# ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP ( Z , PROBE ) ;
if ( TEST_ENDSTOP ( Z_PROBE ) )
{
endstops_trigsteps [ Z_AXIS ] = count_position [ Z_AXIS ] ;
endstop_hit_bits | = BIT ( Z_PROBE ) ;
}
# endif
}
else { // z +direction
# if HAS_Z_MAX
# ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT ( Z , MAX ) ;
# if HAS_Z2_MAX
SET_ENDSTOP_BIT ( Z2 , MAX ) ;
# else
COPY_BIT ( current_endstop_bits , Z_MAX , Z2_MAX )
# endif
byte z_test = TEST_ENDSTOP ( Z_MAX ) < < 0 + TEST_ENDSTOP ( Z2_MAX ) < < 1 ; // bit 0 for Z, bit 1 for Z2
if ( z_test & & current_block - > steps [ Z_AXIS ] > 0 ) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps [ Z_AXIS ] = count_position [ Z_AXIS ] ;
endstop_hit_bits | = BIT ( Z_MIN ) ;
if ( ! performing_homing | | ( z_test = = 0x3 ) ) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block - > step_event_count ;
}
# else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP ( Z , MAX ) ;
# endif // !Z_DUAL_ENDSTOPS
# endif // Z_MAX_PIN
# ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP ( Z , PROBE ) ;
if ( TEST_ENDSTOP ( Z_PROBE ) )
{
endstops_trigsteps [ Z_AXIS ] = count_position [ Z_AXIS ] ;
endstop_hit_bits | = BIT ( Z_PROBE ) ;
}
# endif
}
old_endstop_bits = current_endstop_bits ;
}
// Take multiple steps per interrupt (For high speed moves)
for ( int8_t i = 0 ; i < step_loops ; i + + ) {
# ifndef AT90USB
MSerial . checkRx ( ) ; // Check for serial chars.
# endif
# ifdef ADVANCE
counter_e + = current_block - > steps [ E_AXIS ] ;
if ( counter_e > 0 ) {
counter_e - = current_block - > step_event_count ;
e_steps [ current_block - > active_extruder ] + = TEST ( out_bits , E_AXIS ) ? - 1 : 1 ;
}
# endif //ADVANCE
# define _COUNTER(axis) counter_## axis
# define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
# define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
# define STEP_ADD(axis, AXIS) \
_COUNTER ( axis ) + = current_block - > steps [ _AXIS ( AXIS ) ] ; \
if ( _COUNTER ( axis ) > 0 ) { _APPLY_STEP ( AXIS ) ( ! _INVERT_STEP_PIN ( AXIS ) , 0 ) ; }
STEP_ADD ( x , X ) ;
STEP_ADD ( y , Y ) ;
STEP_ADD ( z , Z ) ;
# ifndef ADVANCE
STEP_ADD ( e , E ) ;
# endif
# define STEP_IF_COUNTER(axis, AXIS) \
if ( _COUNTER ( axis ) > 0 ) { \
_COUNTER ( axis ) - = current_block - > step_event_count ; \
count_position [ _AXIS ( AXIS ) ] + = count_direction [ _AXIS ( AXIS ) ] ; \
_APPLY_STEP ( AXIS ) ( _INVERT_STEP_PIN ( AXIS ) , 0 ) ; \
}
STEP_IF_COUNTER ( x , X ) ;
STEP_IF_COUNTER ( y , Y ) ;
STEP_IF_COUNTER ( z , Z ) ;
# ifndef ADVANCE
STEP_IF_COUNTER ( e , E ) ;
# endif
step_events_completed + + ;
if ( step_events_completed > = current_block - > step_event_count ) break ;
}
// Calculate new timer value
unsigned short timer ;
unsigned short step_rate ;
if ( step_events_completed < = ( unsigned long ) current_block - > accelerate_until ) {
MultiU24X32toH16 ( acc_step_rate , acceleration_time , current_block - > acceleration_rate ) ;
acc_step_rate + = current_block - > initial_rate ;
// upper limit
if ( acc_step_rate > current_block - > nominal_rate )
acc_step_rate = current_block - > nominal_rate ;
// step_rate to timer interval
timer = calc_timer ( acc_step_rate ) ;
OCR1A = timer ;
acceleration_time + = timer ;
# ifdef ADVANCE
for ( int8_t i = 0 ; i < step_loops ; i + + ) {
advance + = advance_rate ;
}
//if (advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps [ current_block - > active_extruder ] + = ( ( advance > > 8 ) - old_advance ) ;
old_advance = advance > > 8 ;
# endif
}
else if ( step_events_completed > ( unsigned long ) current_block - > decelerate_after ) {
MultiU24X32toH16 ( step_rate , deceleration_time , current_block - > acceleration_rate ) ;
if ( step_rate > acc_step_rate ) { // Check step_rate stays positive
step_rate = current_block - > final_rate ;
}
else {
step_rate = acc_step_rate - step_rate ; // Decelerate from aceleration end point.
}
// lower limit
if ( step_rate < current_block - > final_rate )
step_rate = current_block - > final_rate ;
// step_rate to timer interval
timer = calc_timer ( step_rate ) ;
OCR1A = timer ;
deceleration_time + = timer ;
# ifdef ADVANCE
for ( int8_t i = 0 ; i < step_loops ; i + + ) {
advance - = advance_rate ;
}
if ( advance < final_advance ) advance = final_advance ;
// Do E steps + advance steps
e_steps [ current_block - > active_extruder ] + = ( ( advance > > 8 ) - old_advance ) ;
old_advance = advance > > 8 ;
# endif //ADVANCE
}
else {
OCR1A = OCR1A_nominal ;
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal ;
}
// If current block is finished, reset pointer
if ( step_events_completed > = current_block - > step_event_count ) {
current_block = NULL ;
plan_discard_current_block ( ) ;
}
}
}
# ifdef ADVANCE
unsigned char old_OCR0A ;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR ( TIMER0_COMPA_vect )
{
old_OCR0A + = 52 ; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A ;
// Set E direction (Depends on E direction + advance)
for ( unsigned char i = 0 ; i < 4 ; i + + ) {
if ( e_steps [ 0 ] ! = 0 ) {
E0_STEP_WRITE ( INVERT_E_STEP_PIN ) ;
if ( e_steps [ 0 ] < 0 ) {
E0_DIR_WRITE ( INVERT_E0_DIR ) ;
e_steps [ 0 ] + + ;
E0_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
else if ( e_steps [ 0 ] > 0 ) {
E0_DIR_WRITE ( ! INVERT_E0_DIR ) ;
e_steps [ 0 ] - - ;
E0_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
}
# if EXTRUDERS > 1
if ( e_steps [ 1 ] ! = 0 ) {
E1_STEP_WRITE ( INVERT_E_STEP_PIN ) ;
if ( e_steps [ 1 ] < 0 ) {
E1_DIR_WRITE ( INVERT_E1_DIR ) ;
e_steps [ 1 ] + + ;
E1_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
else if ( e_steps [ 1 ] > 0 ) {
E1_DIR_WRITE ( ! INVERT_E1_DIR ) ;
e_steps [ 1 ] - - ;
E1_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
}
# endif
# if EXTRUDERS > 2
if ( e_steps [ 2 ] ! = 0 ) {
E2_STEP_WRITE ( INVERT_E_STEP_PIN ) ;
if ( e_steps [ 2 ] < 0 ) {
E2_DIR_WRITE ( INVERT_E2_DIR ) ;
e_steps [ 2 ] + + ;
E2_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
else if ( e_steps [ 2 ] > 0 ) {
E2_DIR_WRITE ( ! INVERT_E2_DIR ) ;
e_steps [ 2 ] - - ;
E2_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
}
# endif
# if EXTRUDERS > 3
if ( e_steps [ 3 ] ! = 0 ) {
E3_STEP_WRITE ( INVERT_E_STEP_PIN ) ;
if ( e_steps [ 3 ] < 0 ) {
E3_DIR_WRITE ( INVERT_E3_DIR ) ;
e_steps [ 3 ] + + ;
E3_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
else if ( e_steps [ 3 ] > 0 ) {
E3_DIR_WRITE ( ! INVERT_E3_DIR ) ;
e_steps [ 3 ] - - ;
E3_STEP_WRITE ( ! INVERT_E_STEP_PIN ) ;
}
}
# endif
}
}
# endif // ADVANCE
void st_init ( ) {
digipot_init ( ) ; //Initialize Digipot Motor Current
microstep_init ( ) ; //Initialize Microstepping Pins
// initialise TMC Steppers
# ifdef HAVE_TMCDRIVER
tmc_init ( ) ;
# endif
// initialise L6470 Steppers
# ifdef HAVE_L6470DRIVER
L6470_init ( ) ;
# endif
// Initialize Dir Pins
# if HAS_X_DIR
X_DIR_INIT ;
# endif
# if HAS_X2_DIR
X2_DIR_INIT ;
# endif
# if HAS_Y_DIR
Y_DIR_INIT ;
# if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
Y2_DIR_INIT ;
# endif
# endif
# if HAS_Z_DIR
Z_DIR_INIT ;
# if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
Z2_DIR_INIT ;
# endif
# endif
# if HAS_E0_DIR
E0_DIR_INIT ;
# endif
# if HAS_E1_DIR
E1_DIR_INIT ;
# endif
# if HAS_E2_DIR
E2_DIR_INIT ;
# endif
# if HAS_E3_DIR
E3_DIR_INIT ;
# endif
//Initialize Enable Pins - steppers default to disabled.
# if HAS_X_ENABLE
X_ENABLE_INIT ;
if ( ! X_ENABLE_ON ) X_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_X2_ENABLE
X2_ENABLE_INIT ;
if ( ! X_ENABLE_ON ) X2_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_Y_ENABLE
Y_ENABLE_INIT ;
if ( ! Y_ENABLE_ON ) Y_ENABLE_WRITE ( HIGH ) ;
# if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
Y2_ENABLE_INIT ;
if ( ! Y_ENABLE_ON ) Y2_ENABLE_WRITE ( HIGH ) ;
# endif
# endif
# if HAS_Z_ENABLE
Z_ENABLE_INIT ;
if ( ! Z_ENABLE_ON ) Z_ENABLE_WRITE ( HIGH ) ;
# if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
Z2_ENABLE_INIT ;
if ( ! Z_ENABLE_ON ) Z2_ENABLE_WRITE ( HIGH ) ;
# endif
# endif
# if HAS_E0_ENABLE
E0_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E0_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E1_ENABLE
E1_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E1_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E2_ENABLE
E2_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E2_ENABLE_WRITE ( HIGH ) ;
# endif
# if HAS_E3_ENABLE
E3_ENABLE_INIT ;
if ( ! E_ENABLE_ON ) E3_ENABLE_WRITE ( HIGH ) ;
# endif
//endstops and pullups
# if HAS_X_MIN
SET_INPUT ( X_MIN_PIN ) ;
# ifdef ENDSTOPPULLUP_XMIN
WRITE ( X_MIN_PIN , HIGH ) ;
# endif
# endif
# if HAS_Y_MIN
SET_INPUT ( Y_MIN_PIN ) ;
# ifdef ENDSTOPPULLUP_YMIN
WRITE ( Y_MIN_PIN , HIGH ) ;
# endif
# endif
# if HAS_Z_MIN
SET_INPUT ( Z_MIN_PIN ) ;
# ifdef ENDSTOPPULLUP_ZMIN
WRITE ( Z_MIN_PIN , HIGH ) ;
# endif
# endif
# if HAS_X_MAX
SET_INPUT ( X_MAX_PIN ) ;
# ifdef ENDSTOPPULLUP_XMAX
WRITE ( X_MAX_PIN , HIGH ) ;
# endif
# endif
# if HAS_Y_MAX
SET_INPUT ( Y_MAX_PIN ) ;
# ifdef ENDSTOPPULLUP_YMAX
WRITE ( Y_MAX_PIN , HIGH ) ;
# endif
# endif
# if HAS_Z_MAX
SET_INPUT ( Z_MAX_PIN ) ;
# ifdef ENDSTOPPULLUP_ZMAX
WRITE ( Z_MAX_PIN , HIGH ) ;
# endif
# endif
# if HAS_Z2_MAX
SET_INPUT ( Z2_MAX_PIN ) ;
# ifdef ENDSTOPPULLUP_ZMAX
WRITE ( Z2_MAX_PIN , HIGH ) ;
# endif
# endif
# if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT ( Z_PROBE_PIN ) ;
# ifdef ENDSTOPPULLUP_ZPROBE
WRITE ( Z_PROBE_PIN , HIGH ) ;
# endif
# endif
# define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
# define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
# define _DISABLE(axis) disable_## axis()
# define AXIS_INIT(axis, AXIS, PIN) \
_STEP_INIT ( AXIS ) ; \
_WRITE_STEP ( AXIS , _INVERT_STEP_PIN ( PIN ) ) ; \
_DISABLE ( axis )
# define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
// Initialize Step Pins
# if HAS_X_STEP
AXIS_INIT ( x , X , X ) ;
# endif
# if HAS_X2_STEP
AXIS_INIT ( x , X2 , X ) ;
# endif
# if HAS_Y_STEP
# if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
Y2_STEP_INIT ;
Y2_STEP_WRITE ( INVERT_Y_STEP_PIN ) ;
# endif
AXIS_INIT ( y , Y , Y ) ;
# endif
# if HAS_Z_STEP
# if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
Z2_STEP_INIT ;
Z2_STEP_WRITE ( INVERT_Z_STEP_PIN ) ;
# endif
AXIS_INIT ( z , Z , Z ) ;
# endif
# if HAS_E0_STEP
E_AXIS_INIT ( 0 ) ;
# endif
# if HAS_E1_STEP
E_AXIS_INIT ( 1 ) ;
# endif
# if HAS_E2_STEP
E_AXIS_INIT ( 2 ) ;
# endif
# if HAS_E3_STEP
E_AXIS_INIT ( 3 ) ;
# endif
// waveform generation = 0100 = CTC
TCCR1B & = ~ BIT ( WGM13 ) ;
TCCR1B | = BIT ( WGM12 ) ;
TCCR1A & = ~ BIT ( WGM11 ) ;
TCCR1A & = ~ BIT ( WGM10 ) ;
// output mode = 00 (disconnected)
TCCR1A & = ~ ( 3 < < COM1A0 ) ;
TCCR1A & = ~ ( 3 < < COM1B0 ) ;
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = ( TCCR1B & ~ ( 0x07 < < CS10 ) ) | ( 2 < < CS10 ) ;
OCR1A = 0x4000 ;
TCNT1 = 0 ;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# ifdef ADVANCE
# if defined(TCCR0A) && defined(WGM01)
TCCR0A & = ~ BIT ( WGM01 ) ;
TCCR0A & = ~ BIT ( WGM00 ) ;
# endif
e_steps [ 0 ] = e_steps [ 1 ] = e_steps [ 2 ] = e_steps [ 3 ] = 0 ;
TIMSK0 | = BIT ( OCIE0A ) ;
# endif //ADVANCE
enable_endstops ( true ) ; // Start with endstops active. After homing they can be disabled
sei ( ) ;
set_stepper_direction ( ) ; // Init directions to out_bits = 0
}
// Block until all buffered steps are executed
void st_synchronize ( ) {
while ( blocks_queued ( ) ) {
manage_heater ( ) ;
manage_inactivity ( ) ;
lcd_update ( ) ;
}
}
void st_set_position ( const long & x , const long & y , const long & z , const long & e ) {
CRITICAL_SECTION_START ;
count_position [ X_AXIS ] = x ;
count_position [ Y_AXIS ] = y ;
count_position [ Z_AXIS ] = z ;
count_position [ E_AXIS ] = e ;
CRITICAL_SECTION_END ;
}
void st_set_e_position ( const long & e ) {
CRITICAL_SECTION_START ;
count_position [ E_AXIS ] = e ;
CRITICAL_SECTION_END ;
}
long st_get_position ( uint8_t axis ) {
long count_pos ;
CRITICAL_SECTION_START ;
count_pos = count_position [ axis ] ;
CRITICAL_SECTION_END ;
return count_pos ;
}
# ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm ( AxisEnum axis ) {
return st_get_position ( axis ) / axis_steps_per_unit [ axis ] ;
}
# endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers ( ) {
st_synchronize ( ) ;
disable_all_steppers ( ) ;
}
void quickStop ( ) {
cleaning_buffer_counter = 5000 ;
DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
while ( blocks_queued ( ) ) plan_discard_current_block ( ) ;
current_block = NULL ;
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# ifdef BABYSTEPPING
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void babystep ( const uint8_t axis , const bool direction ) {
# define _ENABLE(axis) enable_## axis()
# define _READ_DIR(AXIS) AXIS ##_DIR_READ
# define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
# define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
# define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
_ENABLE ( axis ) ; \
uint8_t old_pin = _READ_DIR ( AXIS ) ; \
_APPLY_DIR ( AXIS , _INVERT_DIR ( AXIS ) ^ direction ^ INVERT ) ; \
_APPLY_STEP ( AXIS ) ( ! _INVERT_STEP_PIN ( AXIS ) , true ) ; \
delayMicroseconds ( 2 ) ; \
_APPLY_STEP ( AXIS ) ( _INVERT_STEP_PIN ( AXIS ) , true ) ; \
_APPLY_DIR ( AXIS , old_pin ) ; \
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
switch ( axis ) {
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
case X_AXIS :
BABYSTEP_AXIS ( x , X , false ) ;
break ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
case Y_AXIS :
BABYSTEP_AXIS ( y , Y , false ) ;
break ;
case Z_AXIS : {
# ifndef DELTA
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
BABYSTEP_AXIS ( z , Z , BABYSTEP_INVERT_Z ) ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# else // DELTA
bool z_direction = direction ^ BABYSTEP_INVERT_Z ;
enable_x ( ) ;
enable_y ( ) ;
enable_z ( ) ;
uint8_t old_x_dir_pin = X_DIR_READ ,
old_y_dir_pin = Y_DIR_READ ,
old_z_dir_pin = Z_DIR_READ ;
//setup new step
X_DIR_WRITE ( INVERT_X_DIR ^ z_direction ) ;
Y_DIR_WRITE ( INVERT_Y_DIR ^ z_direction ) ;
Z_DIR_WRITE ( INVERT_Z_DIR ^ z_direction ) ;
//perform step
X_STEP_WRITE ( ! INVERT_X_STEP_PIN ) ;
Y_STEP_WRITE ( ! INVERT_Y_STEP_PIN ) ;
Z_STEP_WRITE ( ! INVERT_Z_STEP_PIN ) ;
delayMicroseconds ( 2 ) ;
X_STEP_WRITE ( INVERT_X_STEP_PIN ) ;
Y_STEP_WRITE ( INVERT_Y_STEP_PIN ) ;
Z_STEP_WRITE ( INVERT_Z_STEP_PIN ) ;
//get old pin state back.
X_DIR_WRITE ( old_x_dir_pin ) ;
Y_DIR_WRITE ( old_y_dir_pin ) ;
Z_DIR_WRITE ( old_z_dir_pin ) ;
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
} break ;
default : break ;
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
}
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
# endif //BABYSTEPPING
// From Arduino DigitalPotControl example
void digitalPotWrite ( int address , int value ) {
# if HAS_DIGIPOTSS
digitalWrite ( DIGIPOTSS_PIN , LOW ) ; // take the SS pin low to select the chip
SPI . transfer ( address ) ; // send in the address and value via SPI:
SPI . transfer ( value ) ;
digitalWrite ( DIGIPOTSS_PIN , HIGH ) ; // take the SS pin high to de-select the chip:
//delay(10);
# endif
}
// Initialize Digipot Motor Current
void digipot_init ( ) {
# if HAS_DIGIPOTSS
const uint8_t digipot_motor_current [ ] = DIGIPOT_MOTOR_CURRENT ;
SPI . begin ( ) ;
pinMode ( DIGIPOTSS_PIN , OUTPUT ) ;
for ( int i = 0 ; i < = 4 ; i + + ) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current ( i , digipot_motor_current [ i ] ) ;
}
# endif
# ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode ( MOTOR_CURRENT_PWM_XY_PIN , OUTPUT ) ;
pinMode ( MOTOR_CURRENT_PWM_Z_PIN , OUTPUT ) ;
pinMode ( MOTOR_CURRENT_PWM_E_PIN , OUTPUT ) ;
digipot_current ( 0 , motor_current_setting [ 0 ] ) ;
digipot_current ( 1 , motor_current_setting [ 1 ] ) ;
digipot_current ( 2 , motor_current_setting [ 2 ] ) ;
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = ( TCCR5B & ~ ( _BV ( CS50 ) | _BV ( CS51 ) | _BV ( CS52 ) ) ) | _BV ( CS50 ) ;
# endif
}
void digipot_current ( uint8_t driver , int current ) {
# if HAS_DIGIPOTSS
const uint8_t digipot_ch [ ] = DIGIPOT_CHANNELS ;
digitalPotWrite ( digipot_ch [ driver ] , current ) ;
# endif
# ifdef MOTOR_CURRENT_PWM_XY_PIN
switch ( driver ) {
case 0 : analogWrite ( MOTOR_CURRENT_PWM_XY_PIN , 255L * current / MOTOR_CURRENT_PWM_RANGE ) ; break ;
case 1 : analogWrite ( MOTOR_CURRENT_PWM_Z_PIN , 255L * current / MOTOR_CURRENT_PWM_RANGE ) ; break ;
case 2 : analogWrite ( MOTOR_CURRENT_PWM_E_PIN , 255L * current / MOTOR_CURRENT_PWM_RANGE ) ; break ;
}
# endif
}
void microstep_init ( ) {
# if HAS_MICROSTEPS_E1
pinMode ( E1_MS1_PIN , OUTPUT ) ;
pinMode ( E1_MS2_PIN , OUTPUT ) ;
# endif
# if HAS_MICROSTEPS
pinMode ( X_MS1_PIN , OUTPUT ) ;
pinMode ( X_MS2_PIN , OUTPUT ) ;
pinMode ( Y_MS1_PIN , OUTPUT ) ;
pinMode ( Y_MS2_PIN , OUTPUT ) ;
pinMode ( Z_MS1_PIN , OUTPUT ) ;
pinMode ( Z_MS2_PIN , OUTPUT ) ;
pinMode ( E0_MS1_PIN , OUTPUT ) ;
pinMode ( E0_MS2_PIN , OUTPUT ) ;
const uint8_t microstep_modes [ ] = MICROSTEP_MODES ;
for ( uint16_t i = 0 ; i < sizeof ( microstep_modes ) / sizeof ( microstep_modes [ 0 ] ) ; i + + )
microstep_mode ( i , microstep_modes [ i ] ) ;
# endif
}
void microstep_ms ( uint8_t driver , int8_t ms1 , int8_t ms2 ) {
if ( ms1 > = 0 ) switch ( driver ) {
case 0 : digitalWrite ( X_MS1_PIN , ms1 ) ; break ;
case 1 : digitalWrite ( Y_MS1_PIN , ms1 ) ; break ;
case 2 : digitalWrite ( Z_MS1_PIN , ms1 ) ; break ;
case 3 : digitalWrite ( E0_MS1_PIN , ms1 ) ; break ;
# if HAS_MICROSTEPS_E1
case 4 : digitalWrite ( E1_MS1_PIN , ms1 ) ; break ;
# endif
}
if ( ms2 > = 0 ) switch ( driver ) {
case 0 : digitalWrite ( X_MS2_PIN , ms2 ) ; break ;
case 1 : digitalWrite ( Y_MS2_PIN , ms2 ) ; break ;
case 2 : digitalWrite ( Z_MS2_PIN , ms2 ) ; break ;
case 3 : digitalWrite ( E0_MS2_PIN , ms2 ) ; break ;
# if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
case 4 : digitalWrite ( E1_MS2_PIN , ms2 ) ; break ;
# endif
}
}
void microstep_mode ( uint8_t driver , uint8_t stepping_mode ) {
switch ( stepping_mode ) {
case 1 : microstep_ms ( driver , MICROSTEP1 ) ; break ;
case 2 : microstep_ms ( driver , MICROSTEP2 ) ; break ;
case 4 : microstep_ms ( driver , MICROSTEP4 ) ; break ;
case 8 : microstep_ms ( driver , MICROSTEP8 ) ; break ;
case 16 : microstep_ms ( driver , MICROSTEP16 ) ; break ;
}
}
void microstep_readings ( ) {
SERIAL_PROTOCOLPGM ( " MS1,MS2 Pins \n " ) ;
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL ( digitalRead ( X_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( digitalRead ( X_MS2_PIN ) ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( digitalRead ( Y_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( digitalRead ( Y_MS2_PIN ) ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( digitalRead ( Z_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( digitalRead ( Z_MS2_PIN ) ) ;
SERIAL_PROTOCOLPGM ( " E0: " ) ;
SERIAL_PROTOCOL ( digitalRead ( E0_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( digitalRead ( E0_MS2_PIN ) ) ;
# if HAS_MICROSTEPS_E1
SERIAL_PROTOCOLPGM ( " E1: " ) ;
SERIAL_PROTOCOL ( digitalRead ( E1_MS1_PIN ) ) ;
SERIAL_PROTOCOLLN ( digitalRead ( E1_MS2_PIN ) ) ;
# endif
}
# ifdef Z_DUAL_ENDSTOPS
void In_Homing_Process ( bool state ) { performing_homing = state ; }
void Lock_z_motor ( bool state ) { locked_z_motor = state ; }
void Lock_z2_motor ( bool state ) { locked_z2_motor = state ; }
# endif