|  |  |  | /**
 | 
					
						
							|  |  |  |  * Marlin 3D Printer Firmware | 
					
						
							|  |  |  |  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Based on Sprinter and grbl. | 
					
						
							|  |  |  |  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |  * it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |  * the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |  * (at your option) any later version. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This program is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |  * GNU General Public License for more details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * stepper.cpp - A singleton object to execute motion plans using stepper motors | 
					
						
							|  |  |  |  * Marlin Firmware | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Derived from Grbl | 
					
						
							|  |  |  |  * Copyright (c) 2009-2011 Simen Svale Skogsrud | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Grbl is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |  * it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |  * the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |  * (at your option) any later version. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Grbl is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |  * GNU General Public License for more details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |  * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | 
					
						
							|  |  |  |    and Philipp Tiefenbacher. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "Marlin.h"
 | 
					
						
							|  |  |  | #include "stepper.h"
 | 
					
						
							|  |  |  | #include "endstops.h"
 | 
					
						
							|  |  |  | #include "planner.h"
 | 
					
						
							|  |  |  | #include "temperature.h"
 | 
					
						
							|  |  |  | #include "ultralcd.h"
 | 
					
						
							|  |  |  | #include "language.h"
 | 
					
						
							|  |  |  | #include "cardreader.h"
 | 
					
						
							|  |  |  | #include "speed_lookuptable.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |   #include <SPI.h>
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Stepper stepper; // Singleton
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // public:
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | block_t* Stepper::current_block = NULL;  // A pointer to the block currently being traced
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | 
					
						
							|  |  |  |   bool Stepper::abort_on_endstop_hit = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |   bool Stepper::performing_homing = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // private:
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | unsigned char Stepper::last_direction_bits = 0;        // The next stepping-bits to be output
 | 
					
						
							|  |  |  | unsigned int Stepper::cleaning_buffer_counter = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |   bool Stepper::locked_z_motor = false; | 
					
						
							|  |  |  |   bool Stepper::locked_z2_motor = false; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | long Stepper::counter_X = 0, | 
					
						
							|  |  |  |      Stepper::counter_Y = 0, | 
					
						
							|  |  |  |      Stepper::counter_Z = 0, | 
					
						
							|  |  |  |      Stepper::counter_E = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   constexpr uint16_t ADV_NEVER = 65535; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   uint16_t Stepper::nextMainISR = 0, | 
					
						
							|  |  |  |            Stepper::nextAdvanceISR = ADV_NEVER, | 
					
						
							|  |  |  |            Stepper::eISR_Rate = ADV_NEVER; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     volatile int Stepper::e_steps[E_STEPPERS]; | 
					
						
							|  |  |  |     int Stepper::final_estep_rate, | 
					
						
							|  |  |  |         Stepper::current_estep_rate[E_STEPPERS], | 
					
						
							|  |  |  |         Stepper::current_adv_steps[E_STEPPERS]; | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     long Stepper::e_steps[E_STEPPERS], | 
					
						
							|  |  |  |          Stepper::final_advance = 0, | 
					
						
							|  |  |  |          Stepper::old_advance = 0, | 
					
						
							|  |  |  |          Stepper::advance_rate, | 
					
						
							|  |  |  |          Stepper::advance; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
 | 
					
						
							|  |  |  |    * | 
					
						
							|  |  |  |    * This fix isn't perfect and may lose steps - but better than locking up completely | 
					
						
							|  |  |  |    * in future the planner should slow down if advance stepping rate would be too high | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) { | 
					
						
							|  |  |  |     if (steps) { | 
					
						
							|  |  |  |       const uint16_t rate = (timer * loops) / abs(steps); | 
					
						
							|  |  |  |       //return constrain(rate, 1, ADV_NEVER - 1)
 | 
					
						
							|  |  |  |       return rate ? rate : 1; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return ADV_NEVER; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // ADVANCE || LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | long Stepper::acceleration_time, Stepper::deceleration_time; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long Stepper::count_position[NUM_AXIS] = { 0 }; | 
					
						
							|  |  |  | volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |   long Stepper::counter_m[MIXING_STEPPERS]; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | unsigned short Stepper::acc_step_rate; // needed for deceleration start point
 | 
					
						
							|  |  |  | uint8_t Stepper::step_loops, Stepper::step_loops_nominal; | 
					
						
							|  |  |  | unsigned short Stepper::OCR1A_nominal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long Stepper::endstops_trigsteps[XYZ]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(X_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |   #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
 | 
					
						
							|  |  |  |   #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
 | 
					
						
							|  |  |  | #elif ENABLED(DUAL_X_CARRIAGE)
 | 
					
						
							|  |  |  |   #define X_APPLY_DIR(v,ALWAYS) \
 | 
					
						
							|  |  |  |     if (extruder_duplication_enabled || ALWAYS) { \ | 
					
						
							|  |  |  |       X_DIR_WRITE(v); \ | 
					
						
							|  |  |  |       X2_DIR_WRITE(v); \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #define X_APPLY_STEP(v,ALWAYS) \
 | 
					
						
							|  |  |  |     if (extruder_duplication_enabled || ALWAYS) { \ | 
					
						
							|  |  |  |       X_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       X2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |   #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
 | 
					
						
							|  |  |  |   #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |   #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
 | 
					
						
							|  |  |  |   #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
					
						
							|  |  |  |     #define Z_APPLY_STEP(v,Q) \
 | 
					
						
							|  |  |  |     if (performing_homing) { \ | 
					
						
							|  |  |  |       if (Z_HOME_DIR < 0) { \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       } \ | 
					
						
							|  |  |  |       else { \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |         if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       } \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       Z_STEP_WRITE(v); \ | 
					
						
							|  |  |  |       Z2_STEP_WRITE(v); \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |   #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
 | 
					
						
							|  |  |  |   #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if DISABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |   #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // intRes = longIn1 * longIn2 >> 24
 | 
					
						
							|  |  |  | // uses:
 | 
					
						
							|  |  |  | // r26 to store 0
 | 
					
						
							|  |  |  | // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
 | 
					
						
							|  |  |  | // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
 | 
					
						
							|  |  |  | // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
 | 
					
						
							|  |  |  | // B0 A0 are bits 24-39 and are the returned value
 | 
					
						
							|  |  |  | // C1 B1 A1 is longIn1
 | 
					
						
							|  |  |  | // D2 C2 B2 A2 is longIn2
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | #define MultiU24X32toH16(intRes, longIn1, longIn2) \
 | 
					
						
							|  |  |  |   asm volatile ( \ | 
					
						
							|  |  |  |                  "clr r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %A1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "mov r27, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "movw %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "add %B0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "add %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %A1, %C2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %B2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %C1, %A2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %B1, %A2 \n\t" \ | 
					
						
							|  |  |  |                  "add r27, r1 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "lsr r27 \n\t" \ | 
					
						
							|  |  |  |                  "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  |                  "mul %D2, %A1 \n\t" \ | 
					
						
							|  |  |  |                  "add %A0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "adc %B0, r1 \n\t" \ | 
					
						
							|  |  |  |                  "mul %D2, %B1 \n\t" \ | 
					
						
							|  |  |  |                  "add %B0, r0 \n\t" \ | 
					
						
							|  |  |  |                  "clr r1 \n\t" \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "=&r" (intRes) \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "d" (longIn1), \ | 
					
						
							|  |  |  |                  "d" (longIn2) \ | 
					
						
							|  |  |  |                  : \ | 
					
						
							|  |  |  |                  "r26" , "r27" \ | 
					
						
							|  |  |  |                ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Some useful constants
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
 | 
					
						
							|  |  |  | #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *         __________________________ | 
					
						
							|  |  |  |  *        /|                        |\     _________________         ^ | 
					
						
							|  |  |  |  *       / |                        | \   /|               |\        | | 
					
						
							|  |  |  |  *      /  |                        |  \ / |               | \       s | 
					
						
							|  |  |  |  *     /   |                        |   |  |               |  \      p | 
					
						
							|  |  |  |  *    /    |                        |   |  |               |   \     e | 
					
						
							|  |  |  |  *   +-----+------------------------+---+--+---------------+----+    e | 
					
						
							|  |  |  |  *   |               BLOCK 1            |      BLOCK 2          |    d | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *                           time -----> | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates | 
					
						
							|  |  |  |  *  first block->accelerate_until step_events_completed, then keeps going at constant speed until | 
					
						
							|  |  |  |  *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. | 
					
						
							|  |  |  |  *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::wake_up() { | 
					
						
							|  |  |  |   // TCNT1 = 0;
 | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Set the stepper direction of each axis | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *   COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS | 
					
						
							|  |  |  |  *   COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS | 
					
						
							|  |  |  |  *   COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::set_directions() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define SET_STEP_DIR(AXIS) \
 | 
					
						
							|  |  |  |     if (motor_direction(AXIS ##_AXIS)) { \ | 
					
						
							|  |  |  |       AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \ | 
					
						
							|  |  |  |       count_direction[AXIS ##_AXIS] = -1; \ | 
					
						
							|  |  |  |     } \ | 
					
						
							|  |  |  |     else { \ | 
					
						
							|  |  |  |       AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \ | 
					
						
							|  |  |  |       count_direction[AXIS ##_AXIS] = 1; \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_X_DIR
 | 
					
						
							|  |  |  |     SET_STEP_DIR(X); // A
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Y_DIR
 | 
					
						
							|  |  |  |     SET_STEP_DIR(Y); // B
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Z_DIR
 | 
					
						
							|  |  |  |     SET_STEP_DIR(Z); // C
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     if (motor_direction(E_AXIS)) { | 
					
						
							|  |  |  |       REV_E_DIR(); | 
					
						
							|  |  |  |       count_direction[E_AXIS] = -1; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       NORM_E_DIR(); | 
					
						
							|  |  |  |       count_direction[E_AXIS] = 1; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #endif // !ADVANCE && !LIN_ADVANCE
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | 
					
						
							|  |  |  |   extern volatile uint8_t e_hit; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Stepper Driver Interrupt | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Directly pulses the stepper motors at high frequency. | 
					
						
							|  |  |  |  * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * OCR1A   Frequency | 
					
						
							|  |  |  |  *     1     2 MHz | 
					
						
							|  |  |  |  *    50    40 KHz | 
					
						
							|  |  |  |  *   100    20 KHz - capped max rate | 
					
						
							|  |  |  |  *   200    10 KHz - nominal max rate | 
					
						
							|  |  |  |  *  2000     1 KHz - sleep rate | 
					
						
							|  |  |  |  *  4000   500  Hz - init rate | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | ISR(TIMER1_COMPA_vect) { | 
					
						
							|  |  |  |   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     Stepper::advance_isr_scheduler(); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     Stepper::isr(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::isr() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   uint16_t ocr_val; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define ENDSTOP_NOMINAL_OCR_VAL 3000    // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
 | 
					
						
							|  |  |  |   #define OCR_VAL_TOLERANCE 1000          // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
 | 
					
						
							|  |  |  |     CBI(TIMSK0, OCIE0B); // Temperature ISR
 | 
					
						
							|  |  |  |     DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |     sei(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define _SPLIT(L) (ocr_val = (uint16_t)L)
 | 
					
						
							|  |  |  |   #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | 
					
						
							|  |  |  |     #define SPLIT(L) _SPLIT(L)
 | 
					
						
							|  |  |  |   #else                 // sample endstops in between step pulses
 | 
					
						
							|  |  |  |     static uint32_t step_remaining = 0; | 
					
						
							|  |  |  |     #define SPLIT(L) do { \
 | 
					
						
							|  |  |  |       _SPLIT(L); \ | 
					
						
							|  |  |  |       if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \ | 
					
						
							|  |  |  |         const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \ | 
					
						
							|  |  |  |         ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \ | 
					
						
							|  |  |  |         step_remaining = (uint16_t)L - ocr_val; \ | 
					
						
							|  |  |  |       } \ | 
					
						
							|  |  |  |     }while(0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (step_remaining && ENDSTOPS_ENABLED) {   // Just check endstops - not yet time for a step
 | 
					
						
							|  |  |  |       endstops.update(); | 
					
						
							|  |  |  |       if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) { | 
					
						
							|  |  |  |         step_remaining -= ENDSTOP_NOMINAL_OCR_VAL; | 
					
						
							|  |  |  |         ocr_val = ENDSTOP_NOMINAL_OCR_VAL; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else { | 
					
						
							|  |  |  |         ocr_val = step_remaining; | 
					
						
							|  |  |  |         step_remaining = 0;  //  last one before the ISR that does the step
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       _NEXT_ISR(ocr_val); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       NOLESS(OCR1A, TCNT1 + 16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       _ENABLE_ISRs(); // re-enable ISRs
 | 
					
						
							|  |  |  |       return; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if (cleaning_buffer_counter) { | 
					
						
							|  |  |  |     --cleaning_buffer_counter; | 
					
						
							|  |  |  |     current_block = NULL; | 
					
						
							|  |  |  |     planner.discard_current_block(); | 
					
						
							|  |  |  |     #ifdef SD_FINISHED_RELEASECOMMAND
 | 
					
						
							|  |  |  |       if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     _NEXT_ISR(200); // Run at max speed - 10 KHz
 | 
					
						
							|  |  |  |     _ENABLE_ISRs(); // re-enable ISRs
 | 
					
						
							|  |  |  |     return; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // If there is no current block, attempt to pop one from the buffer
 | 
					
						
							|  |  |  |   if (!current_block) { | 
					
						
							|  |  |  |     // Anything in the buffer?
 | 
					
						
							|  |  |  |     current_block = planner.get_current_block(); | 
					
						
							|  |  |  |     if (current_block) { | 
					
						
							|  |  |  |       trapezoid_generator_reset(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Initialize Bresenham counters to 1/2 the ceiling
 | 
					
						
							|  |  |  |       counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(i) | 
					
						
							|  |  |  |           counter_m[i] = -(current_block->mix_event_count[i] >> 1); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       step_events_completed = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | 
					
						
							|  |  |  |         e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
 | 
					
						
							|  |  |  |                    // No 'change' can be detected.
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(Z_LATE_ENABLE)
 | 
					
						
							|  |  |  |         if (current_block->steps[Z_AXIS] > 0) { | 
					
						
							|  |  |  |           enable_Z(); | 
					
						
							|  |  |  |           _NEXT_ISR(2000); // Run at slow speed - 1 KHz
 | 
					
						
							|  |  |  |           _ENABLE_ISRs(); // re-enable ISRs
 | 
					
						
							|  |  |  |           return; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // #if ENABLED(ADVANCE)
 | 
					
						
							|  |  |  |       //   e_steps[TOOL_E_INDEX] = 0;
 | 
					
						
							|  |  |  |       // #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       _NEXT_ISR(2000); // Run at slow speed - 1 KHz
 | 
					
						
							|  |  |  |       _ENABLE_ISRs(); // re-enable ISRs
 | 
					
						
							|  |  |  |       return; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Update endstops state, if enabled
 | 
					
						
							|  |  |  |   #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | 
					
						
							|  |  |  |     if (e_hit && ENDSTOPS_ENABLED) { | 
					
						
							|  |  |  |       endstops.update(); | 
					
						
							|  |  |  |       e_hit--; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     if (ENDSTOPS_ENABLED) endstops.update(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Take multiple steps per interrupt (For high speed moves)
 | 
					
						
							|  |  |  |   bool all_steps_done = false; | 
					
						
							|  |  |  |   for (uint8_t i = step_loops; i--;) { | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       counter_E += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |       if (counter_E > 0) { | 
					
						
							|  |  |  |         counter_E -= current_block->step_event_count; | 
					
						
							|  |  |  |         #if DISABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |           // Don't step E here for mixing extruder
 | 
					
						
							|  |  |  |           count_position[E_AXIS] += count_direction[E_AXIS]; | 
					
						
							|  |  |  |           motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX]; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         // Step mixing steppers proportionally
 | 
					
						
							|  |  |  |         const bool dir = motor_direction(E_AXIS); | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) { | 
					
						
							|  |  |  |           counter_m[j] += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |           if (counter_m[j] > 0) { | 
					
						
							|  |  |  |             counter_m[j] -= current_block->mix_event_count[j]; | 
					
						
							|  |  |  |             dir ? --e_steps[j] : ++e_steps[j]; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Always count the unified E axis
 | 
					
						
							|  |  |  |       counter_E += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |       if (counter_E > 0) { | 
					
						
							|  |  |  |         counter_E -= current_block->step_event_count; | 
					
						
							|  |  |  |         #if DISABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |           // Don't step E here for mixing extruder
 | 
					
						
							|  |  |  |           motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX]; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Step mixing steppers proportionally
 | 
					
						
							|  |  |  |         const bool dir = motor_direction(E_AXIS); | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) { | 
					
						
							|  |  |  |           counter_m[j] += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |           if (counter_m[j] > 0) { | 
					
						
							|  |  |  |             counter_m[j] -= current_block->mix_event_count[j]; | 
					
						
							|  |  |  |             dir ? --e_steps[j] : ++e_steps[j]; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif // MIXING_EXTRUDER
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define _COUNTER(AXIS) counter_## AXIS
 | 
					
						
							|  |  |  |     #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
 | 
					
						
							|  |  |  |     #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Advance the Bresenham counter; start a pulse if the axis needs a step
 | 
					
						
							|  |  |  |     #define PULSE_START(AXIS) \
 | 
					
						
							|  |  |  |       _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ | 
					
						
							|  |  |  |       if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Stop an active pulse, reset the Bresenham counter, update the position
 | 
					
						
							|  |  |  |     #define PULSE_STOP(AXIS) \
 | 
					
						
							|  |  |  |       if (_COUNTER(AXIS) > 0) { \ | 
					
						
							|  |  |  |         _COUNTER(AXIS) -= current_block->step_event_count; \ | 
					
						
							|  |  |  |         count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ | 
					
						
							|  |  |  |         _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * Estimate the number of cycles that the stepper logic already takes | 
					
						
							|  |  |  |      * up between the start and stop of the X stepper pulse. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      * Currently this uses very modest estimates of around 5 cycles. | 
					
						
							|  |  |  |      * True values may be derived by careful testing. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      * Once any delay is added, the cost of the delay code itself | 
					
						
							|  |  |  |      * may be subtracted from this value to get a more accurate delay. | 
					
						
							|  |  |  |      * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs. | 
					
						
							|  |  |  |      * Longer delays use a loop. The resolution is 8 cycles. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     #if HAS_X_STEP
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_1 5
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_1 0
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if ENABLED(X_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Y_STEP
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Z_STEP
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
 | 
					
						
							|  |  |  |       #else
 | 
					
						
							|  |  |  |         #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
 | 
					
						
							|  |  |  |     #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * If a minimum pulse time was specified get the timer 0 value. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      * TCNT0 has an 8x prescaler, so it increments every 8 cycles. | 
					
						
							|  |  |  |      * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz. | 
					
						
							|  |  |  |      * 20 counts of TCNT0 -by itself- is a good pulse delay. | 
					
						
							|  |  |  |      * 10µs = 160 or 200 cycles. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     #if EXTRA_CYCLES_XYZE > 20
 | 
					
						
							|  |  |  |       uint32_t pulse_start = TCNT0; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if HAS_X_STEP
 | 
					
						
							|  |  |  |       PULSE_START(X); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Y_STEP
 | 
					
						
							|  |  |  |       PULSE_START(Y); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Z_STEP
 | 
					
						
							|  |  |  |       PULSE_START(Z); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // For non-advance use linear interpolation for E also
 | 
					
						
							|  |  |  |     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         // Keep updating the single E axis
 | 
					
						
							|  |  |  |         counter_E += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |         // Tick the counters used for this mix
 | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) { | 
					
						
							|  |  |  |           // Step mixing steppers (proportionally)
 | 
					
						
							|  |  |  |           counter_m[j] += current_block->steps[E_AXIS]; | 
					
						
							|  |  |  |           // Step when the counter goes over zero
 | 
					
						
							|  |  |  |           if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #else // !MIXING_EXTRUDER
 | 
					
						
							|  |  |  |         PULSE_START(E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     #endif // !ADVANCE && !LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // For minimum pulse time wait before stopping pulses
 | 
					
						
							|  |  |  |     #if EXTRA_CYCLES_XYZE > 20
 | 
					
						
							|  |  |  |       while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } | 
					
						
							|  |  |  |       pulse_start = TCNT0; | 
					
						
							|  |  |  |     #elif EXTRA_CYCLES_XYZE > 0
 | 
					
						
							|  |  |  |       DELAY_NOPS(EXTRA_CYCLES_XYZE); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if HAS_X_STEP
 | 
					
						
							|  |  |  |       PULSE_STOP(X); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Y_STEP
 | 
					
						
							|  |  |  |       PULSE_STOP(Y); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Z_STEP
 | 
					
						
							|  |  |  |       PULSE_STOP(Z); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         // Always step the single E axis
 | 
					
						
							|  |  |  |         if (counter_E > 0) { | 
					
						
							|  |  |  |           counter_E -= current_block->step_event_count; | 
					
						
							|  |  |  |           count_position[E_AXIS] += count_direction[E_AXIS]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) { | 
					
						
							|  |  |  |           if (counter_m[j] > 0) { | 
					
						
							|  |  |  |             counter_m[j] -= current_block->mix_event_count[j]; | 
					
						
							|  |  |  |             En_STEP_WRITE(j, INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #else // !MIXING_EXTRUDER
 | 
					
						
							|  |  |  |         PULSE_STOP(E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     #endif // !ADVANCE && !LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (++step_events_completed >= current_block->step_event_count) { | 
					
						
							|  |  |  |       all_steps_done = true; | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // For minimum pulse time wait after stopping pulses also
 | 
					
						
							|  |  |  |     #if EXTRA_CYCLES_XYZE > 20
 | 
					
						
							|  |  |  |       if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } | 
					
						
							|  |  |  |     #elif EXTRA_CYCLES_XYZE > 0
 | 
					
						
							|  |  |  |       if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } // steps_loop
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     if (current_block->use_advance_lead) { | 
					
						
							|  |  |  |       const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX]; | 
					
						
							|  |  |  |       current_adv_steps[TOOL_E_INDEX] += delta_adv_steps; | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         // Mixing extruders apply advance lead proportionally
 | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) | 
					
						
							|  |  |  |           e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j]; | 
					
						
							|  |  |  |       #else
 | 
					
						
							|  |  |  |         // For most extruders, advance the single E stepper
 | 
					
						
							|  |  |  |         e_steps[TOOL_E_INDEX] += delta_adv_steps; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     // If we have esteps to execute, fire the next advance_isr "now"
 | 
					
						
							|  |  |  |     if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Calculate new timer value
 | 
					
						
							|  |  |  |   if (step_events_completed <= (uint32_t)current_block->accelerate_until) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  |     acc_step_rate += current_block->initial_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // upper limit
 | 
					
						
							|  |  |  |     NOMORE(acc_step_rate, current_block->nominal_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // step_rate to timer interval
 | 
					
						
							|  |  |  |     const uint16_t timer = calc_timer(acc_step_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SPLIT(timer);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | 
					
						
							|  |  |  |     _NEXT_ISR(ocr_val); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     acceleration_time += timer; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (current_block->use_advance_lead) { | 
					
						
							|  |  |  |         #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |           MIXING_STEPPERS_LOOP(j) | 
					
						
							|  |  |  |             current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17; | 
					
						
							|  |  |  |         #else
 | 
					
						
							|  |  |  |           current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       advance += advance_rate * step_loops; | 
					
						
							|  |  |  |       //NOLESS(advance, current_block->advance);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       const long advance_whole = advance >> 8, | 
					
						
							|  |  |  |                  advance_factor = advance_whole - old_advance; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Do E steps + advance steps
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         // ...for mixing steppers proportionally
 | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) | 
					
						
							|  |  |  |           e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j]; | 
					
						
							|  |  |  |       #else
 | 
					
						
							|  |  |  |         // ...for the active extruder
 | 
					
						
							|  |  |  |         e_steps[TOOL_E_INDEX] += advance_factor; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       old_advance = advance_whole; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else if (step_events_completed > (uint32_t)current_block->decelerate_after) { | 
					
						
							|  |  |  |     uint16_t step_rate; | 
					
						
							|  |  |  |     MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (step_rate < acc_step_rate) { // Still decelerating?
 | 
					
						
							|  |  |  |       step_rate = acc_step_rate - step_rate; | 
					
						
							|  |  |  |       NOLESS(step_rate, current_block->final_rate); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |       step_rate = current_block->final_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // step_rate to timer interval
 | 
					
						
							|  |  |  |     const uint16_t timer = calc_timer(step_rate); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SPLIT(timer);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | 
					
						
							|  |  |  |     _NEXT_ISR(ocr_val); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     deceleration_time += timer; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (current_block->use_advance_lead) { | 
					
						
							|  |  |  |         #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |           MIXING_STEPPERS_LOOP(j) | 
					
						
							|  |  |  |             current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17; | 
					
						
							|  |  |  |         #else
 | 
					
						
							|  |  |  |           current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #elif ENABLED(ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       advance -= advance_rate * step_loops; | 
					
						
							|  |  |  |       NOLESS(advance, final_advance); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Do E steps + advance steps
 | 
					
						
							|  |  |  |       const long advance_whole = advance >> 8, | 
					
						
							|  |  |  |                  advance_factor = advance_whole - old_advance; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(MIXING_EXTRUDER)
 | 
					
						
							|  |  |  |         MIXING_STEPPERS_LOOP(j) | 
					
						
							|  |  |  |           e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j]; | 
					
						
							|  |  |  |       #else
 | 
					
						
							|  |  |  |         e_steps[TOOL_E_INDEX] += advance_factor; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       old_advance = advance_whole; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (current_block->use_advance_lead) | 
					
						
							|  |  |  |         current_estep_rate[TOOL_E_INDEX] = final_estep_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SPLIT(OCR1A_nominal);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | 
					
						
							|  |  |  |     _NEXT_ISR(ocr_val); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // ensure we're running at the correct step rate, even if we just came off an acceleration
 | 
					
						
							|  |  |  |     step_loops = step_loops_nominal; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     NOLESS(OCR1A, TCNT1 + 16); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // If current block is finished, reset pointer
 | 
					
						
							|  |  |  |   if (all_steps_done) { | 
					
						
							|  |  |  |     current_block = NULL; | 
					
						
							|  |  |  |     planner.discard_current_block(); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     _ENABLE_ISRs(); // re-enable ISRs
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define CYCLES_EATEN_E (E_STEPPERS * 5)
 | 
					
						
							|  |  |  |   #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Timer interrupt for E. e_steps is set in the main routine;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::advance_isr() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     nextAdvanceISR = eISR_Rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define SET_E_STEP_DIR(INDEX) \
 | 
					
						
							|  |  |  |       if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define START_E_PULSE(INDEX) \
 | 
					
						
							|  |  |  |       if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #define STOP_E_PULSE(INDEX) \
 | 
					
						
							|  |  |  |       if (e_steps[INDEX]) { \ | 
					
						
							|  |  |  |         e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \ | 
					
						
							|  |  |  |         E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \ | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SET_E_STEP_DIR(0); | 
					
						
							|  |  |  |     #if E_STEPPERS > 1
 | 
					
						
							|  |  |  |       SET_E_STEP_DIR(1); | 
					
						
							|  |  |  |       #if E_STEPPERS > 2
 | 
					
						
							|  |  |  |         SET_E_STEP_DIR(2); | 
					
						
							|  |  |  |         #if E_STEPPERS > 3
 | 
					
						
							|  |  |  |           SET_E_STEP_DIR(3); | 
					
						
							|  |  |  |           #if E_STEPPERS > 4
 | 
					
						
							|  |  |  |             SET_E_STEP_DIR(4); | 
					
						
							|  |  |  |           #endif
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Step all E steppers that have steps
 | 
					
						
							|  |  |  |     for (uint8_t i = step_loops; i--;) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if EXTRA_CYCLES_E > 20
 | 
					
						
							|  |  |  |         uint32_t pulse_start = TCNT0; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       START_E_PULSE(0); | 
					
						
							|  |  |  |       #if E_STEPPERS > 1
 | 
					
						
							|  |  |  |         START_E_PULSE(1); | 
					
						
							|  |  |  |         #if E_STEPPERS > 2
 | 
					
						
							|  |  |  |           START_E_PULSE(2); | 
					
						
							|  |  |  |           #if E_STEPPERS > 3
 | 
					
						
							|  |  |  |             START_E_PULSE(3); | 
					
						
							|  |  |  |             #if E_STEPPERS > 4
 | 
					
						
							|  |  |  |               START_E_PULSE(4); | 
					
						
							|  |  |  |             #endif
 | 
					
						
							|  |  |  |           #endif
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // For minimum pulse time wait before stopping pulses
 | 
					
						
							|  |  |  |       #if EXTRA_CYCLES_E > 20
 | 
					
						
							|  |  |  |         while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } | 
					
						
							|  |  |  |         pulse_start = TCNT0; | 
					
						
							|  |  |  |       #elif EXTRA_CYCLES_E > 0
 | 
					
						
							|  |  |  |         DELAY_NOPS(EXTRA_CYCLES_E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       STOP_E_PULSE(0); | 
					
						
							|  |  |  |       #if E_STEPPERS > 1
 | 
					
						
							|  |  |  |         STOP_E_PULSE(1); | 
					
						
							|  |  |  |         #if E_STEPPERS > 2
 | 
					
						
							|  |  |  |           STOP_E_PULSE(2); | 
					
						
							|  |  |  |           #if E_STEPPERS > 3
 | 
					
						
							|  |  |  |             STOP_E_PULSE(3); | 
					
						
							|  |  |  |             #if E_STEPPERS > 4
 | 
					
						
							|  |  |  |               STOP_E_PULSE(4); | 
					
						
							|  |  |  |             #endif
 | 
					
						
							|  |  |  |           #endif
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // For minimum pulse time wait before looping
 | 
					
						
							|  |  |  |       #if EXTRA_CYCLES_E > 20
 | 
					
						
							|  |  |  |         if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } | 
					
						
							|  |  |  |       #elif EXTRA_CYCLES_E > 0
 | 
					
						
							|  |  |  |         if (i) DELAY_NOPS(EXTRA_CYCLES_E); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     } // steps_loop
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::advance_isr_scheduler() { | 
					
						
							|  |  |  |     // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
 | 
					
						
							|  |  |  |     CBI(TIMSK0, OCIE0B); // Temperature ISR
 | 
					
						
							|  |  |  |     DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |     sei(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Run main stepping ISR if flagged
 | 
					
						
							|  |  |  |     if (!nextMainISR) isr(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Run Advance stepping ISR if flagged
 | 
					
						
							|  |  |  |     if (!nextAdvanceISR) advance_isr(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Is the next advance ISR scheduled before the next main ISR?
 | 
					
						
							|  |  |  |     if (nextAdvanceISR <= nextMainISR) { | 
					
						
							|  |  |  |       // Set up the next interrupt
 | 
					
						
							|  |  |  |       OCR1A = nextAdvanceISR; | 
					
						
							|  |  |  |       // New interval for the next main ISR
 | 
					
						
							|  |  |  |       if (nextMainISR) nextMainISR -= nextAdvanceISR; | 
					
						
							|  |  |  |       // Will call Stepper::advance_isr on the next interrupt
 | 
					
						
							|  |  |  |       nextAdvanceISR = 0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       // The next main ISR comes first
 | 
					
						
							|  |  |  |       OCR1A = nextMainISR; | 
					
						
							|  |  |  |       // New interval for the next advance ISR, if any
 | 
					
						
							|  |  |  |       if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER) | 
					
						
							|  |  |  |         nextAdvanceISR -= nextMainISR; | 
					
						
							|  |  |  |       // Will call Stepper::isr on the next interrupt
 | 
					
						
							|  |  |  |       nextMainISR = 0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Don't run the ISR faster than possible
 | 
					
						
							|  |  |  |     NOLESS(OCR1A, TCNT1 + 16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Restore original ISR settings
 | 
					
						
							|  |  |  |     _ENABLE_ISRs(); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // ADVANCE or LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::init() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Digipot Motor Current
 | 
					
						
							|  |  |  |   #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  |     digipot_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Microstepping Pins
 | 
					
						
							|  |  |  |   #if HAS_MICROSTEPS
 | 
					
						
							|  |  |  |     microstep_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init TMC Steppers
 | 
					
						
							|  |  |  |   #if ENABLED(HAVE_TMCDRIVER)
 | 
					
						
							|  |  |  |     tmc_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init TMC2130 Steppers
 | 
					
						
							|  |  |  |   #if ENABLED(HAVE_TMC2130)
 | 
					
						
							|  |  |  |     tmc2130_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init L6470 Steppers
 | 
					
						
							|  |  |  |   #if ENABLED(HAVE_L6470DRIVER)
 | 
					
						
							|  |  |  |     L6470_init(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Dir Pins
 | 
					
						
							|  |  |  |   #if HAS_X_DIR
 | 
					
						
							|  |  |  |     X_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_X2_DIR
 | 
					
						
							|  |  |  |     X2_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Y_DIR
 | 
					
						
							|  |  |  |     Y_DIR_INIT; | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
 | 
					
						
							|  |  |  |       Y2_DIR_INIT; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Z_DIR
 | 
					
						
							|  |  |  |     Z_DIR_INIT; | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
 | 
					
						
							|  |  |  |       Z2_DIR_INIT; | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E0_DIR
 | 
					
						
							|  |  |  |     E0_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_DIR
 | 
					
						
							|  |  |  |     E1_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_DIR
 | 
					
						
							|  |  |  |     E2_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_DIR
 | 
					
						
							|  |  |  |     E3_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E4_DIR
 | 
					
						
							|  |  |  |     E4_DIR_INIT; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Enable Pins - steppers default to disabled.
 | 
					
						
							|  |  |  |   #if HAS_X_ENABLE
 | 
					
						
							|  |  |  |     X_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
 | 
					
						
							|  |  |  |       X2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Y_ENABLE
 | 
					
						
							|  |  |  |     Y_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
 | 
					
						
							|  |  |  |       Y2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_Z_ENABLE
 | 
					
						
							|  |  |  |     Z_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
 | 
					
						
							|  |  |  |       Z2_ENABLE_INIT; | 
					
						
							|  |  |  |       if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E0_ENABLE
 | 
					
						
							|  |  |  |     E0_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_ENABLE
 | 
					
						
							|  |  |  |     E1_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_ENABLE
 | 
					
						
							|  |  |  |     E2_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_ENABLE
 | 
					
						
							|  |  |  |     E3_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E4_ENABLE
 | 
					
						
							|  |  |  |     E4_ENABLE_INIT; | 
					
						
							|  |  |  |     if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init endstops and pullups
 | 
					
						
							|  |  |  |   endstops.init(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
 | 
					
						
							|  |  |  |   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
 | 
					
						
							|  |  |  |   #define _DISABLE(AXIS) disable_## AXIS()
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define AXIS_INIT(AXIS, PIN) \
 | 
					
						
							|  |  |  |     _STEP_INIT(AXIS); \ | 
					
						
							|  |  |  |     _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ | 
					
						
							|  |  |  |     _DISABLE(AXIS) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Step Pins
 | 
					
						
							|  |  |  |   #if HAS_X_STEP
 | 
					
						
							|  |  |  |     #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
 | 
					
						
							|  |  |  |       X2_STEP_INIT; | 
					
						
							|  |  |  |       X2_STEP_WRITE(INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     AXIS_INIT(X, X); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Y_STEP
 | 
					
						
							|  |  |  |     #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |       Y2_STEP_INIT; | 
					
						
							|  |  |  |       Y2_STEP_WRITE(INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     AXIS_INIT(Y, Y); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_Z_STEP
 | 
					
						
							|  |  |  |     #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | 
					
						
							|  |  |  |       Z2_STEP_INIT; | 
					
						
							|  |  |  |       Z2_STEP_WRITE(INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     AXIS_INIT(Z, Z); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if HAS_E0_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(0); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E1_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(1); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E2_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(2); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E3_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(3); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if HAS_E4_STEP
 | 
					
						
							|  |  |  |     E_AXIS_INIT(4); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // waveform generation = 0100 = CTC
 | 
					
						
							|  |  |  |   SET_WGM(1, CTC_OCRnA); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // output mode = 00 (disconnected)
 | 
					
						
							|  |  |  |   SET_COMA(1, NORMAL); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Set the timer pre-scaler
 | 
					
						
							|  |  |  |   // Generally we use a divider of 8, resulting in a 2MHz timer
 | 
					
						
							|  |  |  |   // frequency on a 16MHz MCU. If you are going to change this, be
 | 
					
						
							|  |  |  |   // sure to regenerate speed_lookuptable.h with
 | 
					
						
							|  |  |  |   // create_speed_lookuptable.py
 | 
					
						
							|  |  |  |   SET_CS(1, PRESCALER_8);  //  CS 2 = 1/8 prescaler
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Init Stepper ISR to 122 Hz for quick starting
 | 
					
						
							|  |  |  |   OCR1A = 0x4000; | 
					
						
							|  |  |  |   TCNT1 = 0; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |     for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0; | 
					
						
							|  |  |  |     #if ENABLED(LIN_ADVANCE)
 | 
					
						
							|  |  |  |       ZERO(current_adv_steps); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif // ADVANCE || LIN_ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   endstops.enable(true); // Start with endstops active. After homing they can be disabled
 | 
					
						
							|  |  |  |   sei(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   set_directions(); // Init directions to last_direction_bits = 0
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Block until all buffered steps are executed | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::synchronize() { while (planner.blocks_queued()) idle(); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Set the stepper positions directly in steps | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The input is based on the typical per-axis XYZ steps. | 
					
						
							|  |  |  |  * For CORE machines XYZ needs to be translated to ABC. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This allows get_axis_position_mm to correctly | 
					
						
							|  |  |  |  * derive the current XYZ position later on. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   synchronize(); // Bad to set stepper counts in the middle of a move
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if CORE_IS_XY
 | 
					
						
							|  |  |  |     // corexy positioning
 | 
					
						
							|  |  |  |     // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | 
					
						
							|  |  |  |     count_position[A_AXIS] = a + b; | 
					
						
							|  |  |  |     count_position[B_AXIS] = CORESIGN(a - b); | 
					
						
							|  |  |  |     count_position[Z_AXIS] = c; | 
					
						
							|  |  |  |   #elif CORE_IS_XZ
 | 
					
						
							|  |  |  |     // corexz planning
 | 
					
						
							|  |  |  |     count_position[A_AXIS] = a + c; | 
					
						
							|  |  |  |     count_position[Y_AXIS] = b; | 
					
						
							|  |  |  |     count_position[C_AXIS] = CORESIGN(a - c); | 
					
						
							|  |  |  |   #elif CORE_IS_YZ
 | 
					
						
							|  |  |  |     // coreyz planning
 | 
					
						
							|  |  |  |     count_position[X_AXIS] = a; | 
					
						
							|  |  |  |     count_position[B_AXIS] = b + c; | 
					
						
							|  |  |  |     count_position[C_AXIS] = CORESIGN(b - c); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     // default non-h-bot planning
 | 
					
						
							|  |  |  |     count_position[X_AXIS] = a; | 
					
						
							|  |  |  |     count_position[Y_AXIS] = b; | 
					
						
							|  |  |  |     count_position[Z_AXIS] = c; | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::set_position(const AxisEnum &axis, const long &v) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_position[axis] = v; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::set_e_position(const long &e) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Get a stepper's position in steps. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | long Stepper::position(AxisEnum axis) { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   const long count_pos = count_position[axis]; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  |   return count_pos; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Get an axis position according to stepper position(s) | 
					
						
							|  |  |  |  * For CORE machines apply translation from ABC to XYZ. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | float Stepper::get_axis_position_mm(AxisEnum axis) { | 
					
						
							|  |  |  |   float axis_steps; | 
					
						
							|  |  |  |   #if IS_CORE
 | 
					
						
							|  |  |  |     // Requesting one of the "core" axes?
 | 
					
						
							|  |  |  |     if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { | 
					
						
							|  |  |  |       CRITICAL_SECTION_START; | 
					
						
							|  |  |  |       // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
 | 
					
						
							|  |  |  |       // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
 | 
					
						
							|  |  |  |       axis_steps = 0.5f * ( | 
					
						
							|  |  |  |         axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) | 
					
						
							|  |  |  |                             : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] | 
					
						
							|  |  |  |       ); | 
					
						
							|  |  |  |       CRITICAL_SECTION_END; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |       axis_steps = position(axis); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     axis_steps = position(axis); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   return axis_steps * planner.steps_to_mm[axis]; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::finish_and_disable() { | 
					
						
							|  |  |  |   synchronize(); | 
					
						
							|  |  |  |   disable_all_steppers(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::quick_stop() { | 
					
						
							|  |  |  |   cleaning_buffer_counter = 5000; | 
					
						
							|  |  |  |   DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |   while (planner.blocks_queued()) planner.discard_current_block(); | 
					
						
							|  |  |  |   current_block = NULL; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |   #if ENABLED(ULTRA_LCD)
 | 
					
						
							|  |  |  |     planner.clear_block_buffer_runtime(); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::endstop_triggered(AxisEnum axis) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if IS_CORE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     endstops_trigsteps[axis] = 0.5f * ( | 
					
						
							|  |  |  |       axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) | 
					
						
							|  |  |  |                           : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] | 
					
						
							|  |  |  |     ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #else // !COREXY && !COREXZ && !COREYZ
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     endstops_trigsteps[axis] = count_position[axis]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #endif // !COREXY && !COREXZ && !COREYZ
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   kill_current_block(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Stepper::report_positions() { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   const long xpos = count_position[X_AXIS], | 
					
						
							|  |  |  |              ypos = count_position[Y_AXIS], | 
					
						
							|  |  |  |              zpos = count_position[Z_AXIS]; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(MSG_COUNT_A); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(MSG_COUNT_X); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(xpos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" B:"); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" Y:"); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(ypos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if CORE_IS_XZ || CORE_IS_YZ
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" C:"); | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM(" Z:"); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   SERIAL_PROTOCOL(zpos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   SERIAL_EOL(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if ENABLED(BABYSTEPPING)
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |   #if ENABLED(DELTA)
 | 
					
						
							|  |  |  |     #define CYCLES_EATEN_BABYSTEP (2 * 15)
 | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     #define CYCLES_EATEN_BABYSTEP 0
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define _ENABLE(AXIS) enable_## AXIS()
 | 
					
						
							|  |  |  |   #define _READ_DIR(AXIS) AXIS ##_DIR_READ
 | 
					
						
							|  |  |  |   #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
 | 
					
						
							|  |  |  |   #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if EXTRA_CYCLES_BABYSTEP > 20
 | 
					
						
							|  |  |  |     #define _SAVE_START const uint32_t pulse_start = TCNT0
 | 
					
						
							|  |  |  |     #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | 
					
						
							|  |  |  |   #else
 | 
					
						
							|  |  |  |     #define _SAVE_START NOOP
 | 
					
						
							|  |  |  |     #if EXTRA_CYCLES_BABYSTEP > 0
 | 
					
						
							|  |  |  |       #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
 | 
					
						
							|  |  |  |     #elif STEP_PULSE_CYCLES > 0
 | 
					
						
							|  |  |  |       #define _PULSE_WAIT NOOP
 | 
					
						
							|  |  |  |     #elif ENABLED(DELTA)
 | 
					
						
							|  |  |  |       #define _PULSE_WAIT delayMicroseconds(2);
 | 
					
						
							|  |  |  |     #else
 | 
					
						
							|  |  |  |       #define _PULSE_WAIT delayMicroseconds(4);
 | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #define BABYSTEP_AXIS(AXIS, INVERT) {                     \
 | 
					
						
							|  |  |  |       const uint8_t old_dir = _READ_DIR(AXIS);              \ | 
					
						
							|  |  |  |       _ENABLE(AXIS);                                        \ | 
					
						
							|  |  |  |       _SAVE_START;                                          \ | 
					
						
							|  |  |  |       _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \ | 
					
						
							|  |  |  |       _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true);     \ | 
					
						
							|  |  |  |       _PULSE_WAIT;                                          \ | 
					
						
							|  |  |  |       _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true);      \ | 
					
						
							|  |  |  |       _APPLY_DIR(AXIS, old_dir);                            \ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // MUST ONLY BE CALLED BY AN ISR,
 | 
					
						
							|  |  |  |   // No other ISR should ever interrupt this!
 | 
					
						
							|  |  |  |   void Stepper::babystep(const AxisEnum axis, const bool direction) { | 
					
						
							|  |  |  |     cli(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     switch (axis) { | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |       #if ENABLED(BABYSTEP_XY)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         case X_AXIS: | 
					
						
							|  |  |  |           BABYSTEP_AXIS(X, false); | 
					
						
							|  |  |  |           break; | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |         case Y_AXIS: | 
					
						
							|  |  |  |           BABYSTEP_AXIS(Y, false); | 
					
						
							|  |  |  |           break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       case Z_AXIS: { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         #if DISABLED(DELTA)
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |           BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z); | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |         #else // DELTA
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           const bool z_direction = direction ^ BABYSTEP_INVERT_Z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           enable_X(); | 
					
						
							|  |  |  |           enable_Y(); | 
					
						
							|  |  |  |           enable_Z(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           const uint8_t old_x_dir_pin = X_DIR_READ, | 
					
						
							|  |  |  |                         old_y_dir_pin = Y_DIR_READ, | 
					
						
							|  |  |  |                         old_z_dir_pin = Z_DIR_READ; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           X_DIR_WRITE(INVERT_X_DIR ^ z_direction); | 
					
						
							|  |  |  |           Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction); | 
					
						
							|  |  |  |           Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           _SAVE_START; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           X_STEP_WRITE(!INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           Y_STEP_WRITE(!INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           Z_STEP_WRITE(!INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           _PULSE_WAIT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           X_STEP_WRITE(INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           Y_STEP_WRITE(INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           Z_STEP_WRITE(INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           // Restore direction bits
 | 
					
						
							|  |  |  |           X_DIR_WRITE(old_x_dir_pin); | 
					
						
							|  |  |  |           Y_DIR_WRITE(old_y_dir_pin); | 
					
						
							|  |  |  |           Z_DIR_WRITE(old_z_dir_pin); | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |         #endif
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  |       } break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       default: break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     sei(); | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // BABYSTEPPING
 | 
					
						
							| 
									
										
										
											
												Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
											
										 
											12 years ago
										 |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Software-controlled Stepper Motor Current | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // From Arduino DigitalPotControl example
 | 
					
						
							|  |  |  |   void Stepper::digitalPotWrite(int address, int value) { | 
					
						
							|  |  |  |     WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
 | 
					
						
							|  |  |  |     SPI.transfer(address); //  send in the address and value via SPI:
 | 
					
						
							|  |  |  |     SPI.transfer(value); | 
					
						
							|  |  |  |     WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
 | 
					
						
							|  |  |  |     //delay(10);
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // HAS_DIGIPOTSS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::digipot_init() { | 
					
						
							|  |  |  |     #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |       static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; | 
					
						
							|  |  |  |       SPI.begin(); | 
					
						
							|  |  |  |       SET_OUTPUT(DIGIPOTSS_PIN); | 
					
						
							|  |  |  |       for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) { | 
					
						
							|  |  |  |         //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | 
					
						
							|  |  |  |         digipot_current(i, digipot_motor_current[i]); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     #elif HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | 
					
						
							|  |  |  |         SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN); | 
					
						
							|  |  |  |         digipot_current(0, motor_current_setting[0]); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | 
					
						
							|  |  |  |         SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN); | 
					
						
							|  |  |  |         digipot_current(1, motor_current_setting[1]); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | 
					
						
							|  |  |  |         SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN); | 
					
						
							|  |  |  |         digipot_current(2, motor_current_setting[2]); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | 
					
						
							|  |  |  |       TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::digipot_current(uint8_t driver, int current) { | 
					
						
							|  |  |  |     #if HAS_DIGIPOTSS
 | 
					
						
							|  |  |  |       const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; | 
					
						
							|  |  |  |       digitalPotWrite(digipot_ch[driver], current); | 
					
						
							|  |  |  |     #elif HAS_MOTOR_CURRENT_PWM
 | 
					
						
							|  |  |  |       #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
 | 
					
						
							|  |  |  |       switch (driver) { | 
					
						
							|  |  |  |         #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | 
					
						
							|  |  |  |           case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |         #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | 
					
						
							|  |  |  |           case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |         #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | 
					
						
							|  |  |  |           case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if HAS_MICROSTEPS
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * Software-controlled Microstepping | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::microstep_init() { | 
					
						
							|  |  |  |     SET_OUTPUT(X_MS1_PIN); | 
					
						
							|  |  |  |     SET_OUTPUT(X_MS2_PIN); | 
					
						
							|  |  |  |     #if HAS_Y_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(Y_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(Y_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Z_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(Z_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(Z_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E0_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(E0_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(E0_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E1_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(E1_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(E1_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E2_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(E2_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(E2_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E3_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(E3_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(E3_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E4_MICROSTEPS
 | 
					
						
							|  |  |  |       SET_OUTPUT(E4_MS1_PIN); | 
					
						
							|  |  |  |       SET_OUTPUT(E4_MS2_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     static const uint8_t microstep_modes[] = MICROSTEP_MODES; | 
					
						
							|  |  |  |     for (uint16_t i = 0; i < COUNT(microstep_modes); i++) | 
					
						
							|  |  |  |       microstep_mode(i, microstep_modes[i]); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { | 
					
						
							|  |  |  |     if (ms1 >= 0) switch (driver) { | 
					
						
							|  |  |  |       case 0: WRITE(X_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #if HAS_Y_MICROSTEPS
 | 
					
						
							|  |  |  |         case 1: WRITE(Y_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_Z_MICROSTEPS
 | 
					
						
							|  |  |  |         case 2: WRITE(Z_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E0_MICROSTEPS
 | 
					
						
							|  |  |  |         case 3: WRITE(E0_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E1_MICROSTEPS
 | 
					
						
							|  |  |  |         case 4: WRITE(E1_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E2_MICROSTEPS
 | 
					
						
							|  |  |  |         case 5: WRITE(E2_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E3_MICROSTEPS
 | 
					
						
							|  |  |  |         case 6: WRITE(E3_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E4_MICROSTEPS
 | 
					
						
							|  |  |  |         case 7: WRITE(E4_MS1_PIN, ms1); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     if (ms2 >= 0) switch (driver) { | 
					
						
							|  |  |  |       case 0: WRITE(X_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #if HAS_Y_MICROSTEPS
 | 
					
						
							|  |  |  |         case 1: WRITE(Y_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_Z_MICROSTEPS
 | 
					
						
							|  |  |  |         case 2: WRITE(Z_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E0_MICROSTEPS
 | 
					
						
							|  |  |  |         case 3: WRITE(E0_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E1_MICROSTEPS
 | 
					
						
							|  |  |  |         case 4: WRITE(E1_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E2_MICROSTEPS
 | 
					
						
							|  |  |  |         case 5: WRITE(E2_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E3_MICROSTEPS
 | 
					
						
							|  |  |  |         case 6: WRITE(E3_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       #if HAS_E4_MICROSTEPS
 | 
					
						
							|  |  |  |         case 7: WRITE(E4_MS2_PIN, ms2); break; | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) { | 
					
						
							|  |  |  |     switch (stepping_mode) { | 
					
						
							|  |  |  |       case 1: microstep_ms(driver, MICROSTEP1); break; | 
					
						
							|  |  |  |       case 2: microstep_ms(driver, MICROSTEP2); break; | 
					
						
							|  |  |  |       case 4: microstep_ms(driver, MICROSTEP4); break; | 
					
						
							|  |  |  |       case 8: microstep_ms(driver, MICROSTEP8); break; | 
					
						
							|  |  |  |       case 16: microstep_ms(driver, MICROSTEP16); break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void Stepper::microstep_readings() { | 
					
						
							|  |  |  |     SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins"); | 
					
						
							|  |  |  |     SERIAL_PROTOCOLPGM("X: "); | 
					
						
							|  |  |  |     SERIAL_PROTOCOL(READ(X_MS1_PIN)); | 
					
						
							|  |  |  |     SERIAL_PROTOCOLLN(READ(X_MS2_PIN)); | 
					
						
							|  |  |  |     #if HAS_Y_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("Y: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(Y_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(Y_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_Z_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("Z: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(Z_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(Z_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E0_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("E0: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(E0_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(E0_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E1_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("E1: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(E1_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(E1_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E2_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("E2: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(E2_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(E2_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E3_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("E3: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(E3_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(E3_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |     #if HAS_E4_MICROSTEPS
 | 
					
						
							|  |  |  |       SERIAL_PROTOCOLPGM("E4: "); | 
					
						
							|  |  |  |       SERIAL_PROTOCOL(READ(E4_MS1_PIN)); | 
					
						
							|  |  |  |       SERIAL_PROTOCOLLN(READ(E4_MS2_PIN)); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // HAS_MICROSTEPS
 |