You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3755 lines
124 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "ultralcd.h"
#if ENABLED(ULTRA_LCD)
#include "Marlin.h"
#include "language.h"
#include "cardreader.h"
#include "temperature.h"
#include "stepper.h"
#include "configuration_store.h"
#include "utility.h"
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#endif
#if ENABLED(BLTOUCH)
#include "endstops.h"
#endif
#if ENABLED(PRINTCOUNTER)
#include "printcounter.h"
#include "duration_t.h"
#endif
int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
millis_t previous_lcd_status_ms = 0;
#endif
#if ENABLED(BABYSTEPPING)
long babysteps_done = 0;
static void lcd_babystep_z();
#endif
uint8_t lcd_status_message_level;
char lcd_status_message[3 * (LCD_WIDTH) + 1] = WELCOME_MSG; // worst case is kana with up to 3*LCD_WIDTH+1
#if ENABLED(DOGLCD)
#include "ultralcd_impl_DOGM.h"
#include <U8glib.h>
#else
#include "ultralcd_impl_HD44780.h"
#endif
// The main status screen
void lcd_status_screen();
millis_t next_lcd_update_ms;
uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to draw, decrements after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial)
uint16_t max_display_update_time = 0;
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
#if ENABLED(DOGLCD)
bool drawing_screen = false;
#define LCDVIEW_KEEP_REDRAWING LCDVIEW_CALL_REDRAW_NEXT
#else
#define LCDVIEW_KEEP_REDRAWING LCDVIEW_REDRAW_NOW
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h" //was dac_mcp4728.h MarlinMain uses stepper dac for the m-codes
uint16_t driverPercent[XYZE];
#endif
#if ENABLED(ULTIPANEL)
// place-holders for Ki and Kd edits
float raw_Ki, raw_Kd;
/**
* REVERSE_MENU_DIRECTION
*
* To reverse the menu direction we need a general way to reverse
* the direction of the encoder everywhere. So encoderDirection is
* added to allow the encoder to go the other way.
*
* This behavior is limited to scrolling Menus and SD card listings,
* and is disabled in other contexts.
*/
#if ENABLED(REVERSE_MENU_DIRECTION)
int8_t encoderDirection = 1;
#define ENCODER_DIRECTION_NORMAL() (encoderDirection = 1)
#define ENCODER_DIRECTION_MENUS() (encoderDirection = -1)
#else
#define ENCODER_DIRECTION_NORMAL() ;
#define ENCODER_DIRECTION_MENUS() ;
#endif
int8_t encoderDiff; // updated from interrupt context and added to encoderPosition every LCD update
millis_t manual_move_start_time = 0;
int8_t manual_move_axis = (int8_t)NO_AXIS;
#if EXTRUDERS > 1
int8_t manual_move_e_index = 0;
#else
#define manual_move_e_index 0
#endif
bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis;
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#endif
#if HAS_POWER_SWITCH
extern bool powersupply;
#endif
const float manual_feedrate_mm_m[] = MANUAL_FEEDRATE;
void lcd_main_menu();
void lcd_tune_menu();
void lcd_prepare_menu();
void lcd_move_menu();
void lcd_control_menu();
void lcd_control_temperature_menu();
void lcd_control_temperature_preheat_material1_settings_menu();
void lcd_control_temperature_preheat_material2_settings_menu();
void lcd_control_motion_menu();
void lcd_control_volumetric_menu();
#if ENABLED(DAC_STEPPER_CURRENT)
void dac_driver_commit();
void dac_driver_getValues();
void lcd_dac_menu();
void lcd_dac_write_eeprom();
#endif
#if ENABLED(LCD_INFO_MENU)
#if ENABLED(PRINTCOUNTER)
void lcd_info_stats_menu();
#endif
void lcd_info_thermistors_menu();
void lcd_info_board_menu();
void lcd_info_menu();
#endif // LCD_INFO_MENU
#if ENABLED(FILAMENT_CHANGE_FEATURE)
8 years ago
void lcd_filament_change_toocold_menu();
void lcd_filament_change_option_menu();
void lcd_filament_change_init_message();
void lcd_filament_change_unload_message();
void lcd_filament_change_insert_message();
void lcd_filament_change_load_message();
void lcd_filament_change_heat_nozzle();
void lcd_filament_change_extrude_message();
void lcd_filament_change_resume_message();
#endif
#if HAS_LCD_CONTRAST
void lcd_set_contrast();
#endif
#if ENABLED(FWRETRACT)
void lcd_control_retract_menu();
#endif
#if ENABLED(DELTA_CALIBRATION_MENU)
void lcd_delta_calibrate_menu();
#endif
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
// Function pointer to menu functions.
9 years ago
typedef void (*screenFunc_t)();
// Different types of actions that can be used in menu items.
#define menu_action_back(dummy) _menu_action_back()
void _menu_action_back();
void menu_action_submenu(screenFunc_t data);
void menu_action_gcode(const char* pgcode);
void menu_action_function(screenFunc_t data);
void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_float62(const char* pstr, float* ptr, float minValue, float maxValue);
void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_float62(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc);
void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, screenFunc_t callbackFunc);
#if ENABLED(SDSUPPORT)
void lcd_sdcard_menu();
void menu_action_sdfile(const char* filename, char* longFilename);
void menu_action_sddirectory(const char* filename, char* longFilename);
#endif
/* Helper macros for menus */
#ifndef ENCODER_FEEDRATE_DEADZONE
#define ENCODER_FEEDRATE_DEADZONE 10
#endif
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#ifndef TALL_FONT_CORRECTION
#define TALL_FONT_CORRECTION 0
#endif
/**
* START_SCREEN_OR_MENU generates init code for a screen or menu
*
* encoderLine is the position based on the encoder
* encoderTopLine is the top menu line to display
* _lcdLineNr is the index of the LCD line (e.g., 0-3)
* _menuLineNr is the menu item to draw and process
* _thisItemNr is the index of each MENU_ITEM or STATIC_ITEM
* _countedItems is the total number of items in the menu (after one call)
*/
#define START_SCREEN_OR_MENU(LIMIT) \
ENCODER_DIRECTION_MENUS(); \
encoderRateMultiplierEnabled = false; \
if (encoderPosition > 0x8000) encoderPosition = 0; \
static int8_t _countedItems = 0; \
int8_t encoderLine = encoderPosition / (ENCODER_STEPS_PER_MENU_ITEM); \
if (_countedItems > 0 && encoderLine >= _countedItems - (LIMIT)) { \
encoderLine = max(0, _countedItems - (LIMIT)); \
encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \
}
#define SCREEN_OR_MENU_LOOP() \
int8_t _menuLineNr = encoderTopLine, _thisItemNr; \
for (int8_t _lcdLineNr = 0; _lcdLineNr < LCD_HEIGHT - (TALL_FONT_CORRECTION); _lcdLineNr++, _menuLineNr++) { \
_thisItemNr = 0
/**
* START_SCREEN Opening code for a screen having only static items.
* Do simplified scrolling of the entire screen.
*
* START_MENU Opening code for a screen with menu items.
* Scroll as-needed to keep the selected line in view.
*/
#define START_SCREEN() \
START_SCREEN_OR_MENU(LCD_HEIGHT - (TALL_FONT_CORRECTION)); \
encoderTopLine = encoderLine; \
bool _skipStatic = false; \
SCREEN_OR_MENU_LOOP()
#define START_MENU() \
START_SCREEN_OR_MENU(1); \
screen_changed = false; \
NOMORE(encoderTopLine, encoderLine); \
if (encoderLine >= encoderTopLine + LCD_HEIGHT - (TALL_FONT_CORRECTION)) { \
encoderTopLine = encoderLine - (LCD_HEIGHT - (TALL_FONT_CORRECTION) - 1); \
} \
bool _skipStatic = true; \
SCREEN_OR_MENU_LOOP()
/**
* MENU_ITEM generates draw & handler code for a menu item, potentially calling:
*
* lcd_implementation_drawmenu_[type](sel, row, label, arg3...)
* menu_action_[type](arg3...)
*
* Examples:
* MENU_ITEM(back, MSG_WATCH, 0 [dummy parameter] )
* or
* MENU_BACK(MSG_WATCH)
* lcd_implementation_drawmenu_back(sel, row, PSTR(MSG_WATCH))
* menu_action_back()
*
* MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause)
* lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
* menu_action_function(lcd_sdcard_pause)
*
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*
*/
#define _MENU_ITEM_PART_1(TYPE, LABEL, ...) \
if (_menuLineNr == _thisItemNr) { \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_ ## TYPE(encoderLine == _thisItemNr, _lcdLineNr, PSTR(LABEL), ## __VA_ARGS__); \
if (lcd_clicked && encoderLine == _thisItemNr) {
#define _MENU_ITEM_PART_2(TYPE, ...) \
menu_action_ ## TYPE(__VA_ARGS__); \
if (screen_changed) return; \
} \
} \
++_thisItemNr
#define MENU_ITEM(TYPE, LABEL, ...) do { \
_skipStatic = false; \
_MENU_ITEM_PART_1(TYPE, LABEL, ## __VA_ARGS__); \
_MENU_ITEM_PART_2(TYPE, ## __VA_ARGS__); \
} while(0)
#define MENU_BACK(LABEL) MENU_ITEM(back, LABEL, 0)
// Used to print static text with no visible cursor.
// Parameters: label [, bool center [, bool invert [, char *value] ] ]
#define STATIC_ITEM(LABEL, ...) \
if (_menuLineNr == _thisItemNr) { \
if (_skipStatic && encoderLine <= _thisItemNr) { \
encoderPosition += ENCODER_STEPS_PER_MENU_ITEM; \
++encoderLine; \
} \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_static(_lcdLineNr, PSTR(LABEL), ## __VA_ARGS__); \
} \
++_thisItemNr
#define END_SCREEN() \
} \
_countedItems = _thisItemNr
#define END_MENU() \
} \
_countedItems = _thisItemNr; \
UNUSED(_skipStatic)
#if ENABLED(ENCODER_RATE_MULTIPLIER)
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
/**
* MENU_MULTIPLIER_ITEM generates drawing and handling code for a multiplier menu item
*/
#define MENU_MULTIPLIER_ITEM(type, label, ...) do { \
_MENU_ITEM_PART_1(type, label, ## __VA_ARGS__); \
encoderRateMultiplierEnabled = true; \
lastEncoderMovementMillis = 0; \
_MENU_ITEM_PART_2(type, ## __VA_ARGS__); \
} while(0)
#endif //ENCODER_RATE_MULTIPLIER
#define MENU_ITEM_DUMMY() do { _thisItemNr++; } while(0)
#define MENU_ITEM_EDIT(type, label, ...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_ITEM_EDIT_CALLBACK(type, label, ...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#if ENABLED(ENCODER_RATE_MULTIPLIER)
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, ...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, ...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#else //!ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, ...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## __VA_ARGS__)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, ...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## __VA_ARGS__)
#endif //!ENCODER_RATE_MULTIPLIER
/** Used variables to keep track of the menu */
volatile uint8_t buttons; //the last checked buttons in a bit array.
#if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif
int8_t encoderTopLine; /* scroll offset in the current menu */
millis_t next_button_update_ms;
uint8_t lastEncoderBits;
uint32_t encoderPosition;
#if PIN_EXISTS(SD_DETECT)
uint8_t lcd_sd_status;
#endif
typedef struct {
9 years ago
screenFunc_t menu_function;
uint32_t encoder_position;
} menuPosition;
9 years ago
screenFunc_t currentScreen = lcd_status_screen; // pointer to the currently active menu handler
9 years ago
menuPosition screen_history[10];
uint8_t screen_history_depth = 0;
bool screen_changed;
// LCD and menu clicks
bool lcd_clicked, wait_for_unclick, defer_return_to_status, no_reentrance;
// Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue, maxEditValue;
9 years ago
screenFunc_t callbackFunc; // call this after editing
/**
* General function to go directly to a screen
*/
void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0) {
9 years ago
if (currentScreen != screen) {
#if ENABLED(DOUBLECLICK_FOR_Z_BABYSTEPPING) && ENABLED(BABYSTEPPING)
static millis_t doubleclick_expire_ms = 0;
// Going to lcd_main_menu from status screen? Remember first click time.
// Going back to status screen within a very short time? Go to Z babystepping.
if (screen == lcd_main_menu) {
if (currentScreen == lcd_status_screen)
doubleclick_expire_ms = millis() + DOUBLECLICK_MAX_INTERVAL;
}
else if (screen == lcd_status_screen && currentScreen == lcd_main_menu && PENDING(millis(), doubleclick_expire_ms))
screen = lcd_babystep_z;
#endif
9 years ago
currentScreen = screen;
encoderPosition = encoder;
9 years ago
if (screen == lcd_status_screen) {
defer_return_to_status = false;
9 years ago
screen_history_depth = 0;
}
lcd_implementation_clear();
#if ENABLED(LCD_PROGRESS_BAR)
// For LCD_PROGRESS_BAR re-initialize custom characters
9 years ago
lcd_set_custom_characters(screen == lcd_status_screen);
#endif
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
screen_changed = true;
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
#if ENABLED(DOGLCD)
drawing_screen = false;
#endif
}
}
/**
* Synchronize safely while holding the current screen
* This blocks all further screen or stripe updates once called
*/
extern uint8_t commands_in_queue;
inline void lcd_synchronize() {
lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_MOVING));
if (no_reentrance) return;
no_reentrance = true;
screenFunc_t old_screen = currentScreen;
lcd_goto_screen(lcd_synchronize);
while (commands_in_queue) {
idle();
stepper.synchronize();
}
no_reentrance = false;
lcd_goto_screen(old_screen);
}
void lcd_return_to_status() { lcd_goto_screen(lcd_status_screen); }
void lcd_save_previous_screen() {
9 years ago
if (screen_history_depth < COUNT(screen_history)) {
screen_history[screen_history_depth].menu_function = currentScreen;
screen_history[screen_history_depth].encoder_position = encoderPosition;
9 years ago
++screen_history_depth;
}
}
void lcd_goto_previous_menu() {
9 years ago
if (screen_history_depth > 0) {
--screen_history_depth;
lcd_goto_screen(
screen_history[screen_history_depth].menu_function,
screen_history[screen_history_depth].encoder_position
);
}
else
lcd_return_to_status();
}
#endif // ULTIPANEL
/**
*
* "Info Screen"
*
* This is very display-dependent, so the lcd implementation draws this.
*/
void lcd_status_screen() {
#if ENABLED(ULTIPANEL)
ENCODER_DIRECTION_NORMAL();
encoderRateMultiplierEnabled = false;
#endif
#if ENABLED(LCD_PROGRESS_BAR)
millis_t ms = millis();
#if DISABLED(PROGRESS_MSG_ONCE)
if (ELAPSED(ms, progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME)) {
progress_bar_ms = ms;
10 years ago
}
#endif
#if PROGRESS_MSG_EXPIRE > 0
// Handle message expire
if (expire_status_ms > 0) {
#if ENABLED(SDSUPPORT)
if (card.isFileOpen()) {
// Expire the message when printing is active
if (IS_SD_PRINTING) {
if (ELAPSED(ms, expire_status_ms)) {
lcd_status_message[0] = '\0';
expire_status_ms = 0;
}
}
else {
expire_status_ms += LCD_UPDATE_INTERVAL;
10 years ago
}
}
else {
expire_status_ms = 0;
10 years ago
}
#else
expire_status_ms = 0;
#endif //SDSUPPORT
10 years ago
}
#endif
#endif //LCD_PROGRESS_BAR
lcd_implementation_status_screen();
#if ENABLED(ULTIPANEL)
if (lcd_clicked) {
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); // get status message to show up for a while
#endif
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
false
10 years ago
#endif
);
lcd_goto_screen(lcd_main_menu);
}
#if ENABLED(ULTIPANEL_FEEDMULTIPLY)
int new_frm = feedrate_percentage + (int32_t)encoderPosition;
// Dead zone at 100% feedrate
if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
feedrate_percentage = 100;
encoderPosition = 0;
}
else if (feedrate_percentage == 100) {
if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
encoderPosition = 0;
}
else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
}
else {
feedrate_percentage = new_frm;
encoderPosition = 0;
}
#endif // ULTIPANEL_FEEDMULTIPLY
feedrate_percentage = constrain(feedrate_percentage, 10, 999);
#endif //ULTIPANEL
}
/**
*
* draw the kill screen
*
*/
void kill_screen(const char* lcd_msg) {
lcd_init();
lcd_setalertstatuspgm(lcd_msg);
#if ENABLED(DOGLCD)
u8g.firstPage();
do {
lcd_kill_screen();
} while (u8g.nextPage());
#else
lcd_kill_screen();
#endif
}
#if ENABLED(ULTIPANEL)
10 years ago
/**
*
* Audio feedback for controller clicks
*
*/
void lcd_buzz(long duration, uint16_t freq) {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(duration, freq);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(duration, freq);
#else
UNUSED(duration); UNUSED(freq);
#endif
}
void lcd_quick_feedback() {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
buttons = 0;
next_button_update_ms = millis() + 500;
// Buzz and wait. The delay is needed for buttons to settle!
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#if ENABLED(LCD_USE_I2C_BUZZER)
delay(10);
#elif PIN_EXISTS(BEEPER)
for (int8_t i = 5; i--;) { buzzer.tick(); delay(2); }
#endif
}
void lcd_completion_feedback(const bool good/*=true*/) {
if (good) {
lcd_buzz(100, 659);
lcd_buzz(100, 698);
}
else lcd_buzz(20, 440);
}
inline void line_to_current(AxisEnum axis) {
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
}
#if ENABLED(SDSUPPORT)
void lcd_sdcard_pause() {
card.pauseSDPrint();
print_job_timer.pause();
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M125"))
#endif
}
void lcd_sdcard_resume() {
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M24"))
#else
card.startFileprint();
print_job_timer.start();
#endif
}
void lcd_sdcard_stop() {
card.stopSDPrint();
clear_command_queue();
quickstop_stepper();
print_job_timer.stop();
#if ENABLED(AUTOTEMP)
thermalManager.autotempShutdown();
#endif
wait_for_heatup = false;
lcd_setstatuspgm(PSTR(MSG_PRINT_ABORTED), true);
}
#endif // SDSUPPORT
#if ENABLED(MENU_ITEM_CASE_LIGHT)
extern bool case_light_on;
extern void update_case_light();
void toggle_case_light() {
case_light_on = !case_light_on;
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
update_case_light();
}
#endif // MENU_ITEM_CASE_LIGHT
#if ENABLED(LCD_PROGRESS_BAR_TEST)
static void progress_bar_test() {
static int8_t bar_percent = 0;
if (lcd_clicked) {
lcd_goto_previous_menu();
lcd_set_custom_characters(false);
return;
}
bar_percent += (int8_t)encoderPosition;
bar_percent = constrain(bar_percent, 0, 100);
encoderPosition = 0;
lcd_implementation_drawmenu_static(0, PSTR(MSG_PROGRESS_BAR_TEST), true, true);
lcd.setCursor((LCD_WIDTH) / 2 - 2, LCD_HEIGHT - 2);
lcd.print(itostr3(bar_percent)); lcd.print('%');
lcd.setCursor(0, LCD_HEIGHT - 1); lcd_draw_progress_bar(bar_percent);
}
void _progress_bar_test() {
lcd_goto_screen(progress_bar_test);
lcd_set_custom_characters();
}
#endif // LCD_PROGRESS_BAR_TEST
#if HAS_DEBUG_MENU
void lcd_debug_menu() {
START_MENU();
MENU_BACK(MSG_MAIN); // ^ Main
#if ENABLED(LCD_PROGRESS_BAR_TEST)
MENU_ITEM(submenu, MSG_PROGRESS_BAR_TEST, _progress_bar_test);
#endif
END_MENU();
}
#endif // HAS_DEBUG_MENU
/**
*
* "Main" menu
*
*/
void lcd_main_menu() {
START_MENU();
MENU_BACK(MSG_WATCH);
//
// Debug Menu when certain options are enabled
//
#if HAS_DEBUG_MENU
MENU_ITEM(submenu, MSG_DEBUG_MENU, lcd_debug_menu);
#endif
//
// Switch case light on/off
//
#if ENABLED(MENU_ITEM_CASE_LIGHT)
if (case_light_on)
MENU_ITEM(function, MSG_LIGHTS_OFF, toggle_case_light);
else
MENU_ITEM(function, MSG_LIGHTS_ON, toggle_case_light);
#endif
#if ENABLED(BLTOUCH)
if (!endstops.z_probe_enabled && TEST_BLTOUCH())
MENU_ITEM(gcode, MSG_BLTOUCH_RESET, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_RESET)));
#endif
if (planner.movesplanned() || IS_SD_PRINTING) {
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
}
else {
MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu);
#if ENABLED(DELTA_CALIBRATION_MENU)
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu);
#endif
}
MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
#if ENABLED(SDSUPPORT)
if (card.cardOK) {
if (card.isFileOpen()) {
if (card.sdprinting)
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
else
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}
else {
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}
else {
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif //SDSUPPORT
#if ENABLED(LCD_INFO_MENU)
MENU_ITEM(submenu, MSG_INFO_MENU, lcd_info_menu);
#endif
END_MENU();
}
/**
*
* "Tune" submenu items
*
*/
#if DISABLED(NO_WORKSPACE_OFFSETS)
/**
* Set the home offset based on the current_position
*/
void lcd_set_home_offsets() {
// M428 Command
enqueue_and_echo_commands_P(PSTR("M428"));
lcd_return_to_status();
}
#endif
#if ENABLED(BABYSTEPPING)
void _lcd_babystep(const AxisEnum axis, const char* msg) {
if (lcd_clicked) { defer_return_to_status = false; return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
thermalManager.babystep_axis(axis, babystep_increment);
babysteps_done += babystep_increment;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(planner.steps_to_mm[axis] * babysteps_done));
}
#if ENABLED(BABYSTEP_XY)
void _lcd_babystep_x() { _lcd_babystep(X_AXIS, PSTR(MSG_BABYSTEPPING_X)); }
void _lcd_babystep_y() { _lcd_babystep(Y_AXIS, PSTR(MSG_BABYSTEPPING_Y)); }
void lcd_babystep_x() { lcd_goto_screen(_lcd_babystep_x); babysteps_done = 0; defer_return_to_status = true; }
void lcd_babystep_y() { lcd_goto_screen(_lcd_babystep_y); babysteps_done = 0; defer_return_to_status = true; }
#endif
void _lcd_babystep_z() { _lcd_babystep(Z_AXIS, PSTR(MSG_BABYSTEPPING_Z)); }
void lcd_babystep_z() { lcd_goto_screen(_lcd_babystep_z); babysteps_done = 0; defer_return_to_status = true; }
#endif //BABYSTEPPING
#if ENABLED(AUTO_BED_LEVELING_UBL)
float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
// seperate value that doesn't lose precision.
static int ubl_encoderPosition = 0;
static void _lcd_mesh_fine_tune(const char* msg) {
defer_return_to_status = true;
if (ubl.encoder_diff) {
ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1;
ubl.encoder_diff = 0;
mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
mesh_edit_value = mesh_edit_accumulator;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
const int32_t rounded = (int32_t)(mesh_edit_value * 1000.0);
mesh_edit_value = float(rounded - (rounded % 5L)) / 1000.0;
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
}
void _lcd_mesh_edit_NOP() {
defer_return_to_status = true;
}
void _lcd_mesh_edit() {
_lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
}
float lcd_mesh_edit() {
lcd_goto_screen(_lcd_mesh_edit_NOP);
_lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
return mesh_edit_value;
}
void lcd_mesh_edit_setup(float initial) {
mesh_edit_value = mesh_edit_accumulator = initial;
lcd_goto_screen(_lcd_mesh_edit_NOP);
}
void _lcd_z_offset_edit() {
_lcd_mesh_fine_tune(PSTR("Z-Offset: "));
}
float lcd_z_offset_edit() {
lcd_goto_screen(_lcd_z_offset_edit);
return mesh_edit_value;
}
void lcd_z_offset_edit_setup(float initial) {
mesh_edit_value = mesh_edit_accumulator = initial;
lcd_goto_screen(_lcd_z_offset_edit);
}
#endif // AUTO_BED_LEVELING_UBL
/**
* Watch temperature callbacks
*/
#if WATCH_HOTENDS
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); }
#endif
#if HOTENDS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() { thermalManager.start_watching_heater(1); }
#endif // HOTENDS > 1
#if HOTENDS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() { thermalManager.start_watching_heater(2); }
#endif // HOTENDS > 2
#if HOTENDS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() { thermalManager.start_watching_heater(3); }
#endif // HOTENDS > 3
#else
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() {}
#endif
#if HOTENDS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() {}
#endif // HOTENDS > 1
#if HOTENDS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() {}
#endif // HOTENDS > 2
#if HOTENDS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() {}
#endif // HOTENDS > 3
#endif
#if WATCH_THE_BED
void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
void lcd_enqueue_filament_change() {
if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
8 years ago
lcd_save_previous_screen();
lcd_goto_screen(lcd_filament_change_toocold_menu);
return;
}
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
enqueue_and_echo_commands_P(PSTR("M600"));
}
#endif
/**
*
* "Tune" submenu
*
*/
void lcd_tune_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
//
// Speed:
//
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
// Manual bed leveling, Bed Z:
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
10 years ago
//
// Nozzle:
// Nozzle [1-4]:
//
#if HOTENDS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#else //HOTENDS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
//
// Bed:
//
#if WATCH_THE_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Flow:
// Flow 1:
// Flow 2:
// Flow 3:
// Flow 4:
//
#if EXTRUDERS == 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[0], 10, 999);
#else // EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[active_extruder], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &flow_percentage[0], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &flow_percentage[1], 10, 999);
#if EXTRUDERS > 2
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &flow_percentage[2], 10, 999);
#if EXTRUDERS > 3
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &flow_percentage[3], 10, 999);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
//
// Babystep X:
// Babystep Y:
// Babystep Z:
//
#if ENABLED(BABYSTEPPING)
#if ENABLED(BABYSTEP_XY)
MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x);
MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y);
#endif //BABYSTEP_XY
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
#endif
//
// Change filament
//
#if ENABLED(FILAMENT_CHANGE_FEATURE)
if (!thermalManager.tooColdToExtrude(active_extruder))
MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_enqueue_filament_change);
#endif
END_MENU();
}
/**
*
* "Driver current control" submenu items
*
*/
#if ENABLED(DAC_STEPPER_CURRENT)
void dac_driver_getValues() { LOOP_XYZE(i) driverPercent[i] = dac_current_get_percent((AxisEnum)i); }
void dac_driver_commit() { dac_current_set_percents(driverPercent); }
void dac_driver_eeprom_write() { dac_commit_eeprom(); }
void lcd_dac_menu() {
dac_driver_getValues();
START_MENU();
MENU_BACK(MSG_CONTROL);
MENU_ITEM_EDIT_CALLBACK(int3, MSG_X " " MSG_DAC_PERCENT, &driverPercent[X_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int3, MSG_Y " " MSG_DAC_PERCENT, &driverPercent[Y_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int3, MSG_Z " " MSG_DAC_PERCENT, &driverPercent[Z_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM_EDIT_CALLBACK(int3, MSG_E " " MSG_DAC_PERCENT, &driverPercent[E_AXIS], 0, 100, dac_driver_commit);
MENU_ITEM(function, MSG_DAC_EEPROM_WRITE, dac_driver_eeprom_write);
END_MENU();
}
#endif
constexpr int heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP);
/**
*
* "Prepare" submenu items
*
*/
void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) {
if (temph > 0) thermalManager.setTargetHotend(min(heater_maxtemp[endnum], temph), endnum);
#if TEMP_SENSOR_BED != 0
if (tempb >= 0) thermalManager.setTargetBed(tempb);
#else
UNUSED(tempb);
#endif
#if FAN_COUNT > 0
#if FAN_COUNT > 1
fanSpeeds[active_extruder < FAN_COUNT ? active_extruder : 0] = fan;
#else
fanSpeeds[0] = fan;
#endif
#else
UNUSED(fan);
#endif
lcd_return_to_status();
}
#if TEMP_SENSOR_0 != 0
void lcd_preheat_m1_e0_only() { _lcd_preheat(0, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e0_only() { _lcd_preheat(0, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e0() { _lcd_preheat(0, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e0() { _lcd_preheat(0, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#endif
#if HOTENDS > 1
void lcd_preheat_m1_e1_only() { _lcd_preheat(1, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e1_only() { _lcd_preheat(1, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e1() { _lcd_preheat(1, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e1() { _lcd_preheat(1, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if HOTENDS > 2
void lcd_preheat_m1_e2_only() { _lcd_preheat(2, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e2_only() { _lcd_preheat(2, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e2() { _lcd_preheat(2, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e2() { _lcd_preheat(2, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if HOTENDS > 3
void lcd_preheat_m1_e3_only() { _lcd_preheat(3, lcd_preheat_hotend_temp[0], -1, lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e3_only() { _lcd_preheat(3, lcd_preheat_hotend_temp[1], -1, lcd_preheat_fan_speed[1]); }
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_e3() { _lcd_preheat(3, lcd_preheat_hotend_temp[0], lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_e3() { _lcd_preheat(3, lcd_preheat_hotend_temp[1], lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#endif
#endif
void lcd_preheat_m1_all() {
#if HOTENDS > 1
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 1);
#if HOTENDS > 2
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 2);
#if HOTENDS > 3
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[0], 3);
#endif
#endif
#endif
#if TEMP_SENSOR_BED != 0
lcd_preheat_m1_e0();
#else
lcd_preheat_m1_e0_only();
#endif
}
void lcd_preheat_m2_all() {
#if HOTENDS > 1
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 1);
#if HOTENDS > 2
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 2);
#if HOTENDS > 3
thermalManager.setTargetHotend(lcd_preheat_hotend_temp[1], 3);
#endif
#endif
#endif
#if TEMP_SENSOR_BED != 0
lcd_preheat_m2_e0();
#else
lcd_preheat_m2_e0_only();
#endif
}
#endif // HOTENDS > 1
#if TEMP_SENSOR_BED != 0
void lcd_preheat_m1_bedonly() { _lcd_preheat(0, 0, lcd_preheat_bed_temp[0], lcd_preheat_fan_speed[0]); }
void lcd_preheat_m2_bedonly() { _lcd_preheat(0, 0, lcd_preheat_bed_temp[1], lcd_preheat_fan_speed[1]); }
#endif
#if TEMP_SENSOR_0 != 0 && (TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0)
void lcd_preheat_m1_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
#if HOTENDS == 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0);
MENU_ITEM(function, MSG_PREHEAT_1_END, lcd_preheat_m1_e0_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0_only);
#endif
#else
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H1, lcd_preheat_m1_e0);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H2, lcd_preheat_m1_e1);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E2, lcd_preheat_m1_e1_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H2, lcd_preheat_m1_e1_only);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H3, lcd_preheat_m1_e2);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E3, lcd_preheat_m1_e2_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H3, lcd_preheat_m1_e2_only);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H4, lcd_preheat_m1_e3);
MENU_ITEM(function, MSG_PREHEAT_1_END " " MSG_E4, lcd_preheat_m1_e3_only);
#else
MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H4, lcd_preheat_m1_e3_only);
#endif
#endif
#endif
MENU_ITEM(function, MSG_PREHEAT_1_ALL, lcd_preheat_m1_all);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_1_BEDONLY, lcd_preheat_m1_bedonly);
#endif
END_MENU();
}
void lcd_preheat_m2_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
#if HOTENDS == 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0);
MENU_ITEM(function, MSG_PREHEAT_2_END, lcd_preheat_m2_e0_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0_only);
#endif
#else
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H1, lcd_preheat_m2_e0);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E1, lcd_preheat_m2_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H2, lcd_preheat_m2_e1);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E2, lcd_preheat_m2_e1_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H1, lcd_preheat_m2_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H2, lcd_preheat_m2_e1_only);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H3, lcd_preheat_m2_e2);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E3, lcd_preheat_m2_e2_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H3, lcd_preheat_m2_e2_only);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H4, lcd_preheat_m2_e3);
MENU_ITEM(function, MSG_PREHEAT_2_END " " MSG_E4, lcd_preheat_m2_e3_only);
#else
MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H4, lcd_preheat_m2_e3_only);
#endif
#endif
#endif
MENU_ITEM(function, MSG_PREHEAT_2_ALL, lcd_preheat_m2_all);
9 years ago
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_2_BEDONLY, lcd_preheat_m2_bedonly);
#endif
END_MENU();
}
#endif // TEMP_SENSOR_0 && (TEMP_SENSOR_1 || TEMP_SENSOR_2 || TEMP_SENSOR_3 || TEMP_SENSOR_BED)
void lcd_cooldown() {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif
thermalManager.disable_all_heaters();
lcd_return_to_status();
}
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
void lcd_autostart_sd() {
card.autostart_index = 0;
card.setroot();
card.checkautostart(true);
}
#endif
#if ENABLED(LCD_BED_LEVELING)
/**
*
* "Prepare" > "Level Bed" handlers
*
*/
static uint8_t manual_probe_index;
#if ENABLED(PROBE_MANUALLY)
extern bool g29_in_progress;
#endif
// LCD probed points are from defaults
constexpr uint8_t total_probe_points =
#if ABL_GRID
(ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
int(3)
#elif ENABLED(AUTO_BED_LEVELING_UBL)
(UBL_MESH_NUM_X_POINTS) * (UBL_MESH_NUM_Y_POINTS)
#elif ENABLED(MESH_BED_LEVELING)
(MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)
#endif
;
#if ENABLED(MESH_BED_LEVELING)
// Utility to go to the next mesh point
inline void _manual_probe_goto_xy(float x, float y) {
if (no_reentrance) return;
#if MANUAL_PROBE_HEIGHT > 0
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
line_to_current(Z_AXIS);
#endif
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(XY_PROBE_SPEED), active_extruder);
#if MANUAL_PROBE_HEIGHT > 0
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2;
line_to_current(Z_AXIS);
#endif
lcd_synchronize();
}
#endif // MESH_BED_LEVELING
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
void _lcd_level_goto_next_point();
#endif
void _lcd_level_bed_done() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_DONE));
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
}
/**
* Step 6: Display "Next point: 1 / 9" while waiting for move to finish
*/
void _lcd_level_bed_moving() {
if (lcdDrawUpdate) {
char msg[10];
sprintf_P(msg, PSTR("%i / %u"), (int)(manual_probe_index + 1), total_probe_points);
lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_NEXT_POINT), msg);
}
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
}
/**
* Step 7: Get the Z coordinate, click goes to the next point or exits
*/
void _lcd_level_bed_get_z() {
ENCODER_DIRECTION_NORMAL();
if (no_reentrance) goto KeepDrawing;
// Encoder wheel adjusts the Z position
if (encoderPosition) {
refresh_cmd_timeout();
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
NOLESS(current_position[Z_AXIS], -(LCD_PROBE_Z_RANGE) * 0.5);
NOMORE(current_position[Z_AXIS], (LCD_PROBE_Z_RANGE) * 0.5);
line_to_current(Z_AXIS);
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
encoderPosition = 0;
}
if (lcd_clicked) {
// Use a hook to set the probe point z
// (zigzag arranges in XY order)
#if ENABLED(AUTO_BED_LEVELING_UBL)
// UBL set-z handling goes here
#elif ENABLED(PROBE_MANUALLY)
// G29 helpfully records Z and goes to the next
// point (or beeps if done)
enqueue_and_echo_commands_P(PSTR("G29"));
manual_probe_index++;
#elif ENABLED(MESH_BED_LEVELING)
mbl.set_zigzag_z(manual_probe_index++, current_position[Z_AXIS]);
#endif
// If done...
if (manual_probe_index == total_probe_points) {
// Say "Done!"
lcd_goto_screen(_lcd_level_bed_done);
// Raise Z to the "manual probe height"
#if MANUAL_PROBE_HEIGHT > 0
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
line_to_current(Z_AXIS);
lcd_synchronize();
#endif
// Enable leveling, if needed
#if ENABLED(MESH_BED_LEVELING)
mbl.set_has_mesh(true);
mbl.set_reactivate(true);
enqueue_and_echo_commands_P(PSTR("G28"));
#elif ENABLED(AUTO_BED_LEVELING_UBL)
// UBL enable goes here
#elif ENABLED(PROBE_MANUALLY)
// ABL will be enabled due to "G29".
#endif
lcd_return_to_status();
//LCD_MESSAGEPGM(MSG_LEVEL_BED_DONE);
lcd_completion_feedback();
}
else {
// Move to the next probe point, if needed
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
_lcd_level_goto_next_point();
#elif ENABLED(AUTO_BED_LEVELING_UBL)
// UBL goto-next-point goes here
#endif
}
}
KeepDrawing:
// Update on first display, then only on updates to Z position
// Show message above on clicks instead
if (lcdDrawUpdate) {
const float v = current_position[Z_AXIS];
lcd_implementation_drawedit(PSTR(MSG_MOVE_Z), ftostr43sign(v + (v < 0 ? -0.0001 : 0.0001), '+'));
}
}
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
/**
* Step 5: Initiate a move to the next point
*/
void _lcd_level_goto_next_point() {
// Set the menu to display ahead of blocking call
lcd_goto_screen(_lcd_level_bed_moving);
#if ENABLED(MESH_BED_LEVELING)
int8_t px, py;
mbl.zigzag(manual_probe_index, px, py);
// Controls the loop until the move is done
_manual_probe_goto_xy(
LOGICAL_X_POSITION(mbl.index_to_xpos[px]),
LOGICAL_Y_POSITION(mbl.index_to_ypos[py])
);
#elif ENABLED(AUTO_BED_LEVELING_UBL)
// UBL may have its own methodology
#elif ENABLED(PROBE_MANUALLY)
// Just wait for the G29 move to complete
lcd_synchronize();
#endif
// After the blocking function returns, change menus
lcd_goto_screen(_lcd_level_bed_get_z);
}
#endif // MESH_BED_LEVELING
/**
* Step 4: Display "Click to Begin", wait for click
* Move to the first probe position
*/
void _lcd_level_bed_homing_done() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_WAITING));
if (lcd_clicked) {
manual_probe_index = 0;
#if ENABLED(MESH_BED_LEVELING)
_lcd_level_goto_next_point();
#elif ENABLED(AUTO_BED_LEVELING_UBL)
// UBL click handling should go here
#elif ENABLED(PROBE_MANUALLY)
enqueue_and_echo_commands_P(PSTR("G29"));
_lcd_level_goto_next_point();
#endif
}
}
/**
* Step 3: Display "Homing XYZ" - Wait for homing to finish
*/
void _lcd_level_bed_homing() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_HOMING), NULL);
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_screen(_lcd_level_bed_homing_done);
}
/**
* Step 2: Continue Bed Leveling...
*/
void _lcd_level_bed_continue() {
#if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
reset_bed_level();
#endif
defer_return_to_status = true;
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
9 years ago
lcd_goto_screen(_lcd_level_bed_homing);
enqueue_and_echo_commands_P(PSTR("G28"));
}
/**
* Step 1: Bed Level entry-point: "Cancel" or "Level Bed"
*/
void lcd_level_bed() {
START_MENU();
MENU_BACK(MSG_LEVEL_BED_CANCEL);
MENU_ITEM(submenu, MSG_LEVEL_BED, _lcd_level_bed_continue);
END_MENU();
}
#endif // LCD_BED_LEVELING
/**
*
* "Prepare" submenu
*
*/
void lcd_prepare_menu() {
START_MENU();
//
// ^ Main
//
MENU_BACK(MSG_MAIN);
//
// Move Axis
//
#if ENABLED(DELTA)
if (axis_homed[Z_AXIS])
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
//
// Auto Home
//
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#if ENABLED(INDIVIDUAL_AXIS_HOMING_MENU)
MENU_ITEM(gcode, MSG_AUTO_HOME_X, PSTR("G28 X"));
MENU_ITEM(gcode, MSG_AUTO_HOME_Y, PSTR("G28 Y"));
MENU_ITEM(gcode, MSG_AUTO_HOME_Z, PSTR("G28 Z"));
#endif
//
// Level Bed
//
#if ENABLED(LCD_BED_LEVELING)
#if ENABLED(PROBE_MANUALLY)
if (!g29_in_progress)
#endif
MENU_ITEM(submenu, MSG_LEVEL_BED, lcd_level_bed);
#elif HAS_ABL
MENU_ITEM(gcode, MSG_LEVEL_BED,
axis_homed[X_AXIS] && axis_homed[Y_AXIS] ? PSTR("G29") : PSTR("G28\nG29")
);
#endif
#if DISABLED(NO_WORKSPACE_OFFSETS)
//
// Set Home Offsets
//
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
#endif
//
// Disable Steppers
//
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
//
// Preheat PLA
// Preheat ABS
//
#if TEMP_SENSOR_0 != 0
//
// Change filament
//
#if ENABLED(FILAMENT_CHANGE_FEATURE)
if (!thermalManager.tooColdToExtrude(active_extruder))
MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_enqueue_filament_change);
#endif
//
// Cooldown
//
bool has_heat = false;
HOTEND_LOOP() if (thermalManager.target_temperature[HOTEND_INDEX]) { has_heat = true; break; }
#if HAS_TEMP_BED
if (thermalManager.target_temperature_bed) has_heat = true;
#endif
if (has_heat) MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
//
// Preheat for Material 1 and 2
//
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM(submenu, MSG_PREHEAT_1, lcd_preheat_m1_menu);
MENU_ITEM(submenu, MSG_PREHEAT_2, lcd_preheat_m2_menu);
#else
MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_m1_e0_only);
MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_m2_e0_only);
#endif
#endif // TEMP_SENSOR_0 != 0
//
// BLTouch Self-Test and Reset
//
#if ENABLED(BLTOUCH)
MENU_ITEM(gcode, MSG_BLTOUCH_SELFTEST, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_SELFTEST)));
if (!endstops.z_probe_enabled && TEST_BLTOUCH())
MENU_ITEM(gcode, MSG_BLTOUCH_RESET, PSTR("M280 P" STRINGIFY(Z_ENDSTOP_SERVO_NR) " S" STRINGIFY(BLTOUCH_RESET)));
#endif
//
// Switch power on/off
//
#if HAS_POWER_SWITCH
if (powersupply)
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
else
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
#endif
//
// Autostart
//
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd);
#endif
END_MENU();
}
float move_menu_scale;
#if ENABLED(DELTA_CALIBRATION_MENU)
void lcd_move_z();
void lcd_delta_calibrate_menu();
void _lcd_calibrate_homing() {
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_previous_menu();
}
void _lcd_delta_calibrate_home() {
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_screen(_lcd_calibrate_homing);
}
// Move directly to the tower position with uninterpolated moves
// If we used interpolated moves it would cause this to become re-entrant
void _goto_tower_pos(const float &a) {
if (no_reentrance) return;
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
line_to_current(Z_AXIS);
current_position[X_AXIS] = a < 0 ? X_HOME_POS : sin(a) * -(DELTA_PRINTABLE_RADIUS);
current_position[Y_AXIS] = a < 0 ? Y_HOME_POS : cos(a) * (DELTA_PRINTABLE_RADIUS);
line_to_current(Z_AXIS);
current_position[Z_AXIS] = 4.0;
line_to_current(Z_AXIS);
lcd_synchronize();
move_menu_scale = 0.1;
lcd_goto_screen(lcd_move_z);
}
void _goto_tower_x() { _goto_tower_pos(RADIANS(120)); }
void _goto_tower_y() { _goto_tower_pos(RADIANS(240)); }
void _goto_tower_z() { _goto_tower_pos(0); }
void _goto_center() { _goto_tower_pos(-1); }
void lcd_delta_calibrate_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
if (axis_homed[Z_AXIS]) {
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_X, _goto_tower_x);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Y, _goto_tower_y);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Z, _goto_tower_z);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_CENTER, _goto_center);
}
END_MENU();
}
#endif // DELTA_CALIBRATION_MENU
/**
* If the most recent manual move hasn't been fed to the planner yet,
* and the planner can accept one, send immediately
*/
inline void manage_manual_move() {
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
manual_move_axis = (int8_t)NO_AXIS;
}
}
/**
* Set a flag that lcd_update() should start a move
* to "current_position" after a short delay.
*/
inline void manual_move_to_current(AxisEnum axis
#if E_MANUAL > 1
, int8_t eindex=-1
#endif
) {
#if E_MANUAL > 1
if (axis == E_AXIS) manual_move_e_index = eindex >= 0 ? eindex : active_extruder;
#endif
manual_move_start_time = millis() + (move_menu_scale < 0.99 ? 0UL : 250UL); // delay for bigger moves
manual_move_axis = (int8_t)axis;
}
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
void _lcd_move_xyz(const char* name, AxisEnum axis) {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
refresh_cmd_timeout();
float min = current_position[axis] - 1000,
max = current_position[axis] + 1000;
#if HAS_SOFTWARE_ENDSTOPS
// Limit to software endstops, if enabled
if (soft_endstops_enabled) {
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
min = soft_endstop_min[axis];
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
max = soft_endstop_max[axis];
#endif
}
#endif
// Get the new position
current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale;
// Delta limits XY based on the current offset from center
// This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z_AXIS) {
max = sqrt(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
min = -max;
}
#endif
// Limit only when trying to move towards the limit
if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min);
if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max);
manual_move_to_current(axis);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr41sign(current_position[axis]));
}
void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS); }
void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS); }
void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS); }
void _lcd_move_e(
#if E_MANUAL > 1
int8_t eindex=-1
#endif
) {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale;
encoderPosition = 0;
manual_move_to_current(E_AXIS
#if E_MANUAL > 1
, eindex
#endif
);
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
if (lcdDrawUpdate) {
PGM_P pos_label;
#if E_MANUAL == 1
pos_label = PSTR(MSG_MOVE_E);
#else
switch (eindex) {
default: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E1); break;
case 1: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E2); break;
#if E_MANUAL > 2
case 2: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E3); break;
#if E_MANUAL > 3
case 3: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E4); break;
#endif
#endif
}
#endif
lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS]));
}
}
void lcd_move_e() { _lcd_move_e(); }
#if E_MANUAL > 1
void lcd_move_e0() { _lcd_move_e(0); }
void lcd_move_e1() { _lcd_move_e(1); }
#if E_MANUAL > 2
void lcd_move_e2() { _lcd_move_e(2); }
#if E_MANUAL > 3
void lcd_move_e3() { _lcd_move_e(3); }
#endif
#endif
#endif
/**
*
* "Prepare" > "Move Xmm" > "Move XYZ" submenu
*
*/
screenFunc_t _manual_move_func_ptr;
void lcd_move_menu_10mm() { move_menu_scale = 10.0; lcd_goto_screen(_manual_move_func_ptr); }
void lcd_move_menu_1mm() { move_menu_scale = 1.0; lcd_goto_screen(_manual_move_func_ptr); }
void lcd_move_menu_01mm() { move_menu_scale = 0.1; lcd_goto_screen(_manual_move_func_ptr); }
void _lcd_move_distance_menu(AxisEnum axis, screenFunc_t func) {
_manual_move_func_ptr = func;
START_MENU();
if (LCD_HEIGHT >= 4) {
switch(axis) {
case X_AXIS:
STATIC_ITEM(MSG_MOVE_X, true, true); break;
case Y_AXIS:
STATIC_ITEM(MSG_MOVE_Y, true, true); break;
case Z_AXIS:
STATIC_ITEM(MSG_MOVE_Z, true, true); break;
default:
STATIC_ITEM(MSG_MOVE_E, true, true); break;
}
}
MENU_BACK(MSG_MOVE_AXIS);
if (axis == X_AXIS || axis == Y_AXIS)
MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm);
MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm);
MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm);
END_MENU();
}
void lcd_move_get_x_amount() { _lcd_move_distance_menu(X_AXIS, lcd_move_x); }
void lcd_move_get_y_amount() { _lcd_move_distance_menu(Y_AXIS, lcd_move_y); }
void lcd_move_get_z_amount() { _lcd_move_distance_menu(Z_AXIS, lcd_move_z); }
void lcd_move_get_e_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e); }
#if E_MANUAL > 1
void lcd_move_get_e0_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e0); }
void lcd_move_get_e1_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e1); }
#if E_MANUAL > 2
void lcd_move_get_e2_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e2); }
#if E_MANUAL > 3
void lcd_move_get_e3_amount() { _lcd_move_distance_menu(E_AXIS, lcd_move_e3); }
#endif
#endif
#endif
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
#if IS_KINEMATIC
#define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
#if ENABLED(DELTA)
#define _MOVE_XY_ALLOWED (current_position[Z_AXIS] <= delta_clip_start_height)
void lcd_lower_z_to_clip_height() {
if (!no_reentrance) {
current_position[Z_AXIS] = delta_clip_start_height;
line_to_current(Z_AXIS);
lcd_synchronize();
}
}
#else
#define _MOVE_XY_ALLOWED true
#endif
#else
#define _MOVE_XYZ_ALLOWED true
#define _MOVE_XY_ALLOWED true
#endif
void lcd_move_menu() {
START_MENU();
MENU_BACK(MSG_PREPARE);
if (_MOVE_XYZ_ALLOWED) {
if (_MOVE_XY_ALLOWED) {
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_get_x_amount);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_get_y_amount);
}
#if ENABLED(DELTA)
else
MENU_ITEM(function, MSG_FREE_XY, lcd_lower_z_to_clip_height);
#endif
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_get_z_amount);
}
else
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#if ENABLED(SWITCHING_EXTRUDER)
if (active_extruder)
MENU_ITEM(gcode, MSG_SELECT " " MSG_E1, PSTR("T0"));
else
MENU_ITEM(gcode, MSG_SELECT " " MSG_E2, PSTR("T1"));
#endif
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_get_e_amount);
#if E_MANUAL > 1
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E1, lcd_move_get_e0_amount);
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E2, lcd_move_get_e1_amount);
#if E_MANUAL > 2
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E3, lcd_move_get_e2_amount);
#if E_MANUAL > 3
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E4, lcd_move_get_e3_amount);
#endif
#endif
#endif
END_MENU();
}
/**
*
* "Control" submenu
*
*/
#if ENABLED(EEPROM_SETTINGS)
static void lcd_store_settings() { lcd_completion_feedback(Config_StoreSettings()); }
static void lcd_load_settings() { lcd_completion_feedback(Config_RetrieveSettings()); }
#endif
static void lcd_factory_settings() {
Config_ResetDefault();
lcd_completion_feedback();
}
void lcd_control_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
MENU_ITEM(submenu, MSG_VOLUMETRIC, lcd_control_volumetric_menu);
#if HAS_LCD_CONTRAST
//MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast);
#endif
#if ENABLED(FWRETRACT)
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
MENU_ITEM(submenu, MSG_DRIVE_STRENGTH, lcd_dac_menu);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
MENU_ITEM(function, MSG_LOAD_EEPROM, lcd_load_settings);
#endif
MENU_ITEM(function, MSG_RESTORE_FAILSAFE, lcd_factory_settings);
END_MENU();
}
/**
*
* "Temperature" submenu
*
*/
#if ENABLED(PID_AUTOTUNE_MENU)
#if ENABLED(PIDTEMP)
int autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
#endif
#if ENABLED(PIDTEMPBED)
int autotune_temp_bed = 70;
#endif
void _lcd_autotune(int e) {
char cmd[30];
sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
#if HAS_PID_FOR_BOTH
e < 0 ? autotune_temp_bed : autotune_temp[e]
#elif ENABLED(PIDTEMPBED)
autotune_temp_bed
#else
autotune_temp[e]
#endif
);
enqueue_and_echo_command(cmd);
}
#endif //PID_AUTOTUNE_MENU
#if ENABLED(PIDTEMP)
// Helpers for editing PID Ki & Kd values
// grab the PID value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i(int e) {
#if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
UNUSED(e);
#endif
PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
thermalManager.updatePID();
}
void copy_and_scalePID_d(int e) {
#if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
UNUSED(e);
#endif
PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
thermalManager.updatePID();
}
#define _PIDTEMP_BASE_FUNCTIONS(eindex) \
void copy_and_scalePID_i_E ## eindex() { copy_and_scalePID_i(eindex); } \
void copy_and_scalePID_d_E ## eindex() { copy_and_scalePID_d(eindex); }
#if ENABLED(PID_AUTOTUNE_MENU)
#define _PIDTEMP_FUNCTIONS(eindex) \
_PIDTEMP_BASE_FUNCTIONS(eindex); \
void lcd_autotune_callback_E ## eindex() { _lcd_autotune(eindex); }
#else
#define _PIDTEMP_FUNCTIONS(eindex) _PIDTEMP_BASE_FUNCTIONS(eindex)
#endif
_PIDTEMP_FUNCTIONS(0)
#if ENABLED(PID_PARAMS_PER_HOTEND)
#if HOTENDS > 1
_PIDTEMP_FUNCTIONS(1)
#if HOTENDS > 2
_PIDTEMP_FUNCTIONS(2)
#if HOTENDS > 3
_PIDTEMP_FUNCTIONS(3)
#endif //HOTENDS > 3
#endif //HOTENDS > 2
#endif //HOTENDS > 1
#endif //PID_PARAMS_PER_HOTEND
#endif //PIDTEMP
/**
*
* "Control" > "Temperature" submenu
*
*/
void lcd_control_temperature_menu() {
START_MENU();
//
// ^ Control
//
MENU_BACK(MSG_CONTROL);
//
// Nozzle:
// Nozzle [1-4]:
//
#if HOTENDS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#else //HOTENDS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif
#if HOTENDS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif
#if HOTENDS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
//
// Bed:
//
#if WATCH_THE_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Autotemp, Min, Max, Fact
//
#if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0);
#endif
//
// PID-P, PID-I, PID-D, PID-C, PID Autotune
// PID-P E1, PID-I E1, PID-D E1, PID-C E1, PID Autotune E1
// PID-P E2, PID-I E2, PID-D E2, PID-C E2, PID Autotune E2
// PID-P E3, PID-I E3, PID-D E3, PID-C E3, PID Autotune E3
// PID-P E4, PID-I E4, PID-D E4, PID-C E4, PID Autotune E4
//
#if ENABLED(PIDTEMP)
#define _PID_BASE_MENU_ITEMS(ELABEL, eindex) \
raw_Ki = unscalePID_i(PID_PARAM(Ki, eindex)); \
raw_Kd = unscalePID_d(PID_PARAM(Kd, eindex)); \
MENU_ITEM_EDIT(float52, MSG_PID_P ELABEL, &PID_PARAM(Kp, eindex), 1, 9990); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I ELABEL, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E ## eindex); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D ELABEL, &raw_Kd, 1, 9990, copy_and_scalePID_d_E ## eindex)
#if ENABLED(PID_EXTRUSION_SCALING)
#define _PID_MENU_ITEMS(ELABEL, eindex) \
_PID_BASE_MENU_ITEMS(ELABEL, eindex); \
MENU_ITEM_EDIT(float3, MSG_PID_C ELABEL, &PID_PARAM(Kc, eindex), 1, 9990)
#else
#define _PID_MENU_ITEMS(ELABEL, eindex) _PID_BASE_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_AUTOTUNE_MENU)
#define PID_MENU_ITEMS(ELABEL, eindex) \
_PID_MENU_ITEMS(ELABEL, eindex); \
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_PID_AUTOTUNE ELABEL, &autotune_temp[eindex], 150, heater_maxtemp[eindex] - 15, lcd_autotune_callback_E ## eindex)
#else
#define PID_MENU_ITEMS(ELABEL, eindex) _PID_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
PID_MENU_ITEMS(" " MSG_E1, 0);
PID_MENU_ITEMS(" " MSG_E2, 1);
#if HOTENDS > 2
PID_MENU_ITEMS(" " MSG_E3, 2);
#if HOTENDS > 3
PID_MENU_ITEMS(" " MSG_E4, 3);
#endif //HOTENDS > 3
#endif //HOTENDS > 2
#else //!PID_PARAMS_PER_HOTEND || HOTENDS == 1
PID_MENU_ITEMS("", 0);
#endif //!PID_PARAMS_PER_HOTEND || HOTENDS == 1
#endif //PIDTEMP
//
// Preheat Material 1 conf
//
MENU_ITEM(submenu, MSG_PREHEAT_1_SETTINGS, lcd_control_temperature_preheat_material1_settings_menu);
//
// Preheat Material 2 conf
//
MENU_ITEM(submenu, MSG_PREHEAT_2_SETTINGS, lcd_control_temperature_preheat_material2_settings_menu);
END_MENU();
}
void _lcd_control_temperature_preheat_settings_menu(uint8_t material) {
#if HOTENDS > 3
#define MINTEMP_ALL MIN4(HEATER_0_MINTEMP, HEATER_1_MINTEMP, HEATER_2_MINTEMP, HEATER_3_MINTEMP)
#define MAXTEMP_ALL MAX4(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP)
#elif HOTENDS > 2
#define MINTEMP_ALL MIN3(HEATER_0_MINTEMP, HEATER_1_MINTEMP, HEATER_2_MINTEMP)
#define MAXTEMP_ALL MAX3(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP)
#elif HOTENDS > 1
#define MINTEMP_ALL min(HEATER_0_MINTEMP, HEATER_1_MINTEMP)
#define MAXTEMP_ALL max(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP)
#else
#define MINTEMP_ALL HEATER_0_MINTEMP
#define MAXTEMP_ALL HEATER_0_MAXTEMP
#endif
START_MENU();
MENU_BACK(MSG_TEMPERATURE);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &lcd_preheat_fan_speed[material], 0, 255);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &lcd_preheat_hotend_temp[material], MINTEMP_ALL, MAXTEMP_ALL - 15);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &lcd_preheat_bed_temp[material], BED_MINTEMP, BED_MAXTEMP - 15);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
#endif
END_MENU();
}
/**
*
* "Temperature" > "Preheat Material 1 conf" submenu
*
*/
void lcd_control_temperature_preheat_material1_settings_menu() { _lcd_control_temperature_preheat_settings_menu(0); }
/**
*
* "Temperature" > "Preheat Material 2 conf" submenu
*
*/
void lcd_control_temperature_preheat_material2_settings_menu() { _lcd_control_temperature_preheat_settings_menu(1); }
void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
#if ENABLED(DISTINCT_E_FACTORS)
void _reset_e_acceleration_rate(const uint8_t e) { if (e == active_extruder) _reset_acceleration_rates(); }
void _reset_e0_acceleration_rate() { _reset_e_acceleration_rate(0); }
void _reset_e1_acceleration_rate() { _reset_e_acceleration_rate(1); }
#if E_STEPPERS > 2
void _reset_e2_acceleration_rate() { _reset_e_acceleration_rate(2); }
#if E_STEPPERS > 3
void _reset_e3_acceleration_rate() { _reset_e_acceleration_rate(3); }
#endif
#endif
#endif
void _planner_refresh_positioning() { planner.refresh_positioning(); }
#if ENABLED(DISTINCT_E_FACTORS)
void _planner_refresh_e_positioning(const uint8_t e) {
if (e == active_extruder)
_planner_refresh_positioning();
else
planner.steps_to_mm[e] = 1.0 / planner.axis_steps_per_mm[e];
}
void _planner_refresh_e0_positioning() { _reset_e_acceleration_rate(0); }
void _planner_refresh_e1_positioning() { _reset_e_acceleration_rate(1); }
#if E_STEPPERS > 2
void _planner_refresh_e2_positioning() { _reset_e_acceleration_rate(2); }
#if E_STEPPERS > 3
void _planner_refresh_e3_positioning() { _reset_e_acceleration_rate(3); }
#endif
#endif
#endif
/**
*
* "Control" > "Motion" submenu
*
*/
void lcd_control_motion_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
#if HAS_BED_PROBE
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX);
#endif
// Manual bed leveling, Bed Z:
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000);
MENU_ITEM_EDIT(float3, MSG_VX_JERK, &planner.max_jerk[X_AXIS], 1, 990);
MENU_ITEM_EDIT(float3, MSG_VY_JERK, &planner.max_jerk[Y_AXIS], 1, 990);
#if ENABLED(DELTA)
MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_jerk[Z_AXIS], 1, 990);
#else
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_jerk[Z_AXIS], 0.1, 990);
#endif
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_jerk[E_AXIS], 1, 990);
//
// M203 Settings
//
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate_mm_s[X_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate_mm_s[Y_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate_mm_s[Z_AXIS], 1, 999);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS + active_extruder], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E1, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E2, &planner.max_feedrate_mm_s[E_AXIS + 1], 1, 999);
#if E_STEPPERS > 2
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E3, &planner.max_feedrate_mm_s[E_AXIS + 2], 1, 999);
#if E_STEPPERS > 3
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E3, &planner.max_feedrate_mm_s[E_AXIS + 3], 1, 999);
#endif
#endif
#else
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
#endif
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate_mm_s, 0, 999);
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate_mm_s, 0, 999);
//
// M201 Settings
//
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS + active_extruder], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E1, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_e0_acceleration_rate);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E2, &planner.max_acceleration_mm_per_s2[E_AXIS + 1], 100, 99000, _reset_e1_acceleration_rate);
#if E_STEPPERS > 2
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E3, &planner.max_acceleration_mm_per_s2[E_AXIS + 2], 100, 99000, _reset_e2_acceleration_rate);
#if E_STEPPERS > 3
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E4, &planner.max_acceleration_mm_per_s2[E_AXIS + 3], 100, 99000, _reset_e3_acceleration_rate);
#endif
#endif
#else
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
#endif
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
//
// M92 Settings
//
MENU_ITEM_EDIT_CALLBACK(float62, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_ITEM_EDIT_CALLBACK(float62, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_ITEM_EDIT_CALLBACK(float62, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(DISTINCT_E_FACTORS)
MENU_ITEM_EDIT_CALLBACK(float62, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS + active_extruder], 5, 9999, _planner_refresh_positioning);
MENU_ITEM_EDIT_CALLBACK(float62, MSG_E1STEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_e0_positioning);
MENU_ITEM_EDIT_CALLBACK(float62, MSG_E2STEPS, &planner.axis_steps_per_mm[E_AXIS + 1], 5, 9999, _planner_refresh_e1_positioning);
#if E_STEPPERS > 2
MENU_ITEM_EDIT_CALLBACK(float62, MSG_E3STEPS, &planner.axis_steps_per_mm[E_AXIS + 2], 5, 9999, _planner_refresh_e2_positioning);
#if E_STEPPERS > 3
MENU_ITEM_EDIT_CALLBACK(float62, MSG_E4STEPS, &planner.axis_steps_per_mm[E_AXIS + 3], 5, 9999, _planner_refresh_e3_positioning);
#endif
#endif
#else
MENU_ITEM_EDIT_CALLBACK(float62, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_positioning);
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif
END_MENU();
}
/**
*
* "Control" > "Filament" submenu
*
*/
void lcd_control_volumetric_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) {
#if EXTRUDERS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
#else //EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
}
END_MENU();
}
/**
*
* "Control" > "Contrast" submenu
*
*/
#if HAS_LCD_CONTRAST
void lcd_set_contrast() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
set_lcd_contrast(lcd_contrast + encoderPosition);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
if (lcdDrawUpdate) {
lcd_implementation_drawedit(PSTR(MSG_CONTRAST),
#if LCD_CONTRAST_MAX >= 100
itostr3(lcd_contrast)
#else
itostr2(lcd_contrast)
#endif
);
}
}
#endif // HAS_LCD_CONTRAST
/**
*
* "Control" > "Retract" submenu
*
*/
#if ENABLED(FWRETRACT)
void lcd_control_retract_menu() {
START_MENU();
MENU_BACK(MSG_CONTROL);
MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &retract_length_swap, 0, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate_mm_s, 1, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, -100, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, -100, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate_mm_s, 1, 999);
END_MENU();
}
#endif // FWRETRACT
#if ENABLED(SDSUPPORT)
#if !PIN_EXISTS(SD_DETECT)
void lcd_sd_refresh() {
card.initsd();
encoderTopLine = 0;
}
#endif
void lcd_sd_updir() {
card.updir();
encoderTopLine = 0;
screen_changed = true;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
}
/**
*
* "Print from SD" submenu
*
*/
void lcd_sdcard_menu() {
ENCODER_DIRECTION_MENUS();
if (!lcdDrawUpdate && !lcd_clicked) return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_BACK(MSG_MAIN);
card.getWorkDirName();
if (card.filename[0] == '/') {
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh);
#endif
}
else {
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++) {
if (_menuLineNr == _thisItemNr) {
#if ENABLED(SDCARD_RATHERRECENTFIRST) && DISABLED(SDCARD_SORT_ALPHA)
int nr = fileCnt - 1 - i;
#else
int nr = i;
#endif
#if ENABLED(SDCARD_SORT_ALPHA)
card.getfilename_sorted(nr);
#else
card.getfilename(nr);
#endif
if (card.filenameIsDir)
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
else
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}
#endif //SDSUPPORT
#if ENABLED(LCD_INFO_MENU)
#if ENABLED(PRINTCOUNTER)
/**
*
* About Printer > Statistics submenu
*
*/
void lcd_info_stats_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
char buffer[21];
printStatistics stats = print_job_timer.getStats();
START_SCREEN(); // 12345678901234567890
STATIC_ITEM(MSG_INFO_PRINT_COUNT ": ", false, false, itostr3left(stats.totalPrints)); // Print Count: 999
STATIC_ITEM(MSG_INFO_COMPLETED_PRINTS": ", false, false, itostr3left(stats.finishedPrints)); // Completed : 666
duration_t elapsed = stats.printTime;
elapsed.toString(buffer);
STATIC_ITEM(MSG_INFO_PRINT_TIME ": ", false, false); // Total print Time:
STATIC_ITEM("", false, false, buffer); // 99y 364d 23h 59m 59s
elapsed = stats.longestPrint;
elapsed.toString(buffer);
STATIC_ITEM(MSG_INFO_PRINT_LONGEST ": ", false, false); // Longest job time:
STATIC_ITEM("", false, false, buffer); // 99y 364d 23h 59m 59s
sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int(stats.filamentUsed / 100) % 10);
STATIC_ITEM(MSG_INFO_PRINT_FILAMENT ": ", false, false); // Extruded total:
STATIC_ITEM("", false, false, buffer); // 125m
END_SCREEN();
}
#endif // PRINTCOUNTER
/**
*
* About Printer > Thermistors
*
*/
void lcd_info_thermistors_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
#define THERMISTOR_ID TEMP_SENSOR_0
#include "thermistornames.h"
STATIC_ITEM("T0: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_0_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_0_MAXTEMP), false);
#if TEMP_SENSOR_1 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_1
#include "thermistornames.h"
STATIC_ITEM("T1: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_1_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_1_MAXTEMP), false);
#endif
#if TEMP_SENSOR_2 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_2
#include "thermistornames.h"
STATIC_ITEM("T2: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_2_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_2_MAXTEMP), false);
#endif
#if TEMP_SENSOR_3 != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_3
#include "thermistornames.h"
STATIC_ITEM("T3: " THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_3_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_3_MAXTEMP), false);
#endif
#if TEMP_SENSOR_BED != 0
#undef THERMISTOR_ID
#define THERMISTOR_ID TEMP_SENSOR_BED
#include "thermistornames.h"
STATIC_ITEM("TBed:" THERMISTOR_NAME, false, true);
STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(BED_MINTEMP), false);
STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(BED_MAXTEMP), false);
#endif
END_SCREEN();
}
/**
*
* About Printer > Board Info
*
*/
void lcd_info_board_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
STATIC_ITEM(BOARD_NAME, true, true); // MyPrinterController
STATIC_ITEM(MSG_INFO_BAUDRATE ": " STRINGIFY(BAUDRATE), true); // Baud: 250000
STATIC_ITEM(MSG_INFO_PROTOCOL ": " PROTOCOL_VERSION, true); // Protocol: 1.0
#ifdef POWER_SUPPLY
#if (POWER_SUPPLY == 1)
STATIC_ITEM(MSG_INFO_PSU ": ATX", true); // Power Supply: ATX
#elif (POWER_SUPPLY == 2)
STATIC_ITEM(MSG_INFO_PSU ": XBox", true); // Power Supply: XBox
#endif
#endif // POWER_SUPPLY
END_SCREEN();
}
/**
*
* About Printer > Printer Info
*
*/
void lcd_info_printer_menu() {
if (lcd_clicked) { return lcd_goto_previous_menu(); }
START_SCREEN();
STATIC_ITEM(MSG_MARLIN, true, true); // Marlin
STATIC_ITEM(SHORT_BUILD_VERSION, true); // x.x.x-Branch
STATIC_ITEM(STRING_DISTRIBUTION_DATE, true); // YYYY-MM-DD HH:MM
STATIC_ITEM(MACHINE_NAME, true); // My3DPrinter
STATIC_ITEM(WEBSITE_URL, true); // www.my3dprinter.com
STATIC_ITEM(MSG_INFO_EXTRUDERS ": " STRINGIFY(EXTRUDERS), true); // Extruders: 2
END_SCREEN();
}
/**
*
* "About Printer" submenu
*
*/
void lcd_info_menu() {
START_MENU();
MENU_BACK(MSG_MAIN);
MENU_ITEM(submenu, MSG_INFO_PRINTER_MENU, lcd_info_printer_menu); // Printer Info >
MENU_ITEM(submenu, MSG_INFO_BOARD_MENU, lcd_info_board_menu); // Board Info >
MENU_ITEM(submenu, MSG_INFO_THERMISTOR_MENU, lcd_info_thermistors_menu); // Thermistors >
#if ENABLED(PRINTCOUNTER)
MENU_ITEM(submenu, MSG_INFO_STATS_MENU, lcd_info_stats_menu); // Printer Statistics >
#endif
END_MENU();
}
#endif // LCD_INFO_MENU
/**
*
* Filament Change Feature Screens
*
*/
#if ENABLED(FILAMENT_CHANGE_FEATURE)
// Portions from STATIC_ITEM...
#define HOTEND_STATUS_ITEM() do { \
if (_menuLineNr == _thisItemNr) { \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_static(_lcdLineNr, PSTR(MSG_FILAMENT_CHANGE_NOZZLE), false, true); \
lcd_implementation_hotend_status(_lcdLineNr); \
if (_skipStatic && encoderLine <= _thisItemNr) { \
encoderPosition += ENCODER_STEPS_PER_MENU_ITEM; \
++encoderLine; \
} \
else \
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW; \
} \
++_thisItemNr; \
} while(0)
8 years ago
void lcd_filament_change_toocold_menu() {
START_MENU();
STATIC_ITEM(MSG_HEATING_FAILED_LCD, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_MINTEMP STRINGIFY(EXTRUDE_MINTEMP) ".", false, false);
MENU_BACK(MSG_BACK);
#if LCD_HEIGHT > 4
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
8 years ago
END_MENU();
}
void lcd_filament_change_resume_print() {
filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_RESUME_PRINT;
}
void lcd_filament_change_extrude_more() {
filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE;
}
void lcd_filament_change_option_menu() {
START_MENU();
#if LCD_HEIGHT > 2
STATIC_ITEM(MSG_FILAMENT_CHANGE_OPTION_HEADER, true, false);
#endif
MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_RESUME, lcd_filament_change_resume_print);
MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_EXTRUDE, lcd_filament_change_extrude_more);
END_MENU();
}
void lcd_filament_change_init_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_1);
#ifdef MSG_FILAMENT_CHANGE_INIT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_2);
#define __FC_LINES_A 3
#else
#define __FC_LINES_A 2
#endif
#ifdef MSG_FILAMENT_CHANGE_INIT_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_3);
#define _FC_LINES_A (__FC_LINES_A + 1)
#else
#define _FC_LINES_A __FC_LINES_A
#endif
#if LCD_HEIGHT > _FC_LINES_A + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_unload_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_1);
#ifdef MSG_FILAMENT_CHANGE_UNLOAD_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_2);
#define __FC_LINES_B 3
#else
#define __FC_LINES_B 2
#endif
#ifdef MSG_FILAMENT_CHANGE_UNLOAD_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_3);
#define _FC_LINES_B (__FC_LINES_B + 1)
#else
#define _FC_LINES_B __FC_LINES_B
#endif
#if LCD_HEIGHT > _FC_LINES_B + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_wait_for_nozzles_to_heat() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEATING_1);
#ifdef MSG_FILAMENT_CHANGE_HEATING_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEATING_2);
#define _FC_LINES_C 3
#else
#define _FC_LINES_C 2
#endif
#if LCD_HEIGHT > _FC_LINES_C + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_heat_nozzle() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEAT_1);
#ifdef MSG_FILAMENT_CHANGE_INSERT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEAT_2);
#define _FC_LINES_D 3
#else
#define _FC_LINES_D 2
#endif
#if LCD_HEIGHT > _FC_LINES_D + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_insert_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_1);
#ifdef MSG_FILAMENT_CHANGE_INSERT_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_2);
#define __FC_LINES_E 3
#else
#define __FC_LINES_E 2
#endif
#ifdef MSG_FILAMENT_CHANGE_INSERT_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_3);
#define _FC_LINES_E (__FC_LINES_E + 1)
#else
#define _FC_LINES_E __FC_LINES_E
#endif
#if LCD_HEIGHT > _FC_LINES_E + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_load_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_1);
#ifdef MSG_FILAMENT_CHANGE_LOAD_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_2);
#define __FC_LINES_F 3
#else
#define __FC_LINES_F 2
#endif
#ifdef MSG_FILAMENT_CHANGE_LOAD_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_3);
#define _FC_LINES_F (__FC_LINES_F + 1)
#else
#define _FC_LINES_F __FC_LINES_F
#endif
#if LCD_HEIGHT > _FC_LINES_F + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_extrude_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_1);
#ifdef MSG_FILAMENT_CHANGE_EXTRUDE_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_2);
#define __FC_LINES_G 3
#else
#define __FC_LINES_G 2
#endif
#ifdef MSG_FILAMENT_CHANGE_EXTRUDE_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_3);
#define _FC_LINES_G (__FC_LINES_G + 1)
#else
#define _FC_LINES_G __FC_LINES_G
#endif
#if LCD_HEIGHT > _FC_LINES_G + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
END_SCREEN();
}
void lcd_filament_change_resume_message() {
START_SCREEN();
STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true);
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_1);
#ifdef MSG_FILAMENT_CHANGE_RESUME_2
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_2);
#endif
#ifdef MSG_FILAMENT_CHANGE_RESUME_3
STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_3);
#endif
END_SCREEN();
}
void lcd_filament_change_show_message(const FilamentChangeMessage message) {
switch (message) {
case FILAMENT_CHANGE_MESSAGE_INIT:
defer_return_to_status = true;
lcd_goto_screen(lcd_filament_change_init_message);
break;
case FILAMENT_CHANGE_MESSAGE_UNLOAD:
lcd_goto_screen(lcd_filament_change_unload_message);
break;
case FILAMENT_CHANGE_MESSAGE_INSERT:
lcd_goto_screen(lcd_filament_change_insert_message);
break;
case FILAMENT_CHANGE_MESSAGE_LOAD:
lcd_goto_screen(lcd_filament_change_load_message);
break;
case FILAMENT_CHANGE_MESSAGE_EXTRUDE:
lcd_goto_screen(lcd_filament_change_extrude_message);
break;
case FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE:
lcd_goto_screen(lcd_filament_change_heat_nozzle);
break;
case FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT:
lcd_goto_screen(lcd_filament_change_wait_for_nozzles_to_heat);
break;
case FILAMENT_CHANGE_MESSAGE_OPTION:
filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_WAIT_FOR;
lcd_goto_screen(lcd_filament_change_option_menu);
break;
case FILAMENT_CHANGE_MESSAGE_RESUME:
lcd_goto_screen(lcd_filament_change_resume_message);
break;
case FILAMENT_CHANGE_MESSAGE_STATUS:
lcd_return_to_status();
break;
}
}
#endif // FILAMENT_CHANGE_FEATURE
/**
*
* Functions for editing single values
*
* The "menu_edit_type" macro generates the functions needed to edit a numerical value.
*
* For example, menu_edit_type(int, int3, itostr3, 1) expands into these functions:
*
* bool _menu_edit_int3();
* void menu_edit_int3(); // edit int (interactively)
* void menu_edit_callback_int3(); // edit int (interactively) with callback on completion
* void _menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
* void menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
* void menu_action_setting_edit_callback_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue, const screenFunc_t callback); // edit int with callback
*
* You can then use one of the menu macros to present the edit interface:
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
*
* This expands into a more primitive menu item:
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*
*
* Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
*
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
*/
#define menu_edit_type(_type, _name, _strFunc, _scale) \
bool _menu_edit_ ## _name () { \
ENCODER_DIRECTION_NORMAL(); \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) * (1.0 / _scale))); \
if (lcd_clicked) { \
*((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) * (1.0 / _scale); \
lcd_goto_previous_menu(); \
} \
return lcd_clicked; \
} \
void menu_edit_ ## _name () { _menu_edit_ ## _name(); } \
void menu_edit_callback_ ## _name () { if (_menu_edit_ ## _name ()) (*callbackFunc)(); } \
void _menu_action_setting_edit_ ## _name (const char * const pstr, _type* const ptr, const _type minValue, const _type maxValue) { \
lcd_save_previous_screen(); \
\
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; \
\
editLabel = pstr; \
editValue = ptr; \
minEditValue = minValue * _scale; \
maxEditValue = maxValue * _scale - minEditValue; \
encoderPosition = (*ptr) * _scale - minEditValue; \
} \
void menu_action_setting_edit_ ## _name (const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
9 years ago
currentScreen = menu_edit_ ## _name; \
}\
void menu_action_setting_edit_callback_ ## _name (const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
9 years ago
currentScreen = menu_edit_callback_ ## _name; \
callbackFunc = callback; \
} \
typedef void _name
menu_edit_type(int, int3, itostr3, 1);
menu_edit_type(float, float3, ftostr3, 1.0);
menu_edit_type(float, float32, ftostr32, 100.0);
menu_edit_type(float, float43, ftostr43sign, 1000.0);
menu_edit_type(float, float5, ftostr5rj, 0.01);
menu_edit_type(float, float51, ftostr51sign, 10.0);
menu_edit_type(float, float52, ftostr52sign, 100.0);
menu_edit_type(float, float62, ftostr62rj, 100.0);
menu_edit_type(unsigned long, long5, ftostr5rj, 0.01);
/**
*
* Handlers for RepRap World Keypad input
*
*/
#if ENABLED(REPRAPWORLD_KEYPAD)
void _reprapworld_keypad_move(AxisEnum axis, int dir) {
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
encoderPosition = dir;
switch (axis) {
case X_AXIS: lcd_move_x(); break;
case Y_AXIS: lcd_move_y(); break;
case Z_AXIS: lcd_move_z();
default: break;
}
}
void reprapworld_keypad_move_z_up() { _reprapworld_keypad_move(Z_AXIS, 1); }
void reprapworld_keypad_move_z_down() { _reprapworld_keypad_move(Z_AXIS, -1); }
void reprapworld_keypad_move_x_left() { _reprapworld_keypad_move(X_AXIS, -1); }
void reprapworld_keypad_move_x_right() { _reprapworld_keypad_move(X_AXIS, 1); }
void reprapworld_keypad_move_y_up() { _reprapworld_keypad_move(Y_AXIS, -1); }
void reprapworld_keypad_move_y_down() { _reprapworld_keypad_move(Y_AXIS, 1); }
void reprapworld_keypad_move_home() { enqueue_and_echo_commands_P(PSTR("G28")); } // move all axes home and wait
void reprapworld_keypad_move_menu() { lcd_goto_screen(lcd_move_menu); }
inline void handle_reprapworld_keypad() {
static uint8_t keypad_debounce = 0;
if (!REPRAPWORLD_KEYPAD_PRESSED) {
if (keypad_debounce > 0) keypad_debounce--;
}
else if (!keypad_debounce) {
keypad_debounce = 2;
if (REPRAPWORLD_KEYPAD_MOVE_MENU) reprapworld_keypad_move_menu();
#if DISABLED(DELTA) && Z_HOME_DIR == -1
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
#if ENABLED(DELTA) || Z_HOME_DIR != -1
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down();
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left();
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right();
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down();
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up();
}
else {
if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home();
}
}
}
#endif // REPRAPWORLD_KEYPAD
/**
*
* Menu actions
*
*/
void _menu_action_back() { lcd_goto_previous_menu(); }
void menu_action_submenu(screenFunc_t func) { lcd_save_previous_screen(); lcd_goto_screen(func); }
void menu_action_gcode(const char* pgcode) { enqueue_and_echo_commands_P(pgcode); }
void menu_action_function(screenFunc_t func) { (*func)(); }
#if ENABLED(SDSUPPORT)
void menu_action_sdfile(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.openAndPrintFile(filename);
lcd_return_to_status();
}
void menu_action_sddirectory(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.chdir(filename);
encoderPosition = 0;
screen_changed = true;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
}
#endif //SDSUPPORT
void menu_action_setting_edit_bool(const char* pstr, bool* ptr) {UNUSED(pstr); *ptr = !(*ptr); lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; }
void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callback) {
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
#endif // ULTIPANEL
void lcd_init() {
lcd_implementation_init(
#if ENABLED(LCD_PROGRESS_BAR)
true
#endif
);
#if ENABLED(NEWPANEL)
#if BUTTON_EXISTS(EN1)
SET_INPUT_PULLUP(BTN_EN1);
#endif
#if BUTTON_EXISTS(EN2)
SET_INPUT_PULLUP(BTN_EN2);
#endif
#if BUTTON_EXISTS(ENC)
SET_INPUT_PULLUP(BTN_ENC);
#endif
#if ENABLED(REPRAPWORLD_KEYPAD)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif
#if BUTTON_EXISTS(UP)
SET_INPUT(BTN_UP);
#endif
#if BUTTON_EXISTS(DWN)
SET_INPUT(BTN_DWN);
#endif
#if BUTTON_EXISTS(LFT)
SET_INPUT(BTN_LFT);
#endif
#if BUTTON_EXISTS(RT)
SET_INPUT(BTN_RT);
#endif
#else // !NEWPANEL
#if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register
SET_OUTPUT(SR_DATA_PIN);
SET_OUTPUT(SR_CLK_PIN);
#elif defined(SHIFT_CLK)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
OUT_WRITE(SHIFT_EN, LOW);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif // SR_LCD_2W_NL
#endif // !NEWPANEL
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
lcd_sd_status = 2; // UNKNOWN
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = 0;
#endif
lcd_buttons_update();
#if ENABLED(ULTIPANEL)
encoderDiff = 0;
#endif
}
int lcd_strlen(const char* s) {
int i = 0, j = 0;
while (s[i]) {
#if ENABLED(MAPPER_NON)
j++;
#else
if ((s[i] & 0xC0u) != 0x80u) j++;
#endif
i++;
}
return j;
}
int lcd_strlen_P(const char* s) {
int j = 0;
while (pgm_read_byte(s)) {
#if ENABLED(MAPPER_NON)
j++;
#else
if ((pgm_read_byte(s) & 0xC0u) != 0x80u) j++;
#endif
s++;
}
return j;
}
bool lcd_blink() {
static uint8_t blink = 0;
static millis_t next_blink_ms = 0;
millis_t ms = millis();
if (ELAPSED(ms, next_blink_ms)) {
blink ^= 0xFF;
next_blink_ms = ms + 1000 - LCD_UPDATE_INTERVAL / 2;
}
return blink != 0;
}
/**
* Update the LCD, read encoder buttons, etc.
* - Read button states
* - Check the SD Card slot state
* - Act on RepRap World keypad input
* - Update the encoder position
* - Apply acceleration to the encoder position
* - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events
* - Reset the Info Screen timeout if there's any input
* - Update status indicators, if any
*
* Run the current LCD menu handler callback function:
* - Call the handler only if lcdDrawUpdate != LCDVIEW_NONE
* - Before calling the handler, LCDVIEW_CALL_NO_REDRAW => LCDVIEW_NONE
* - Call the menu handler. Menu handlers should do the following:
* - If a value changes, set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value
* (Encoder events automatically set lcdDrawUpdate for you.)
* - if (lcdDrawUpdate) { redraw }
* - Before exiting the handler set lcdDrawUpdate to:
* - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT.
* - LCDVIEW_REDRAW_NOW or LCDVIEW_NONE to keep drawing, but only in this loop.
* - LCDVIEW_CALL_REDRAW_NEXT to keep drawing and draw on the next loop also.
* - LCDVIEW_CALL_NO_REDRAW to keep drawing (or start drawing) with no redraw on the next loop.
* - NOTE: For graphical displays menu handlers may be called 2 or more times per loop,
* so don't change lcdDrawUpdate without considering this.
*
* After the menu handler callback runs (or not):
* - Clear the LCD if lcdDrawUpdate == LCDVIEW_CLEAR_CALL_REDRAW
* - Update lcdDrawUpdate for the next loop (i.e., move one state down, usually)
*
* No worries. This function is only called from the main thread.
*/
void lcd_update() {
#if ENABLED(ULTIPANEL)
static millis_t return_to_status_ms = 0;
manage_manual_move();
lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL)
const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel;
#else
constexpr bool UBL_CONDITION = true;
#endif
// If the action button is pressed...
if (UBL_CONDITION && LCD_CLICKED) {
if (!wait_for_unclick) { // If not waiting for a debounce release:
wait_for_unclick = true; // Set debounce flag to ignore continous clicks
lcd_clicked = !wait_for_user; // Keep the click if not waiting for a user-click
wait_for_user = false; // Any click clears wait for user
lcd_quick_feedback(); // Always make a click sound
}
}
else wait_for_unclick = false;
#endif
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
bool sd_status = IS_SD_INSERTED;
if (sd_status != lcd_sd_status && lcd_detected()) {
if (sd_status) {
card.initsd();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_INSERTED);
}
else {
card.release();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
lcd_sd_status = sd_status;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
currentScreen == lcd_status_screen
#endif
);
}
#endif //SDSUPPORT && SD_DETECT_PIN
millis_t ms = millis();
if (ELAPSED(ms, next_lcd_update_ms)
#if ENABLED(DOGLCD)
|| drawing_screen
#endif
) {
next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL;
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
lcd_implementation_update_indicators();
#endif
#if ENABLED(ULTIPANEL)
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if ENABLED(REPRAPWORLD_KEYPAD)
handle_reprapworld_keypad();
#endif
bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP);
if (encoderPastThreshold || lcd_clicked) {
if (encoderPastThreshold) {
int32_t encoderMultiplier = 1;
#if ENABLED(ENCODER_RATE_MULTIPLIER)
if (encoderRateMultiplierEnabled) {
int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP;
if (lastEncoderMovementMillis != 0) {
// Note that the rate is always calculated between to passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = (float)(encoderMovementSteps) / ((float)(ms - lastEncoderMovementMillis)) * 1000.0;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Enc Step Rate: ", encoderStepRate);
SERIAL_ECHOPAIR(" Multiplier: ", encoderMultiplier);
SERIAL_ECHOPAIR(" ENCODER_10X_STEPS_PER_SEC: ", ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHOPAIR(" ENCODER_100X_STEPS_PER_SEC: ", ENCODER_100X_STEPS_PER_SEC);
SERIAL_EOL;
#endif //ENCODER_RATE_MULTIPLIER_DEBUG
}
lastEncoderMovementMillis = ms;
} // encoderRateMultiplierEnabled
#endif //ENCODER_RATE_MULTIPLIER
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
lcdDrawUpdate = LCDVIEW_KEEP_REDRAWING;
}
#endif // ULTIPANEL
// We arrive here every ~100ms when idling often enough.
// Instead of tracking the changes simply redraw the Info Screen ~1 time a second.
static int8_t lcd_status_update_delay = 1; // first update one loop delayed
if (
#if ENABLED(ULTIPANEL)
currentScreen == lcd_status_screen &&
#endif
!lcd_status_update_delay--
) {
lcd_status_update_delay = 9
#if ENABLED(DOGLCD)
+ 3
#endif
;
max_display_update_time--;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
// then we want to use 1/2 of the time only.
uint16_t bbr2 = planner.block_buffer_runtime() >> 1;
#if ENABLED(DOGLCD)
if ((lcdDrawUpdate || drawing_screen) && (!bbr2 || (bbr2 > max_display_update_time)))
#else
if (lcdDrawUpdate && (!bbr2 || (bbr2 > max_display_update_time)))
#endif
{
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
#if ENABLED(DOGLCD)
if (!drawing_screen)
#endif
{
switch (lcdDrawUpdate) {
case LCDVIEW_CALL_NO_REDRAW:
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_CLEAR_CALL_REDRAW: // set by handlers, then altered after (rarely occurs here)
case LCDVIEW_CALL_REDRAW_NEXT: // set by handlers, then altered after (never occurs here?)
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
case LCDVIEW_REDRAW_NOW: // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
case LCDVIEW_NONE:
break;
} // switch
}
#if ENABLED(ULTIPANEL)
#define CURRENTSCREEN() (*currentScreen)(), lcd_clicked = false
#else
#define CURRENTSCREEN() lcd_status_screen()
#endif
#if ENABLED(DOGLCD) // Changes due to different driver architecture of the DOGM display
if (!drawing_screen) {
u8g.firstPage();
drawing_screen = 1;
}
lcd_setFont(FONT_MENU);
u8g.setColorIndex(1);
CURRENTSCREEN();
if (drawing_screen && (drawing_screen = u8g.nextPage())) {
NOLESS(max_display_update_time, millis() - ms);
return;
}
#else
CURRENTSCREEN();
#endif
NOLESS(max_display_update_time, millis() - ms);
}
#if ENABLED(ULTIPANEL)
// Return to Status Screen after a timeout
if (currentScreen == lcd_status_screen || defer_return_to_status)
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
else if (ELAPSED(ms, return_to_status_ms))
lcd_return_to_status();
#endif // ULTIPANEL
#if ENABLED(DOGLCD)
if (!drawing_screen)
#endif
{
switch (lcdDrawUpdate) {
case LCDVIEW_CLEAR_CALL_REDRAW:
lcd_implementation_clear();
case LCDVIEW_CALL_REDRAW_NEXT:
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
break;
case LCDVIEW_REDRAW_NOW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_NONE:
break;
} // switch
}
Distribute GLCD screen updates in time Currently we draw and send the screens for a graphical LCD all at once. We draw in two or four parts but draw them directly behind each other. For the tested status screen this takes 59-62ms in a single block. During this time nothing else (except the interrupts) can be done. When printing a sequence of very short moves the buffer drains - sometimes until it's empty. This PR splits the screen update into parts. Currently we have 10 time slots. During the first one the complete screen is drawn. (60,0,0,0,0,0,0,0,0,0,0) Here i introduce pauses for doing other things. (30,30,0,0,0,0,0,0) or (15,15,15,15,0,0,0,0,0,0) Drawing in consecutive time slots prevents from lagging too much. Even with a 4 stripe display all the drawing is done after 400ms. Previous experiments with a even better distribution of the time slots like (30,0,0,0,0,30,0,0,0,0) and (15,0,15,0,15,0,15,0,0,0) did not feel good when using the menu, because of too much lag. Because of the previous PRs to speed up the display updates and especially reducing the difference between drawing 2 or 4 stripes, it now makes sense for the REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER to go from 2 to 4 stripes. This costs about 1-2ms per complete screen update, but is payed back by having partial updates lasting only the half time and two additional brakes. Also ~256 byte of framebuffer are saved in RAM. 13:45:59.213 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:00.213 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:01.215 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 13:46:02.215 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:03.214 : echo: #:17 >:13 s:30; #:17 >:13 s:30; S#:34 S>:26 S:60 13:46:04.214 : echo: #:16 >:13 s:29; #:16 >:14 s:30; S#:32 S>:27 S:59 13:46:05.212 : echo: #:16 >:14 s:30; #:17 >:13 s:30; S#:33 S>:27 S:60 13:46:06.212 : echo: #:17 >:13 s:30; #:16 >:13 s:29; S#:33 S>:26 S:59 03:30:36.779 : echo: #:8 >:7 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:8 >:7 s:15; S#:34 S>:27 S:61 03:30:37.778 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:9 >:7 s:16; #:8 >:6 s:14; S#:35 S>:26 S:61 03:30:38.778 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:7 s:15; S#:35 S>:26 S:61 03:30:39.777 : echo: #:8 >:6 s:14; #:10 >:7 s:17; #:8 >:8 s:16; #:8 >:6 s:14; S#:34 S>:27 S:61 03:30:40.780 : echo: #:8 >:6 s:14; #:11 >:7 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:35 S>:25 S:60 03:30:41.780 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:6 s:14; #:9 >:6 s:15; S#:36 S>:25 S:61 03:30:42.779 : echo: #:8 >:6 s:14; #:10 >:8 s:18; #:8 >:6 s:14; #:8 >:6 s:14; S#:34 S>:26 S:60 03:30:43.778 : echo: #:9 >:6 s:15; #:10 >:7 s:17; #:8 >:7 s:15; #:9 >:6 s:15; S#:36 S>:26 S:62 #: draw a stripe >: transfer a stripe s: sum of of draw and transfer for one stripe S#: sum of draws for a complete screen S>: sum of transfers for a complete screen S: time to draw and transfer a complete screen
8 years ago
} // ELAPSED(ms, next_lcd_update_ms)
}
void set_utf_strlen(char* s, uint8_t n) {
uint8_t i = 0, j = 0;
while (s[i] && (j < n)) {
#if ENABLED(MAPPER_NON)
j++;
#else
if ((s[i] & 0xC0u) != 0x80u) j++;
#endif
i++;
}
while (j++ < n) s[i++] = ' ';
s[i] = '\0';
}
void lcd_finishstatus(bool persist=false) {
set_utf_strlen(lcd_status_message, LCD_WIDTH);
#if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0))
UNUSED(persist);
#endif
#if ENABLED(LCD_PROGRESS_BAR)
progress_bar_ms = millis();
10 years ago
#if PROGRESS_MSG_EXPIRE > 0
expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE;
10 years ago
#endif
#endif
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
10 years ago
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); //get status message to show up for a while
10 years ago
#endif
}
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
void dontExpireStatus() { expire_status_ms = 0; }
#endif
bool lcd_hasstatus() { return (lcd_status_message[0] != '\0'); }
void lcd_setstatus(const char * const message, const bool persist) {
if (lcd_status_message_level > 0) return;
strncpy(lcd_status_message, message, 3 * (LCD_WIDTH));
lcd_finishstatus(persist);
}
void lcd_setstatuspgm(const char * const message, const uint8_t level) {
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
strncpy_P(lcd_status_message, message, 3 * (LCD_WIDTH));
lcd_finishstatus(level > 0);
}
void lcd_status_printf_P(const uint8_t level, const char * const fmt, ...) {
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
va_list args;
va_start(args, fmt);
vsnprintf_P(lcd_status_message, 3 * (LCD_WIDTH), fmt, args);
va_end(args);
lcd_finishstatus(level > 0);
}
void lcd_setalertstatuspgm(const char * const message) {
lcd_setstatuspgm(message, 1);
#if ENABLED(ULTIPANEL)
lcd_return_to_status();
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#if HAS_LCD_CONTRAST
void set_lcd_contrast(const int value) {
lcd_contrast = constrain(value, LCD_CONTRAST_MIN, LCD_CONTRAST_MAX);
u8g.setContrast(lcd_contrast);
}
#endif
#if ENABLED(ULTIPANEL)
/**
* Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
* These values are independent of which pins are used for EN_A and EN_B indications
* The rotary encoder part is also independent to the chipset used for the LCD
*/
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#define GET_BUTTON_STATES(DST) \
uint8_t new_##DST = 0; \
WRITE(SHIFT_LD, LOW); \
WRITE(SHIFT_LD, HIGH); \
for (int8_t i = 0; i < 8; i++) { \
new_##DST >>= 1; \
if (READ(SHIFT_OUT)) SBI(new_##DST, 7); \
WRITE(SHIFT_CLK, HIGH); \
WRITE(SHIFT_CLK, LOW); \
} \
DST = ~new_##DST; //invert it, because a pressed switch produces a logical 0
/**
* Read encoder buttons from the hardware registers
* Warning: This function is called from interrupt context!
*/
void lcd_buttons_update() {
millis_t now = millis();
if (ELAPSED(now, next_button_update_ms)) {
#if ENABLED(NEWPANEL)
uint8_t newbutton = 0;
#if BUTTON_EXISTS(EN1)
if (BUTTON_PRESSED(EN1)) newbutton |= EN_A;
#endif
#if BUTTON_EXISTS(EN2)
if (BUTTON_PRESSED(EN2)) newbutton |= EN_B;
#endif
#if BUTTON_EXISTS(ENC)
if (BUTTON_PRESSED(ENC)) newbutton |= EN_C;
#endif
#if LCD_HAS_DIRECTIONAL_BUTTONS
// Manage directional buttons
#if ENABLED(REVERSE_MENU_DIRECTION)
#define _ENCODER_UD_STEPS (ENCODER_STEPS_PER_MENU_ITEM * encoderDirection)
#else
#define _ENCODER_UD_STEPS ENCODER_STEPS_PER_MENU_ITEM
#endif
#if ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_UD_STEPS _ENCODER_UD_STEPS
#define ENCODER_LR_PULSES ENCODER_PULSES_PER_STEP
#else
#define ENCODER_UD_STEPS -(_ENCODER_UD_STEPS)
#define ENCODER_LR_PULSES -(ENCODER_PULSES_PER_STEP)
#endif
if (false) {
// for the else-ifs below
}
#if BUTTON_EXISTS(UP)
else if (BUTTON_PRESSED(UP)) {
encoderDiff = -(ENCODER_UD_STEPS);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(DWN)
else if (BUTTON_PRESSED(DWN)) {
encoderDiff = ENCODER_UD_STEPS;
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(LFT)
else if (BUTTON_PRESSED(LFT)) {
encoderDiff = -(ENCODER_LR_PULSES);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(RT)
else if (BUTTON_PRESSED(RT)) {
encoderDiff = ENCODER_LR_PULSES;
next_button_update_ms = now + 300;
}
#endif
#endif // LCD_HAS_DIRECTIONAL_BUTTONS
buttons = newbutton;
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
buttons |= slow_buttons;
#endif
#if ENABLED(REPRAPWORLD_KEYPAD)
GET_BUTTON_STATES(buttons_reprapworld_keypad);
#endif
#else
GET_BUTTON_STATES(buttons);
#endif //!NEWPANEL
} // next_button_update_ms
// Manage encoder rotation
#if ENABLED(REVERSE_MENU_DIRECTION) && ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff -= encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff += encoderDirection)
#elif ENABLED(REVERSE_MENU_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff += encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection)
#elif ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff--)
#define ENCODER_DIFF_CCW (encoderDiff++)
#else
#define ENCODER_DIFF_CW (encoderDiff++)
#define ENCODER_DIFF_CCW (encoderDiff--)
#endif
#define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; }
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits) {
switch (enc) {
case encrot0: ENCODER_SPIN(encrot3, encrot1); break;
case encrot1: ENCODER_SPIN(encrot0, encrot2); break;
case encrot2: ENCODER_SPIN(encrot1, encrot3); break;
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.has_control_of_lcd_panel) {
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// wheel has not turned.
}
#endif
lastEncoderBits = enc;
}
}
#if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE)
bool lcd_detected() { return lcd.LcdDetected() == 1; }
#else
bool lcd_detected() { return true; }
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
void chirp_at_user() {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
}
bool ubl_lcd_clicked() { return LCD_CLICKED; }
#endif
#endif // ULTIPANEL
#endif // ULTRA_LCD