/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
*
* About Marlin
*
* This firmware is a mashup between Sprinter and grbl .
* - https : //github.com/kliment/Sprinter
* - https : //github.com/simen/grbl/tree
*
* It has preliminary support for Matthew Roberts advance algorithm
* - http : //reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
# include "Marlin.h"
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
# include "vector_3.h"
# if ENABLED(AUTO_BED_LEVELING_GRID)
# include "qr_solve.h"
# endif
# endif // AUTO_BED_LEVELING_FEATURE
# if ENABLED(MESH_BED_LEVELING)
# include "mesh_bed_leveling.h"
# endif
# if ENABLED(BEZIER_CURVE_SUPPORT)
# include "planner_bezier.h"
# endif
# include "ultralcd.h"
# include "planner.h"
# include "stepper.h"
# include "endstops.h"
# include "temperature.h"
# include "cardreader.h"
# include "configuration_store.h"
# include "language.h"
# include "pins_arduino.h"
# include "math.h"
# if ENABLED(USE_WATCHDOG)
# include "watchdog.h"
# endif
# if ENABLED(BLINKM)
# include "blinkm.h"
# include "Wire.h"
# endif
# if HAS_SERVOS
# include "servo.h"
# endif
# if HAS_DIGIPOTSS
# include <SPI.h>
# endif
# if ENABLED(DAC_STEPPER_CURRENT)
# include "stepper_dac.h"
# endif
# if ENABLED(EXPERIMENTAL_I2CBUS)
# include "twibus.h"
# endif
/**
* Look here for descriptions of G - codes :
* - http : //linuxcnc.org/handbook/gcode/g-code.html
* - http : //objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G - codes online :
* - https : //github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
* - http : //reprap.org/wiki/G-code
*
* - - - - - - - - - - - - - - - - -
* Implemented Codes
* - - - - - - - - - - - - - - - - -
*
* " G " Codes
*
* G0 - > G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S < seconds > or P < milliseconds >
* G5 - Cubic B - spline with XYZE destination and IJPQ offsets
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G20 - Set input units to inches
* G21 - Set input units to millimeters
* G28 - Home one or more axes
* G29 - Detailed Z probe , probes the bed at 3 or more points . Will fail if you haven ' t homed yet .
* G30 - Single Z probe , probes bed at current XY location .
* G31 - Dock sled ( Z_PROBE_SLED only )
* G32 - Undock sled ( Z_PROBE_SLED only )
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
*
* " M " Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD ( Only if ULTRA_LCD is enabled )
* M1 - Same as M0
* M17 - Enable / Power all stepper motors
* M18 - Disable all stepper motors ; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file ( M23 filename . g )
* M24 - Start / resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes ( M26 S12345 )
* M27 - Report SD print status
* M28 - Start SD write ( M28 filename . g )
* M29 - Stop SD write
* M30 - Delete file from SD ( M30 filename . g )
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print ( Can be used _while_ printing from SD card files ) :
* syntax " M32 /path/filename# " , or " M32 S<startpos bytes> !filename# "
* Call gcode file : " M32 P !filename# " and return to caller file after finishing ( similar to # include ) .
* The ' # ' is necessary when calling from within sd files , as it stops buffer prereading
* M33 - Get the longname version of a path
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y , when omitting Px the onboard led will be used .
* M48 - Measure Z_Probe repeatability . M48 [ P # of points ] [ X position ] [ Y position ] [ V_erboseness # ] [ E_ngage Probe ] [ L # of legs of travel ]
* M75 - Start the print job timer
* M76 - Pause the print job timer
* M77 - Stop the print job timer
* M78 - Show statistical information about the print jobs
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute ( default )
* M83 - Set E codes relative while in Absolute Coordinates ( G90 ) mode
* M84 - Disable steppers until next move ,
* or use S < seconds > to specify an inactivity timeout , after which the steppers will be disabled . S0 to disable the timeout .
* M85 - Set inactivity shutdown timer with parameter S < seconds > . To disable set zero ( default )
* M92 - Set planner . axis_steps_per_mm - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp . Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp . Waits when heating and cooling
* IF AUTOTEMP is enabled , S < mintemp > B < maxtemp > F < factor > . Exit autotemp by any M109 without F
* M110 - Set the current line number
* M111 - Set debug flags with S < mask > . See flag bits defined in Marlin . h .
* M112 - Emergency stop
* M113 - Get or set the timeout interval for Host Keepalive " busy " messages
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - Display a message on the controller screen
* M119 - Output Endstop status to serial port
* M120 - Enable endstop detection
* M121 - Disable endstop detection
* M126 - Solenoid Air Valve Open ( BariCUDA support by jmil )
* M127 - Solenoid Air Valve Closed ( BariCUDA vent to atmospheric pressure by jmil )
* M128 - EtoP Open ( BariCUDA EtoP = electricity to air pressure transducer by jmil )
* M129 - EtoP Closed ( BariCUDA EtoP = electricity to air pressure transducer by jmil )
* M140 - Set bed target temp
* M145 - Set the heatup state H < hotend > B < bed > F < fan speed > for S < material > ( 0 = PLA , 1 = ABS )
* M149 - Set temperature units
* M150 - Set BlinkM Color Output R : Red < 0 - 255 > U ( ! ) : Green < 0 - 255 > B : Blue < 0 - 255 > over i2c , G for green does not work .
* M190 - Sxxx Wait for bed current temp to reach target temp . Waits only when heating
* Rxxx Wait for bed current temp to reach target temp . Waits when heating and cooling
* M200 - set filament diameter and set E axis units to cubic millimeters ( use S0 to set back to millimeters ) . : D < millimeters > -
* M201 - Set max acceleration in units / s ^ 2 for print moves ( M201 X1000 Y1000 )
* M202 - Set max acceleration in units / s ^ 2 for travel moves ( M202 X1000 Y1000 ) Unused in Marlin ! !
* M203 - Set maximum feedrate that your machine can sustain ( M203 X200 Y200 Z300 E10000 ) in mm / sec
* M204 - Set default acceleration : P for Printing moves , R for Retract only ( no X , Y , Z ) moves and T for Travel ( non printing ) moves ( ex . M204 P800 T3000 R9000 ) in mm / sec ^ 2
* M205 - advanced settings : minimum travel speed S = while printing T = travel only , B = minimum segment time X = maximum xy jerk , Z = maximum Z jerk , E = maximum E jerk
* M206 - Set additional homing offset
* M207 - Set retract length S [ positive mm ] F [ feedrate mm / min ] Z [ additional zlift / hop ] , stays in mm regardless of M200 setting
* M208 - Set recover = unretract length S [ positive mm surplus to the M207 S * ] F [ feedrate mm / min ]
* M209 - S < 1 = true / 0 = false > enable automatic retract detect if the slicer did not support G10 / 11 : every normal extrude - only move will be classified as retract depending on the direction .
* M218 - Set hotend offset ( in mm ) : T < extruder_number > X < offset_on_X > Y < offset_on_Y >
* M220 - Set speed factor override percentage : S < factor in percent >
* M221 - Set extrude factor override percentage : S < factor in percent >
* M226 - Wait until the specified pin reaches the state required : P < pin number > S < pin state >
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C < contrast value > ( value 0. .63 )
* M280 - Set servo position absolute . P : servo index , S : angle or microseconds
* M300 - Play beep sound S < frequency Hz > P < duration ms >
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes , or set the minimum extrude S < temperature > .
* M303 - PID relay autotune S < temperature > sets the target temperature . ( default target temperature = 150 C )
* M304 - Set bed PID parameters P I and D
* M380 - Activate solenoid on active extruder
* M381 - Disable all solenoids
* M400 - Finish all moves
* M401 - Lower Z probe if present
* M402 - Raise Z probe if present
* M404 - N < dia in mm > Enter the nominal filament width ( 3 mm , 1.75 mm ) or will display nominal filament width without parameters
* M405 - Turn on Filament Sensor extrusion control . Optional D < delay in cm > to set delay in centimeters between sensor and extruder
* M406 - Turn off Filament Sensor extrusion control
* M407 - Display measured filament diameter
* M410 - Quickstop . Abort all the planned moves
* M420 - Enable / Disable Mesh Leveling ( with current values ) S1 = enable S0 = disable
* M421 - Set a single Z coordinate in the Mesh Leveling grid . X < mm > Y < mm > Z < mm >
* M428 - Set the home_offset logically based on the current_position
* M500 - Store parameters in EEPROM
* M501 - Read parameters from EEPROM ( if you need reset them after you changed them temporarily ) .
* M502 - Revert to the default " factory settings " . You still need to store them in EEPROM afterwards if you want to .
* M503 - Print the current settings ( from memory not from EEPROM ) . Use S0 to leave off headings .
* M540 - Use S [ 0 | 1 ] to enable or disable the stop SD card print on endstop hit ( requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED )
* M600 - Pause for filament change X [ pos ] Y [ pos ] Z [ relative lift ] E [ initial retract ] L [ later retract distance for removal ]
* M665 - Set delta configurations : L < diagonal rod > R < delta radius > S < segments / s >
* M666 - Set delta endstop adjustment
* M605 - Set dual x - carriage movement mode : S < mode > [ X < duplication x - offset > R < duplication temp offset > ]
* M851 - Set Z probe ' s Z offset ( mm ) . Set to a negative value for probes that trigger below the nozzle .
* M907 - Set digital trimpot motor current using axis codes .
* M908 - Control digital trimpot directly .
* M909 - DAC_STEPPER_CURRENT : Print digipot / DAC current value
* M910 - DAC_STEPPER_CURRENT : Commit digipot / DAC value to external EEPROM via I2C
* M350 - Set microstepping mode .
* M351 - Toggle MS1 MS2 pins directly .
*
* * * * * * * * * * * * * SCARA Specific - This can change to suit future G - code regulations
* M360 - SCARA calibration : Move to cal - position ThetaA ( 0 deg calibration )
* M361 - SCARA calibration : Move to cal - position ThetaB ( 90 deg calibration - steps per degree )
* M362 - SCARA calibration : Move to cal - position PsiA ( 0 deg calibration )
* M363 - SCARA calibration : Move to cal - position PsiB ( 90 deg calibration - steps per degree )
* M364 - SCARA calibration : Move to cal - position PSIC ( 90 deg to Theta calibration position )
* M365 - SCARA calibration : Scaling factor , X , Y , Z axis
* * * * * * * * * * * * * * SCARA End * * * * * * * * * * * * * * *
*
* * * * * * * * * * * * * Custom codes - This can change to suit future G - code regulations
* M100 - Watch Free Memory ( For Debugging Only )
* M928 - Start SD logging ( M928 filename . g ) - ended by M29
* M999 - Restart after being stopped by error
*
* " T " Codes
*
* T0 - T3 - Select a tool by index ( usually an extruder ) [ F < mm / min > ]
*
*/
# if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100 ( ) ;
# endif
# if ENABLED(SDSUPPORT)
CardReader card ;
# endif
# if ENABLED(EXPERIMENTAL_I2CBUS)
TWIBus i2c ;
# endif
bool Running = true ;
uint8_t marlin_debug_flags = DEBUG_NONE ;
static float feedrate = 1500.0 , saved_feedrate ;
float current_position [ NUM_AXIS ] = { 0.0 } ;
static float destination [ NUM_AXIS ] = { 0.0 } ;
bool axis_known_position [ 3 ] = { false } ;
bool axis_homed [ 3 ] = { false } ;
static long gcode_N , gcode_LastN , Stopped_gcode_LastN = 0 ;
static char * current_command , * current_command_args ;
static int cmd_queue_index_r = 0 ;
static int cmd_queue_index_w = 0 ;
static int commands_in_queue = 0 ;
static char command_queue [ BUFSIZE ] [ MAX_CMD_SIZE ] ;
# if ENABLED(INCH_MODE_SUPPORT)
float linear_unit_factor = 1.0 ;
float volumetric_unit_factor = 1.0 ;
# endif
# if ENABLED(TEMPERATURE_UNITS_SUPPORT)
TempUnit input_temp_units = TEMPUNIT_C ;
# endif
const float homing_feedrate [ ] = HOMING_FEEDRATE ;
bool axis_relative_modes [ ] = AXIS_RELATIVE_MODES ;
int feedrate_multiplier = 100 ; //100->1 200->2
int saved_feedrate_multiplier ;
int extruder_multiplier [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS1 ( 100 ) ;
bool volumetric_enabled = false ;
float filament_size [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS1 ( DEFAULT_NOMINAL_FILAMENT_DIA ) ;
float volumetric_multiplier [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS1 ( 1.0 ) ;
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift [ 3 ] = { 0 } ;
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset [ 3 ] = { 0 } ;
// Software Endstops. Default to configured limits.
float sw_endstop_min [ 3 ] = { X_MIN_POS , Y_MIN_POS , Z_MIN_POS } ;
float sw_endstop_max [ 3 ] = { X_MAX_POS , Y_MAX_POS , Z_MAX_POS } ;
# if FAN_COUNT > 0
int fanSpeeds [ FAN_COUNT ] = { 0 } ;
# endif
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0 ;
// Relative Mode. Enable with G91, disable with G90.
static bool relative_mode = false ;
bool cancel_heatup = false ;
const char errormagic [ ] PROGMEM = " Error: " ;
const char echomagic [ ] PROGMEM = " echo: " ;
const char axis_codes [ NUM_AXIS ] = { ' X ' , ' Y ' , ' Z ' , ' E ' } ;
static int serial_count = 0 ;
// GCode parameter pointer used by code_seen(), code_value_float(), etc.
static char * seen_pointer ;
// Next Immediate GCode Command pointer. NULL if none.
const char * queued_commands_P = NULL ;
const int sensitive_pins [ ] = SENSITIVE_PINS ; ///< Sensitive pin list for M42
// Inactivity shutdown
millis_t previous_cmd_ms = 0 ;
static millis_t max_inactive_time = 0 ;
static millis_t stepper_inactive_time = ( DEFAULT_STEPPER_DEACTIVE_TIME ) * 1000UL ;
// Print Job Timer
# if ENABLED(PRINTCOUNTER)
PrintCounter print_job_timer = PrintCounter ( ) ;
# else
Stopwatch print_job_timer = Stopwatch ( ) ;
# endif
// Buzzer
# if HAS_BUZZER
# if ENABLED(SPEAKER)
Speaker buzzer ;
# else
Buzzer buzzer ;
# endif
# endif
static uint8_t target_extruder ;
# if HAS_BED_PROBE
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER ;
# endif
# define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
int xy_probe_speed = XY_PROBE_SPEED ;
bool bed_leveling_in_progress = false ;
# define XY_PROBE_FEEDRATE xy_probe_speed
# elif defined(XY_PROBE_SPEED)
# define XY_PROBE_FEEDRATE XY_PROBE_SPEED
# else
# define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
# endif
# if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
float z_endstop_adj = 0 ;
# endif
// Extruder offsets
# if HOTENDS > 1
# ifndef HOTEND_OFFSET_X
# define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
# endif
# ifndef HOTEND_OFFSET_Y
# define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
# endif
float hotend_offset [ ] [ HOTENDS ] = {
HOTEND_OFFSET_X ,
HOTEND_OFFSET_Y
# if ENABLED(DUAL_X_CARRIAGE)
, { 0 } // Z offsets for each extruder
# endif
} ;
# endif
# if HAS_Z_SERVO_ENDSTOP
const int z_servo_angle [ 2 ] = Z_SERVO_ANGLES ;
# endif
# if ENABLED(BARICUDA)
int baricuda_valve_pressure = 0 ;
int baricuda_e_to_p_pressure = 0 ;
# endif
# if ENABLED(FWRETRACT)
bool autoretract_enabled = false ;
bool retracted [ EXTRUDERS ] = { false } ;
bool retracted_swap [ EXTRUDERS ] = { false } ;
float retract_length = RETRACT_LENGTH ;
float retract_length_swap = RETRACT_LENGTH_SWAP ;
float retract_feedrate_mm_s = RETRACT_FEEDRATE ;
float retract_zlift = RETRACT_ZLIFT ;
float retract_recover_length = RETRACT_RECOVER_LENGTH ;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP ;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE ;
# endif // FWRETRACT
# if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
bool powersupply =
# if ENABLED(PS_DEFAULT_OFF)
false
# else
true
# endif
;
# endif
# if ENABLED(DELTA)
# define TOWER_1 X_AXIS
# define TOWER_2 Y_AXIS
# define TOWER_3 Z_AXIS
float delta [ 3 ] = { 0 } ;
# define SIN_60 0.8660254037844386
# define COS_60 0.5
float endstop_adj [ 3 ] = { 0 } ;
// these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS ;
float delta_tower1_x = - SIN_60 * ( delta_radius + DELTA_RADIUS_TRIM_TOWER_1 ) ; // front left tower
float delta_tower1_y = - COS_60 * ( delta_radius + DELTA_RADIUS_TRIM_TOWER_1 ) ;
float delta_tower2_x = SIN_60 * ( delta_radius + DELTA_RADIUS_TRIM_TOWER_2 ) ; // front right tower
float delta_tower2_y = - COS_60 * ( delta_radius + DELTA_RADIUS_TRIM_TOWER_2 ) ;
float delta_tower3_x = 0 ; // back middle tower
float delta_tower3_y = ( delta_radius + DELTA_RADIUS_TRIM_TOWER_3 ) ;
float delta_diagonal_rod = DELTA_DIAGONAL_ROD ;
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1 ;
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2 ;
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3 ;
float delta_diagonal_rod_2_tower_1 = sq ( delta_diagonal_rod + delta_diagonal_rod_trim_tower_1 ) ;
float delta_diagonal_rod_2_tower_2 = sq ( delta_diagonal_rod + delta_diagonal_rod_trim_tower_2 ) ;
float delta_diagonal_rod_2_tower_3 = sq ( delta_diagonal_rod + delta_diagonal_rod_trim_tower_3 ) ;
//float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
int delta_grid_spacing [ 2 ] = { 0 , 0 } ;
float bed_level [ AUTO_BED_LEVELING_GRID_POINTS ] [ AUTO_BED_LEVELING_GRID_POINTS ] ;
# endif
# else
static bool home_all_axis = true ;
# endif
# if ENABLED(SCARA)
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND ;
static float delta [ 3 ] = { 0 } ;
float axis_scaling [ 3 ] = { 1 , 1 , 1 } ; // Build size scaling, default to 1
# endif
# if ENABLED(FILAMENT_WIDTH_SENSOR)
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA ; //Set nominal filament width, can be changed with M404
bool filament_sensor = false ; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA ; //Stores the measured filament diameter
int8_t measurement_delay [ MAX_MEASUREMENT_DELAY + 1 ] ; //ring buffer to delay measurement store extruder factor after subtracting 100
int filwidth_delay_index1 = 0 ; //index into ring buffer
int filwidth_delay_index2 = - 1 ; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
int meas_delay_cm = MEASUREMENT_DELAY_CM ; //distance delay setting
# endif
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
static bool filament_ran_out = false ;
# endif
static bool send_ok [ BUFSIZE ] ;
# if HAS_SERVOS
Servo servo [ NUM_SERVOS ] ;
# define MOVE_SERVO(I, P) servo[I].move(P)
# if HAS_Z_SERVO_ENDSTOP
# define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
# define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
# endif
# endif
# ifdef CHDK
millis_t chdkHigh = 0 ;
boolean chdkActive = false ;
# endif
# if ENABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20 ;
# endif
# if ENABLED(HOST_KEEPALIVE_FEATURE)
// States for managing Marlin and host communication
// Marlin sends messages if blocked or busy
enum MarlinBusyState {
NOT_BUSY , // Not in a handler
IN_HANDLER , // Processing a GCode
IN_PROCESS , // Known to be blocking command input (as in G29)
PAUSED_FOR_USER , // Blocking pending any input
PAUSED_FOR_INPUT // Blocking pending text input (concept)
} ;
static MarlinBusyState busy_state = NOT_BUSY ;
static millis_t next_busy_signal_ms = 0 ;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL ;
# define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
# else
# define host_keepalive() ;
# define KEEPALIVE_STATE(n) ;
# endif // HOST_KEEPALIVE_FEATURE
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FUNCTIONS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
void stop ( ) ;
void get_available_commands ( ) ;
void process_next_command ( ) ;
void prepare_move_to_destination ( ) ;
# if ENABLED(ARC_SUPPORT)
void plan_arc ( float target [ NUM_AXIS ] , float * offset , uint8_t clockwise ) ;
# endif
# if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move ( const float offset [ 4 ] ) ;
# endif
void serial_echopair_P ( const char * s_P , int v ) { serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , long v ) { serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , float v ) { serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , double v ) { serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
void serial_echopair_P ( const char * s_P , unsigned long v ) { serialprintPGM ( s_P ) ; SERIAL_ECHO ( v ) ; }
static void report_current_position ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz ( const char * prefix , const float x , const float y , const float z ) {
SERIAL_ECHO ( prefix ) ;
SERIAL_ECHOPAIR ( " : ( " , x ) ;
SERIAL_ECHOPAIR ( " , " , y ) ;
SERIAL_ECHOPAIR ( " , " , z ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
void print_xyz ( const char * prefix , const float xyz [ ] ) {
print_xyz ( prefix , xyz [ X_AXIS ] , xyz [ Y_AXIS ] , xyz [ Z_AXIS ] ) ;
}
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
void print_xyz ( const char * prefix , const vector_3 & xyz ) {
print_xyz ( prefix , xyz . x , xyz . y , xyz . z ) ;
}
# endif
# define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
# endif
# if ENABLED(DELTA) || ENABLED(SCARA)
inline void sync_plan_position_delta ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " sync_plan_position_delta " , current_position ) ;
# endif
calculate_delta ( current_position ) ;
planner . set_position_mm ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
# define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
# else
# define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
# endif
# if ENABLED(SDSUPPORT)
# include "SdFatUtil.h"
int freeMemory ( ) { return SdFatUtil : : FreeRam ( ) ; }
# else
extern " C " {
extern unsigned int __bss_end ;
extern unsigned int __heap_start ;
extern void * __brkval ;
int freeMemory ( ) {
int free_memory ;
if ( ( int ) __brkval = = 0 )
free_memory = ( ( int ) & free_memory ) - ( ( int ) & __bss_end ) ;
else
free_memory = ( ( int ) & free_memory ) - ( ( int ) __brkval ) ;
return free_memory ;
}
}
# endif //!SDSUPPORT
# if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current ( int channel , float current ) ;
extern void digipot_i2c_init ( ) ;
# endif
/**
* Inject the next " immediate " command , when possible .
* Return true if any immediate commands remain to inject .
*/
static bool drain_queued_commands_P ( ) {
if ( queued_commands_P ! = NULL ) {
size_t i = 0 ;
char c , cmd [ 30 ] ;
strncpy_P ( cmd , queued_commands_P , sizeof ( cmd ) - 1 ) ;
cmd [ sizeof ( cmd ) - 1 ] = ' \0 ' ;
while ( ( c = cmd [ i ] ) & & c ! = ' \n ' ) i + + ; // find the end of this gcode command
cmd [ i ] = ' \0 ' ;
if ( enqueue_and_echo_command ( cmd ) ) { // success?
if ( c ) // newline char?
queued_commands_P + = i + 1 ; // advance to the next command
else
queued_commands_P = NULL ; // nul char? no more commands
}
}
return ( queued_commands_P ! = NULL ) ; // return whether any more remain
}
/**
* Record one or many commands to run from program memory .
* Aborts the current queue , if any .
* Note : drain_queued_commands_P ( ) must be called repeatedly to drain the commands afterwards
*/
void enqueue_and_echo_commands_P ( const char * pgcode ) {
queued_commands_P = pgcode ;
drain_queued_commands_P ( ) ; // first command executed asap (when possible)
}
void clear_command_queue ( ) {
cmd_queue_index_r = cmd_queue_index_w ;
commands_in_queue = 0 ;
}
/**
* Once a new command is in the ring buffer , call this to commit it
*/
inline void _commit_command ( bool say_ok ) {
send_ok [ cmd_queue_index_w ] = say_ok ;
cmd_queue_index_w = ( cmd_queue_index_w + 1 ) % BUFSIZE ;
commands_in_queue + + ;
}
/**
* Copy a command directly into the main command buffer , from RAM .
* Returns true if successfully adds the command
*/
inline bool _enqueuecommand ( const char * cmd , bool say_ok = false ) {
if ( * cmd = = ' ; ' | | commands_in_queue > = BUFSIZE ) return false ;
strcpy ( command_queue [ cmd_queue_index_w ] , cmd ) ;
_commit_command ( say_ok ) ;
return true ;
}
void enqueue_and_echo_command_now ( const char * cmd ) {
while ( ! enqueue_and_echo_command ( cmd ) ) idle ( ) ;
}
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command ( const char * cmd , bool say_ok /*=false*/ ) {
if ( _enqueuecommand ( cmd , say_ok ) ) {
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_Enqueueing ) ;
SERIAL_ECHO ( cmd ) ;
SERIAL_ECHOLNPGM ( " \" " ) ;
return true ;
}
return false ;
}
void setup_killpin ( ) {
# if HAS_KILL
SET_INPUT ( KILL_PIN ) ;
WRITE ( KILL_PIN , HIGH ) ;
# endif
}
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
void setup_filrunoutpin ( ) {
pinMode ( FIL_RUNOUT_PIN , INPUT ) ;
# if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
WRITE ( FIL_RUNOUT_PIN , HIGH ) ;
# endif
}
# endif
// Set home pin
void setup_homepin ( void ) {
# if HAS_HOME
SET_INPUT ( HOME_PIN ) ;
WRITE ( HOME_PIN , HIGH ) ;
# endif
}
void setup_photpin ( ) {
# if HAS_PHOTOGRAPH
OUT_WRITE ( PHOTOGRAPH_PIN , LOW ) ;
# endif
}
void setup_powerhold ( ) {
# if HAS_SUICIDE
OUT_WRITE ( SUICIDE_PIN , HIGH ) ;
# endif
# if HAS_POWER_SWITCH
# if ENABLED(PS_DEFAULT_OFF)
OUT_WRITE ( PS_ON_PIN , PS_ON_ASLEEP ) ;
# else
OUT_WRITE ( PS_ON_PIN , PS_ON_AWAKE ) ;
# endif
# endif
}
void suicide ( ) {
# if HAS_SUICIDE
OUT_WRITE ( SUICIDE_PIN , LOW ) ;
# endif
}
void servo_init ( ) {
# if NUM_SERVOS >= 1 && HAS_SERVO_0
servo [ 0 ] . attach ( SERVO0_PIN ) ;
servo [ 0 ] . detach ( ) ; // Just set up the pin. We don't have a position yet. Don't move to a random position.
# endif
# if NUM_SERVOS >= 2 && HAS_SERVO_1
servo [ 1 ] . attach ( SERVO1_PIN ) ;
servo [ 1 ] . detach ( ) ;
# endif
# if NUM_SERVOS >= 3 && HAS_SERVO_2
servo [ 2 ] . attach ( SERVO2_PIN ) ;
servo [ 2 ] . detach ( ) ;
# endif
# if NUM_SERVOS >= 4 && HAS_SERVO_3
servo [ 3 ] . attach ( SERVO3_PIN ) ;
servo [ 3 ] . detach ( ) ;
# endif
# if HAS_Z_SERVO_ENDSTOP
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board .
* There ' s no way to know where the nozzle is positioned until
* homing has been done - no homing with z - probe without init !
*
*/
STOW_Z_SERVO ( ) ;
# endif
# if HAS_BED_PROBE
endstops . enable_z_probe ( false ) ;
# endif
}
/**
* Stepper Reset ( RigidBoard , et . al . )
*/
# if HAS_STEPPER_RESET
void disableStepperDrivers ( ) {
pinMode ( STEPPER_RESET_PIN , OUTPUT ) ;
digitalWrite ( STEPPER_RESET_PIN , LOW ) ; // drive it down to hold in reset motor driver chips
}
void enableStepperDrivers ( ) { pinMode ( STEPPER_RESET_PIN , INPUT ) ; } // set to input, which allows it to be pulled high by pullups
# endif
/**
* Marlin entry - point : Set up before the program loop
* - Set up the kill pin , filament runout , power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for :
* • temperature
* • planner
* • watchdog
* • stepper
* • photo pin
* • servos
* • LCD controller
* • Digipot I2C
* • Z probe sled
* • status LEDs
*/
void setup ( ) {
# ifdef DISABLE_JTAG
// Disable JTAG on AT90USB chips to free up pins for IO
MCUCR = 0x80 ;
MCUCR = 0x80 ;
# endif
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
setup_filrunoutpin ( ) ;
# endif
setup_killpin ( ) ;
setup_powerhold ( ) ;
# if HAS_STEPPER_RESET
disableStepperDrivers ( ) ;
# endif
MYSERIAL . begin ( BAUDRATE ) ;
SERIAL_PROTOCOLLNPGM ( " start " ) ;
SERIAL_ECHO_START ;
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR ;
if ( mcu & 1 ) SERIAL_ECHOLNPGM ( MSG_POWERUP ) ;
if ( mcu & 2 ) SERIAL_ECHOLNPGM ( MSG_EXTERNAL_RESET ) ;
if ( mcu & 4 ) SERIAL_ECHOLNPGM ( MSG_BROWNOUT_RESET ) ;
if ( mcu & 8 ) SERIAL_ECHOLNPGM ( MSG_WATCHDOG_RESET ) ;
if ( mcu & 32 ) SERIAL_ECHOLNPGM ( MSG_SOFTWARE_RESET ) ;
MCUSR = 0 ;
SERIAL_ECHOPGM ( MSG_MARLIN ) ;
SERIAL_ECHOLNPGM ( " " SHORT_BUILD_VERSION ) ;
# ifdef STRING_DISTRIBUTION_DATE
# ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_CONFIGURATION_VER ) ;
SERIAL_ECHOPGM ( STRING_DISTRIBUTION_DATE ) ;
SERIAL_ECHOPGM ( MSG_AUTHOR ) ;
SERIAL_ECHOLNPGM ( STRING_CONFIG_H_AUTHOR ) ;
SERIAL_ECHOPGM ( " Compiled: " ) ;
SERIAL_ECHOLNPGM ( __DATE__ ) ;
# endif // STRING_CONFIG_H_AUTHOR
# endif // STRING_DISTRIBUTION_DATE
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_FREE_MEMORY ) ;
SERIAL_ECHO ( freeMemory ( ) ) ;
SERIAL_ECHOPGM ( MSG_PLANNER_BUFFER_BYTES ) ;
SERIAL_ECHOLN ( ( int ) sizeof ( block_t ) * BLOCK_BUFFER_SIZE ) ;
// Send "ok" after commands by default
for ( int8_t i = 0 ; i < BUFSIZE ; i + + ) send_ok [ i ] = true ;
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
12 years ago
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings ( ) ;
// Initialize current position based on home_offset
memcpy ( current_position , home_offset , sizeof ( home_offset ) ) ;
# if ENABLED(DELTA) || ENABLED(SCARA)
// Vital to init kinematic equivalent for X0 Y0 Z0
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# endif
thermalManager . init ( ) ; // Initialize temperature loop
# if ENABLED(USE_WATCHDOG)
watchdog_init ( ) ;
# endif
stepper . init ( ) ; // Initialize stepper, this enables interrupts!
setup_photpin ( ) ;
servo_init ( ) ;
# if HAS_CONTROLLERFAN
SET_OUTPUT ( CONTROLLERFAN_PIN ) ; //Set pin used for driver cooling fan
# endif
# if HAS_STEPPER_RESET
enableStepperDrivers ( ) ;
# endif
# if ENABLED(DIGIPOT_I2C)
digipot_i2c_init ( ) ;
# endif
# if ENABLED(DAC_STEPPER_CURRENT)
dac_init ( ) ;
# endif
# if ENABLED(Z_PROBE_SLED)
pinMode ( SLED_PIN , OUTPUT ) ;
digitalWrite ( SLED_PIN , LOW ) ; // turn it off
# endif // Z_PROBE_SLED
setup_homepin ( ) ;
# ifdef STAT_LED_RED
pinMode ( STAT_LED_RED , OUTPUT ) ;
digitalWrite ( STAT_LED_RED , LOW ) ; // turn it off
# endif
# ifdef STAT_LED_BLUE
pinMode ( STAT_LED_BLUE , OUTPUT ) ;
digitalWrite ( STAT_LED_BLUE , LOW ) ; // turn it off
# endif
lcd_init ( ) ;
# if ENABLED(SHOW_BOOTSCREEN)
# if ENABLED(DOGLCD)
delay ( 1000 ) ;
# elif ENABLED(ULTRA_LCD)
bootscreen ( ) ;
lcd_init ( ) ;
# endif
# endif
}
/**
* The main Marlin program loop
*
* - Save or log commands to SD
* - Process available commands ( if not saving )
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
*/
void loop ( ) {
if ( commands_in_queue < BUFSIZE ) get_available_commands ( ) ;
# if ENABLED(SDSUPPORT)
card . checkautostart ( false ) ;
# endif
if ( commands_in_queue ) {
# if ENABLED(SDSUPPORT)
if ( card . saving ) {
char * command = command_queue [ cmd_queue_index_r ] ;
if ( strstr_P ( command , PSTR ( " M29 " ) ) ) {
// M29 closes the file
card . closefile ( ) ;
SERIAL_PROTOCOLLNPGM ( MSG_FILE_SAVED ) ;
ok_to_send ( ) ;
}
else {
// Write the string from the read buffer to SD
card . write_command ( command ) ;
if ( card . logging )
process_next_command ( ) ; // The card is saving because it's logging
else
ok_to_send ( ) ;
}
}
else
process_next_command ( ) ;
# else
process_next_command ( ) ;
# endif // SDSUPPORT
commands_in_queue - - ;
cmd_queue_index_r = ( cmd_queue_index_r + 1 ) % BUFSIZE ;
}
endstops . report_state ( ) ;
idle ( ) ;
}
void gcode_line_error ( const char * err , bool doFlush = true ) {
SERIAL_ERROR_START ;
serialprintPGM ( err ) ;
SERIAL_ERRORLN ( gcode_LastN ) ;
//Serial.println(gcode_N);
if ( doFlush ) FlushSerialRequestResend ( ) ;
serial_count = 0 ;
}
inline void get_serial_commands ( ) {
static char serial_line_buffer [ MAX_CMD_SIZE ] ;
static boolean serial_comment_mode = false ;
// If the command buffer is empty for too long,
// send "wait" to indicate Marlin is still waiting.
# if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
static millis_t last_command_time = 0 ;
millis_t ms = millis ( ) ;
if ( commands_in_queue = = 0 & & ! MYSERIAL . available ( ) & & ELAPSED ( ms , last_command_time + NO_TIMEOUTS ) ) {
SERIAL_ECHOLNPGM ( MSG_WAIT ) ;
last_command_time = ms ;
}
# endif
/**
* Loop while serial characters are incoming and the queue is not full
*/
while ( commands_in_queue < BUFSIZE & & MYSERIAL . available ( ) > 0 ) {
char serial_char = MYSERIAL . read ( ) ;
/**
* If the character ends the line
*/
if ( serial_char = = ' \n ' | | serial_char = = ' \r ' ) {
serial_comment_mode = false ; // end of line == end of comment
if ( ! serial_count ) continue ; // skip empty lines
serial_line_buffer [ serial_count ] = 0 ; // terminate string
serial_count = 0 ; //reset buffer
char * command = serial_line_buffer ;
while ( * command = = ' ' ) command + + ; // skip any leading spaces
char * npos = ( * command = = ' N ' ) ? command : NULL ; // Require the N parameter to start the line
char * apos = strchr ( command , ' * ' ) ;
if ( npos ) {
boolean M110 = strstr_P ( command , PSTR ( " M110 " ) ) ! = NULL ;
if ( M110 ) {
char * n2pos = strchr ( command + 4 , ' N ' ) ;
if ( n2pos ) npos = n2pos ;
}
gcode_N = strtol ( npos + 1 , NULL , 10 ) ;
if ( gcode_N ! = gcode_LastN + 1 & & ! M110 ) {
gcode_line_error ( PSTR ( MSG_ERR_LINE_NO ) ) ;
return ;
}
if ( apos ) {
byte checksum = 0 , count = 0 ;
while ( command [ count ] ! = ' * ' ) checksum ^ = command [ count + + ] ;
if ( strtol ( apos + 1 , NULL , 10 ) ! = checksum ) {
gcode_line_error ( PSTR ( MSG_ERR_CHECKSUM_MISMATCH ) ) ;
return ;
}
// if no errors, continue parsing
}
else {
gcode_line_error ( PSTR ( MSG_ERR_NO_CHECKSUM ) ) ;
return ;
}
gcode_LastN = gcode_N ;
// if no errors, continue parsing
}
else if ( apos ) { // No '*' without 'N'
gcode_line_error ( PSTR ( MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM ) , false ) ;
return ;
}
// Movement commands alert when stopped
if ( IsStopped ( ) ) {
char * gpos = strchr ( command , ' G ' ) ;
if ( gpos ) {
int codenum = strtol ( gpos + 1 , NULL , 10 ) ;
switch ( codenum ) {
case 0 :
case 1 :
case 2 :
case 3 :
SERIAL_ERRORLNPGM ( MSG_ERR_STOPPED ) ;
LCD_MESSAGEPGM ( MSG_STOPPED ) ;
break ;
}
}
}
// If command was e-stop process now
if ( strcmp ( command , " M112 " ) = = 0 ) kill ( PSTR ( MSG_KILLED ) ) ;
# if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
last_command_time = ms ;
# endif
// Add the command to the queue
_enqueuecommand ( serial_line_buffer , true ) ;
}
else if ( serial_count > = MAX_CMD_SIZE - 1 ) {
// Keep fetching, but ignore normal characters beyond the max length
// The command will be injected when EOL is reached
}
else if ( serial_char = = ' \\ ' ) { // Handle escapes
if ( MYSERIAL . available ( ) > 0 ) {
// if we have one more character, copy it over
serial_char = MYSERIAL . read ( ) ;
if ( ! serial_comment_mode ) serial_line_buffer [ serial_count + + ] = serial_char ;
}
// otherwise do nothing
}
else { // it's not a newline, carriage return or escape char
if ( serial_char = = ' ; ' ) serial_comment_mode = true ;
if ( ! serial_comment_mode ) serial_line_buffer [ serial_count + + ] = serial_char ;
}
} // queue has space, serial has data
}
# if ENABLED(SDSUPPORT)
inline void get_sdcard_commands ( ) {
static bool stop_buffering = false ,
sd_comment_mode = false ;
if ( ! card . sdprinting ) return ;
/**
* ' # ' stops reading from SD to the buffer prematurely , so procedural
* macro calls are possible . If it occurs , stop_buffering is triggered
* and the buffer is run dry ; this character _can_ occur in serial com
* due to checksums , however , no checksums are used in SD printing .
*/
if ( commands_in_queue = = 0 ) stop_buffering = false ;
uint16_t sd_count = 0 ;
bool card_eof = card . eof ( ) ;
while ( commands_in_queue < BUFSIZE & & ! card_eof & & ! stop_buffering ) {
int16_t n = card . get ( ) ;
char sd_char = ( char ) n ;
card_eof = card . eof ( ) ;
if ( card_eof | | n = = - 1
| | sd_char = = ' \n ' | | sd_char = = ' \r '
| | ( ( sd_char = = ' # ' | | sd_char = = ' : ' ) & & ! sd_comment_mode )
) {
if ( card_eof ) {
SERIAL_PROTOCOLLNPGM ( MSG_FILE_PRINTED ) ;
print_job_timer . stop ( ) ;
char time [ 30 ] ;
millis_t t = print_job_timer . duration ( ) ;
int hours = t / 60 / 60 , minutes = ( t / 60 ) % 60 ;
sprintf_P ( time , PSTR ( " %i " MSG_END_HOUR " %i " MSG_END_MINUTE ) , hours , minutes ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLN ( time ) ;
lcd_setstatus ( time , true ) ;
card . printingHasFinished ( ) ;
card . checkautostart ( true ) ;
}
else if ( n = = - 1 ) {
SERIAL_ERROR_START ;
SERIAL_ECHOLNPGM ( MSG_SD_ERR_READ ) ;
}
if ( sd_char = = ' # ' ) stop_buffering = true ;
sd_comment_mode = false ; //for new command
if ( ! sd_count ) continue ; //skip empty lines
command_queue [ cmd_queue_index_w ] [ sd_count ] = ' \0 ' ; //terminate string
sd_count = 0 ; //clear buffer
_commit_command ( false ) ;
}
else if ( sd_count > = MAX_CMD_SIZE - 1 ) {
/**
* Keep fetching , but ignore normal characters beyond the max length
* The command will be injected when EOL is reached
*/
}
else {
if ( sd_char = = ' ; ' ) sd_comment_mode = true ;
if ( ! sd_comment_mode ) command_queue [ cmd_queue_index_w ] [ sd_count + + ] = sd_char ;
}
}
}
# endif // SDSUPPORT
/**
* Add to the circular command queue the next command from :
* - The command - injection queue ( queued_commands_P )
* - The active serial input ( usually USB )
* - The SD card file being actively printed
*/
void get_available_commands ( ) {
// if any immediate commands remain, don't get other commands yet
if ( drain_queued_commands_P ( ) ) return ;
get_serial_commands ( ) ;
# if ENABLED(SDSUPPORT)
get_sdcard_commands ( ) ;
# endif
}
inline bool code_has_value ( ) {
int i = 1 ;
char c = seen_pointer [ i ] ;
while ( c = = ' ' ) c = seen_pointer [ + + i ] ;
if ( c = = ' - ' | | c = = ' + ' ) c = seen_pointer [ + + i ] ;
if ( c = = ' . ' ) c = seen_pointer [ + + i ] ;
return NUMERIC ( c ) ;
}
inline float code_value_float ( ) {
float ret ;
char * e = strchr ( seen_pointer , ' E ' ) ;
if ( e ) {
* e = 0 ;
ret = strtod ( seen_pointer + 1 , NULL ) ;
* e = ' E ' ;
}
else
ret = strtod ( seen_pointer + 1 , NULL ) ;
return ret ;
}
inline unsigned long code_value_ulong ( ) { return strtoul ( seen_pointer + 1 , NULL , 10 ) ; }
inline long code_value_long ( ) { return strtol ( seen_pointer + 1 , NULL , 10 ) ; }
inline int code_value_int ( ) { return ( int ) strtol ( seen_pointer + 1 , NULL , 10 ) ; }
inline uint16_t code_value_ushort ( ) { return ( uint16_t ) strtoul ( seen_pointer + 1 , NULL , 10 ) ; }
inline uint8_t code_value_byte ( ) { return ( uint8_t ) ( constrain ( strtol ( seen_pointer + 1 , NULL , 10 ) , 0 , 255 ) ) ; }
inline bool code_value_bool ( ) { return code_value_byte ( ) > 0 ; }
# if ENABLED(INCH_MODE_SUPPORT)
inline void set_input_linear_units ( LinearUnit units ) {
switch ( units ) {
case LINEARUNIT_INCH :
linear_unit_factor = 25.4 ;
break ;
case LINEARUNIT_MM :
default :
linear_unit_factor = 1.0 ;
break ;
}
volumetric_unit_factor = pow ( linear_unit_factor , 3.0 ) ;
}
inline float axis_unit_factor ( int axis ) {
return ( axis = = E_AXIS & & volumetric_enabled ? volumetric_unit_factor : linear_unit_factor ) ;
}
inline float code_value_linear_units ( ) { return code_value_float ( ) * linear_unit_factor ; }
inline float code_value_axis_units ( int axis ) { return code_value_float ( ) * axis_unit_factor ( axis ) ; }
inline float code_value_per_axis_unit ( int axis ) { return code_value_float ( ) / axis_unit_factor ( axis ) ; }
# else
inline float code_value_linear_units ( ) { return code_value_float ( ) ; }
inline float code_value_axis_units ( int axis ) { UNUSED ( axis ) ; return code_value_float ( ) ; }
inline float code_value_per_axis_unit ( int axis ) { UNUSED ( axis ) ; return code_value_float ( ) ; }
# endif
# if ENABLED(TEMPERATURE_UNITS_SUPPORT)
inline void set_input_temp_units ( TempUnit units ) { input_temp_units = units ; }
float code_value_temp_abs ( ) {
switch ( input_temp_units ) {
case TEMPUNIT_C :
return code_value_float ( ) ;
case TEMPUNIT_F :
return ( code_value_float ( ) - 32 ) / 1.8 ;
case TEMPUNIT_K :
return code_value_float ( ) - 272.15 ;
default :
return code_value_float ( ) ;
}
}
float code_value_temp_diff ( ) {
switch ( input_temp_units ) {
case TEMPUNIT_C :
case TEMPUNIT_K :
return code_value_float ( ) ;
case TEMPUNIT_F :
return code_value_float ( ) / 1.8 ;
default :
return code_value_float ( ) ;
}
}
# else
float code_value_temp_abs ( ) { return code_value_float ( ) ; }
float code_value_temp_diff ( ) { return code_value_float ( ) ; }
# endif
inline millis_t code_value_millis ( ) { return code_value_ulong ( ) ; }
inline millis_t code_value_millis_from_seconds ( ) { return code_value_float ( ) * 1000 ; }
bool code_seen ( char code ) {
seen_pointer = strchr ( current_command_args , code ) ;
return ( seen_pointer ! = NULL ) ; // Return TRUE if the code-letter was found
}
/**
* Set target_extruder from the T parameter or the active_extruder
*
* Returns TRUE if the target is invalid
*/
bool get_target_extruder_from_command ( int code ) {
if ( code_seen ( ' T ' ) ) {
uint8_t t = code_value_byte ( ) ;
if ( t > = EXTRUDERS ) {
SERIAL_ECHO_START ;
SERIAL_CHAR ( ' M ' ) ;
SERIAL_ECHO ( code ) ;
SERIAL_ECHOPAIR ( " " MSG_INVALID_EXTRUDER " " , t ) ;
SERIAL_EOL ;
return true ;
}
target_extruder = t ;
}
else
target_extruder = active_extruder ;
return false ;
}
# define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any ( const type * p ) \
{ return pgm_read_ # # reader # # _near ( p ) ; }
DEFINE_PGM_READ_ANY ( float , float ) ;
DEFINE_PGM_READ_ANY ( signed char , byte ) ;
# define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array # # _P [ 3 ] = \
{ X_ # # CONFIG , Y_ # # CONFIG , Z_ # # CONFIG } ; \
static inline type array ( int axis ) \
{ return pgm_read_any ( & array # # _P [ axis ] ) ; }
XYZ_CONSTS_FROM_CONFIG ( float , base_min_pos , MIN_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , base_max_pos , MAX_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , base_home_pos , HOME_POS ) ;
XYZ_CONSTS_FROM_CONFIG ( float , max_length , MAX_LENGTH ) ;
XYZ_CONSTS_FROM_CONFIG ( float , home_bump_mm , HOME_BUMP_MM ) ;
XYZ_CONSTS_FROM_CONFIG ( signed char , home_dir , HOME_DIR ) ;
# if ENABLED(DUAL_X_CARRIAGE)
# define DXC_FULL_CONTROL_MODE 0
# define DXC_AUTO_PARK_MODE 1
# define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE ;
static float x_home_pos ( int extruder ) {
if ( extruder = = 0 )
return base_home_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X - carriage offset when homed - otherwise X2_HOME_POS is used .
* This allow soft recalibration of the second extruder offset position
* without firmware reflash ( through the M218 command ) .
*/
return ( hotend_offset [ X_AXIS ] [ 1 ] > 0 ) ? hotend_offset [ X_AXIS ] [ 1 ] : X2_HOME_POS ;
}
static int x_home_dir ( int extruder ) {
return ( extruder = = 0 ) ? X_HOME_DIR : X2_HOME_DIR ;
}
static float inactive_extruder_x_pos = X2_MAX_POS ; // used in mode 0 & 1
static bool active_extruder_parked = false ; // used in mode 1 & 2
static float raised_parked_position [ NUM_AXIS ] ; // used in mode 1
static millis_t delayed_move_time = 0 ; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET ; // used in mode 2
static float duplicate_extruder_temp_offset = 0 ; // used in mode 2
bool extruder_duplication_enabled = false ; // used in mode 2
# endif //DUAL_X_CARRIAGE
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end . Or
* they can prevent axes from moving past endstops and grinding .
*
* To keep doing their job as the coordinate system changes ,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine .
*/
static void update_software_endstops ( AxisEnum axis ) {
float offs = home_offset [ axis ] + position_shift [ axis ] ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( axis = = X_AXIS ) {
float dual_max_x = max ( hotend_offset [ X_AXIS ] [ 1 ] , X2_MAX_POS ) ;
if ( active_extruder ! = 0 ) {
sw_endstop_min [ X_AXIS ] = X2_MIN_POS + offs ;
sw_endstop_max [ X_AXIS ] = dual_max_x + offs ;
return ;
}
else if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE ) {
sw_endstop_min [ X_AXIS ] = base_min_pos ( X_AXIS ) + offs ;
sw_endstop_max [ X_AXIS ] = min ( base_max_pos ( X_AXIS ) , dual_max_x - duplicate_extruder_x_offset ) + offs ;
return ;
}
}
else
# endif
{
sw_endstop_min [ axis ] = base_min_pos ( axis ) + offs ;
sw_endstop_max [ axis ] = base_max_pos ( axis ) + offs ;
}
}
/**
* Change the home offset for an axis , update the current
* position and the software endstops to retain the same
* relative distance to the new home .
*
* Since this changes the current_position , code should
* call sync_plan_position soon after this .
*/
static void set_home_offset ( AxisEnum axis , float v ) {
current_position [ axis ] + = v - home_offset [ axis ] ;
home_offset [ axis ] = v ;
update_software_endstops ( axis ) ;
}
static void set_axis_is_at_home ( AxisEnum axis ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " set_axis_is_at_home( " , axis ) ;
SERIAL_ECHOLNPGM ( " ) >>> " ) ;
}
# endif
position_shift [ axis ] = 0 ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( axis = = X_AXIS & & ( active_extruder ! = 0 | | dual_x_carriage_mode = = DXC_DUPLICATION_MODE ) ) {
if ( active_extruder ! = 0 )
current_position [ X_AXIS ] = x_home_pos ( active_extruder ) ;
else
current_position [ X_AXIS ] = base_home_pos ( X_AXIS ) + home_offset [ X_AXIS ] ;
update_software_endstops ( X_AXIS ) ;
return ;
}
# endif
# if ENABLED(SCARA)
if ( axis = = X_AXIS | | axis = = Y_AXIS ) {
float homeposition [ 3 ] ;
for ( int i = 0 ; i < 3 ; i + + ) homeposition [ i ] = base_home_pos ( i ) ;
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
/**
* Works out real Homeposition angles using inverse kinematics ,
* and calculates homing offset using forward kinematics
*/
calculate_delta ( homeposition ) ;
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for ( int i = 0 ; i < 2 ; i + + ) delta [ i ] - = home_offset [ i ] ;
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform ( delta ) ;
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position [ axis ] = delta [ axis ] ;
/**
* SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform .
*/
sw_endstop_min [ axis ] = base_min_pos ( axis ) ; // + (delta[axis] - base_home_pos(axis));
sw_endstop_max [ axis ] = base_max_pos ( axis ) ; // + (delta[axis] - base_home_pos(axis));
}
else
# endif
{
current_position [ axis ] = base_home_pos ( axis ) + home_offset [ axis ] ;
update_software_endstops ( axis ) ;
# if HAS_BED_PROBE && Z_HOME_DIR < 0
if ( axis = = Z_AXIS ) {
current_position [ Z_AXIS ] - = zprobe_zoffset ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > zprobe_zoffset== " , zprobe_zoffset ) ;
SERIAL_EOL ;
}
# endif
}
# endif
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > home_offset[axis]== " , home_offset [ axis ] ) ;
DEBUG_POS ( " " , current_position ) ;
}
# endif
}
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " <<< set_axis_is_at_home( " , axis ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
}
/**
* Some planner shorthand inline functions
*/
inline void set_homing_bump_feedrate ( AxisEnum axis ) {
const int homing_bump_divisor [ ] = HOMING_BUMP_DIVISOR ;
int hbd = homing_bump_divisor [ axis ] ;
if ( hbd < 1 ) {
hbd = 10 ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( " Warning: Homing Bump Divisor < 1 " ) ;
}
feedrate = homing_feedrate [ axis ] / hbd ;
}
//
// line_to_current_position
// Move the planner to the current position from wherever it last moved
// (or from wherever it has been told it is located).
//
inline void line_to_current_position ( ) {
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
inline void line_to_z ( float zPosition ) {
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition , current_position [ E_AXIS ] , feedrate / 60 , active_extruder ) ;
}
//
// line_to_destination
// Move the planner, not necessarily synced with current_position
//
inline void line_to_destination ( float mm_m ) {
planner . buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , mm_m / 60 , active_extruder ) ;
}
inline void line_to_destination ( ) {
line_to_destination ( feedrate ) ;
}
/**
* sync_plan_position
* Set planner / stepper positions to the cartesian current_position .
* The stepper code translates these coordinates into step units .
* Allows translation between steps and units ( mm ) for cartesian & core robots
*/
inline void sync_plan_position ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " sync_plan_position " , current_position ) ;
# endif
planner . set_position_mm ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
inline void sync_plan_position_e ( ) { planner . set_e_position_mm ( current_position [ E_AXIS ] ) ; }
inline void set_current_to_destination ( ) { memcpy ( current_position , destination , sizeof ( current_position ) ) ; }
inline void set_destination_to_current ( ) { memcpy ( destination , current_position , sizeof ( destination ) ) ; }
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
//
static void setup_for_endstop_or_probe_move ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " setup_for_endstop_or_probe_move " , current_position ) ;
# endif
saved_feedrate = feedrate ;
saved_feedrate_multiplier = feedrate_multiplier ;
feedrate_multiplier = 100 ;
refresh_cmd_timeout ( ) ;
}
static void setup_for_endstop_move ( ) {
setup_for_endstop_or_probe_move ( ) ;
endstops . enable ( ) ;
}
static void clean_up_after_endstop_or_probe_move ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " clean_up_after_endstop_or_probe_move " , current_position ) ;
# endif
feedrate = saved_feedrate ;
feedrate_multiplier = saved_feedrate_multiplier ;
refresh_cmd_timeout ( ) ;
}
# if HAS_BED_PROBE
# if ENABLED(DELTA)
/**
* Calculate delta , start a line , and set current_position to destination
*/
void prepare_move_to_destination_raw ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " prepare_move_to_destination_raw " , destination ) ;
# endif
refresh_cmd_timeout ( ) ;
calculate_delta ( destination ) ;
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , destination [ E_AXIS ] , ( feedrate / 60 ) * ( feedrate_multiplier / 100.0 ) , active_extruder ) ;
set_current_to_destination ( ) ;
}
# endif
/**
* Plan a move to ( X , Y , Z ) and set the current_position
* The final current_position may not be the one that was requested
*/
static void do_blocking_move_to ( float x , float y , float z ) {
float old_feedrate = feedrate ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) print_xyz ( " do_blocking_move_to " , x , y , z ) ;
# endif
# if ENABLED(DELTA)
feedrate = XY_PROBE_FEEDRATE ;
destination [ X_AXIS ] = x ;
destination [ Y_AXIS ] = y ;
destination [ Z_AXIS ] = z ;
if ( x = = current_position [ X_AXIS ] & & y = = current_position [ Y_AXIS ] )
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
else
prepare_move_to_destination ( ) ; // this will also set_current_to_destination
# else
// If Z needs to raise, do it before moving XY
if ( current_position [ Z_AXIS ] < z ) {
feedrate = homing_feedrate [ Z_AXIS ] ;
current_position [ Z_AXIS ] = z ;
line_to_current_position ( ) ;
}
feedrate = XY_PROBE_FEEDRATE ;
current_position [ X_AXIS ] = x ;
current_position [ Y_AXIS ] = y ;
line_to_current_position ( ) ;
// If Z needs to lower, do it after moving XY
if ( current_position [ Z_AXIS ] > z ) {
feedrate = homing_feedrate [ Z_AXIS ] ;
current_position [ Z_AXIS ] = z ;
line_to_current_position ( ) ;
}
# endif
stepper . synchronize ( ) ;
feedrate = old_feedrate ;
}
inline void do_blocking_move_to_x ( float x ) {
do_blocking_move_to ( x , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
inline void do_blocking_move_to_z ( float z ) {
do_blocking_move_to ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , z ) ;
}
/**
* Raise Z to a minimum height to make room for a probe to move
*
* zprobe_zoffset : Negative of the Z height where the probe engages
* z_raise : The probing raise distance
*
* The zprobe_zoffset is negative for a switch below the nozzle , so
* multiply by Z_HOME_DIR ( - 1 ) to move enough away from the bed .
*/
inline void do_probe_raise ( float z_raise ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " do_probe_raise( " , z_raise ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
float z_dest = home_offset [ Z_AXIS ] + z_raise ;
if ( ( Z_HOME_DIR ) < 0 & & zprobe_zoffset < 0 )
z_dest - = zprobe_zoffset ;
if ( z_dest > current_position [ Z_AXIS ] ) {
float old_feedrate = feedrate ;
feedrate = homing_feedrate [ Z_AXIS ] ;
do_blocking_move_to_z ( z_dest ) ;
feedrate = old_feedrate ;
}
}
# endif //HAS_BED_PROBE
# if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
static void axis_unhomed_error ( bool xyz = false ) {
if ( xyz ) {
LCD_MESSAGEPGM ( MSG_XYZ_UNHOMED ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_XYZ_UNHOMED ) ;
}
else {
LCD_MESSAGEPGM ( MSG_YX_UNHOMED ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_YX_UNHOMED ) ;
}
}
# endif
# if ENABLED(Z_PROBE_SLED)
# ifndef SLED_DOCKING_OFFSET
# define SLED_DOCKING_OFFSET 0
# endif
/**
* Method to dock / undock a sled designed by Charles Bell .
*
* dock [ in ] If true , move to MAX_X and engage the electromagnet
* offset [ in ] The additional distance to move to adjust docking location
*/
static void dock_sled ( bool dock , int offset = 0 ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " dock_sled( " , dock ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
if ( ! axis_homed [ X_AXIS ] | | ! axis_homed [ Y_AXIS ] | | ! axis_homed [ Z_AXIS ] ) {
axis_unhomed_error ( true ) ;
return ;
}
if ( endstops . z_probe_enabled = = ! dock ) return ; // already docked/undocked?
float oldXpos = current_position [ X_AXIS ] ; // save x position
float old_feedrate = feedrate ;
if ( dock ) {
# if _Z_RAISE_PROBE_DEPLOY_STOW > 0
do_probe_raise ( _Z_RAISE_PROBE_DEPLOY_STOW ) ;
# endif
// Dock sled a bit closer to ensure proper capturing
feedrate = XY_PROBE_FEEDRATE ;
do_blocking_move_to_x ( X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1 ) ;
digitalWrite ( SLED_PIN , LOW ) ; // turn off magnet
}
else {
feedrate = XY_PROBE_FEEDRATE ;
float z_loc = current_position [ Z_AXIS ] ;
if ( z_loc < _Z_RAISE_PROBE_DEPLOY_STOW + 5 ) z_loc = _Z_RAISE_PROBE_DEPLOY_STOW ;
do_blocking_move_to ( X_MAX_POS + SLED_DOCKING_OFFSET + offset , current_position [ Y_AXIS ] , z_loc ) ; // this also updates current_position
digitalWrite ( SLED_PIN , HIGH ) ; // turn on magnet
}
do_blocking_move_to_x ( oldXpos ) ; // return to position before docking
feedrate = old_feedrate ;
}
# endif // Z_PROBE_SLED
# if HAS_BED_PROBE
static void deploy_z_probe ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " deploy_z_probe " , current_position ) ;
# endif
if ( endstops . z_probe_enabled ) return ;
// Make room for probe
# if _Z_RAISE_PROBE_DEPLOY_STOW > 0
do_probe_raise ( _Z_RAISE_PROBE_DEPLOY_STOW ) ;
# endif
# if ENABLED(Z_PROBE_SLED)
dock_sled ( false ) ;
# elif HAS_Z_SERVO_ENDSTOP
// Engage Z Servo endstop if enabled
DEPLOY_Z_SERVO ( ) ;
# elif ENABLED(Z_PROBE_ALLEN_KEY)
float old_feedrate = feedrate ;
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE ;
// If endstop is already false, the Z probe is deployed
# if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = ( READ ( Z_MIN_PROBE_PIN ) ! = Z_MIN_PROBE_ENDSTOP_INVERTING ) ;
if ( z_probe_endstop )
# else
bool z_min_endstop = ( READ ( Z_MIN_PIN ) ! = Z_MIN_ENDSTOP_INVERTING ) ;
if ( z_min_endstop )
# endif
{
// Move to the start position to initiate deployment
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X ;
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z ;
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
// Move to engage deployment
if ( Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE ! = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE )
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_2_X ! = Z_PROBE_ALLEN_KEY_DEPLOY_1_X )
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_2_Y ! = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y )
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_2_Z ! = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z )
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z ;
prepare_move_to_destination_raw ( ) ;
# ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
if ( Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE ! = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE )
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE ;
// Move to trigger deployment
if ( Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE ! = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE )
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_3_X ! = Z_PROBE_ALLEN_KEY_DEPLOY_2_X )
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_3_Y ! = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y )
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y ;
if ( Z_PROBE_ALLEN_KEY_DEPLOY_3_Z ! = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z )
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z ;
prepare_move_to_destination_raw ( ) ;
# endif
}
// Partially Home X,Y for safety
destination [ X_AXIS ] * = 0.75 ;
destination [ Y_AXIS ] * = 0.75 ;
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
feedrate = old_feedrate ;
stepper . synchronize ( ) ;
# if ENABLED(Z_MIN_PROBE_ENDSTOP)
z_probe_endstop = ( READ ( Z_MIN_PROBE_PIN ) ! = Z_MIN_PROBE_ENDSTOP_INVERTING ) ;
if ( z_probe_endstop )
# else
z_min_endstop = ( READ ( Z_MIN_PIN ) ! = Z_MIN_ENDSTOP_INVERTING ) ;
if ( z_min_endstop )
# endif
{
if ( IsRunning ( ) ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to engage! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
}
stop ( ) ;
}
# else
// Nothing to be done. Just enable_z_probe below...
# endif
endstops . enable_z_probe ( ) ;
}
static void stow_z_probe ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " stow_z_probe " , current_position ) ;
# endif
if ( ! endstops . z_probe_enabled ) return ;
// Make more room for the servo
# if _Z_RAISE_PROBE_DEPLOY_STOW > 0
do_probe_raise ( _Z_RAISE_PROBE_DEPLOY_STOW ) ;
# endif
# if ENABLED(Z_PROBE_SLED)
dock_sled ( true ) ;
# elif HAS_Z_SERVO_ENDSTOP
// Change the Z servo angle
STOW_Z_SERVO ( ) ;
# elif ENABLED(Z_PROBE_ALLEN_KEY)
float old_feedrate = feedrate ;
// Move up for safety
feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE ;
# if _Z_RAISE_PROBE_DEPLOY_STOW > 0
destination [ Z_AXIS ] = current_position [ Z_AXIS ] + _Z_RAISE_PROBE_DEPLOY_STOW ;
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
# endif
// Move to the start position to initiate retraction
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_1_X ;
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_1_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_1_Z ;
prepare_move_to_destination_raw ( ) ;
// Move the nozzle down to push the Z probe into retracted position
if ( Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE ! = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE )
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE ;
if ( Z_PROBE_ALLEN_KEY_STOW_2_X ! = Z_PROBE_ALLEN_KEY_STOW_1_X )
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_2_X ;
if ( Z_PROBE_ALLEN_KEY_STOW_2_Y ! = Z_PROBE_ALLEN_KEY_STOW_1_Y )
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_2_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_2_Z ;
prepare_move_to_destination_raw ( ) ;
// Move up for safety
if ( Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE ! = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE )
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE ;
if ( Z_PROBE_ALLEN_KEY_STOW_3_X ! = Z_PROBE_ALLEN_KEY_STOW_2_X )
destination [ X_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_3_X ;
if ( Z_PROBE_ALLEN_KEY_STOW_3_Y ! = Z_PROBE_ALLEN_KEY_STOW_2_Y )
destination [ Y_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_3_Y ;
destination [ Z_AXIS ] = Z_PROBE_ALLEN_KEY_STOW_3_Z ;
prepare_move_to_destination_raw ( ) ;
// Home XY for safety
feedrate = homing_feedrate [ X_AXIS ] / 2 ;
destination [ X_AXIS ] = 0 ;
destination [ Y_AXIS ] = 0 ;
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
feedrate = old_feedrate ;
stepper . synchronize ( ) ;
# if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = ( READ ( Z_MIN_PROBE_PIN ) ! = Z_MIN_PROBE_ENDSTOP_INVERTING ) ;
if ( ! z_probe_endstop )
# else
bool z_min_endstop = ( READ ( Z_MIN_PIN ) ! = Z_MIN_ENDSTOP_INVERTING ) ;
if ( ! z_min_endstop )
# endif
{
if ( IsRunning ( ) ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( " Z-Probe failed to retract! " ) ;
LCD_ALERTMESSAGEPGM ( " Err: ZPROBE " ) ;
}
stop ( ) ;
}
# else
// Nothing to do here. Just clear endstops.z_probe_enabled
# endif
endstops . enable_z_probe ( false ) ;
}
// Do a single Z probe and return with current_position[Z_AXIS]
// at the height where the probe triggered.
static float run_z_probe ( ) {
float old_feedrate = feedrate ;
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
refresh_cmd_timeout ( ) ;
# if ENABLED(DELTA)
float start_z = current_position [ Z_AXIS ] ;
long start_steps = stepper . position ( Z_AXIS ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " run_z_probe (DELTA) 1 " ) ;
# endif
// move down slowly until you find the bed
feedrate = homing_feedrate [ Z_AXIS ] / 4 ;
destination [ Z_AXIS ] = - 10 ;
prepare_move_to_destination_raw ( ) ; // this will also set_current_to_destination
stepper . synchronize ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
/**
* We have to let the planner know where we are right now as it
* is not where we said to go .
*/
long stop_steps = stepper . position ( Z_AXIS ) ;
float mm = start_z - float ( start_steps - stop_steps ) / planner . axis_steps_per_mm [ Z_AXIS ] ;
current_position [ Z_AXIS ] = mm ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " run_z_probe (DELTA) 2 " , current_position ) ;
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# else // !DELTA
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
planner . bed_level_matrix . set_to_identity ( ) ;
# endif
feedrate = homing_feedrate [ Z_AXIS ] ;
// Move down until the Z probe (or endstop?) is triggered
float zPosition = - ( Z_MAX_LENGTH + 10 ) ;
line_to_z ( zPosition ) ;
stepper . synchronize ( ) ;
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = stepper . get_axis_position_mm ( Z_AXIS ) ;
planner . set_position_mm (
current_position [ X_AXIS ] , current_position [ Y_AXIS ] , zPosition ,
current_position [ E_AXIS ]
) ;
// move up the retract distance
zPosition + = home_bump_mm ( Z_AXIS ) ;
line_to_z ( zPosition ) ;
stepper . synchronize ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate ( Z_AXIS ) ;
zPosition - = home_bump_mm ( Z_AXIS ) * 2 ;
line_to_z ( zPosition ) ;
stepper . synchronize ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
// Get the current stepper position after bumping an endstop
current_position [ Z_AXIS ] = stepper . get_axis_position_mm ( Z_AXIS ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " run_z_probe " , current_position ) ;
# endif
# endif // !DELTA
feedrate = old_feedrate ;
return current_position [ Z_AXIS ] ;
}
inline void do_blocking_move_to_xy ( float x , float y ) {
do_blocking_move_to ( x , y , current_position [ Z_AXIS ] ) ;
}
//
// - Move to the given XY
// - Deploy the probe, if not already deployed
// - Probe the bed, get the Z position
// - Depending on the 'stow' flag
// - Stow the probe, or
// - Raise to the BETWEEN height
// - Return the probed Z position
//
static float probe_pt ( float x , float y , bool stow = true , int verbose_level = 1 ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " probe_pt >>> " ) ;
SERIAL_ECHOPAIR ( " > stow: " , stow ) ;
SERIAL_EOL ;
DEBUG_POS ( " " , current_position ) ;
}
# endif
float old_feedrate = feedrate ;
// Ensure a minimum height before moving the probe
do_probe_raise ( Z_RAISE_BETWEEN_PROBINGS ) ;
// Move to the XY where we shall probe
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > do_blocking_move_to_xy( " , x - ( X_PROBE_OFFSET_FROM_EXTRUDER ) ) ;
SERIAL_ECHOPAIR ( " , " , y - ( Y_PROBE_OFFSET_FROM_EXTRUDER ) ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
feedrate = XY_PROBE_FEEDRATE ;
do_blocking_move_to_xy ( x - ( X_PROBE_OFFSET_FROM_EXTRUDER ) , y - ( Y_PROBE_OFFSET_FROM_EXTRUDER ) ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > deploy_z_probe " ) ;
# endif
deploy_z_probe ( ) ;
float measured_z = run_z_probe ( ) ;
if ( stow ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > stow_z_probe " ) ;
# endif
stow_z_probe ( ) ;
}
# if Z_RAISE_BETWEEN_PROBINGS > 0
else {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > do_probe_raise " ) ;
# endif
do_probe_raise ( Z_RAISE_BETWEEN_PROBINGS ) ;
}
# endif
if ( verbose_level > 2 ) {
SERIAL_PROTOCOLPGM ( " Bed X: " ) ;
SERIAL_PROTOCOL_F ( x , 3 ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL_F ( y , 3 ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL_F ( measured_z , 3 ) ;
SERIAL_EOL ;
}
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " <<< probe_pt " ) ;
# endif
feedrate = old_feedrate ;
return measured_z ;
}
# endif // HAS_BED_PROBE
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
# if ENABLED(AUTO_BED_LEVELING_GRID)
# if DISABLED(DELTA)
static void set_bed_level_equation_lsq ( double * plane_equation_coefficients ) {
//planner.bed_level_matrix.debug("bed level before");
# if ENABLED(DEBUG_LEVELING_FEATURE)
planner . bed_level_matrix . set_to_identity ( ) ;
if ( DEBUGGING ( LEVELING ) ) {
vector_3 uncorrected_position = planner . adjusted_position ( ) ;
DEBUG_POS ( " >>> set_bed_level_equation_lsq " , uncorrected_position ) ;
DEBUG_POS ( " >>> set_bed_level_equation_lsq " , current_position ) ;
}
# endif
vector_3 planeNormal = vector_3 ( - plane_equation_coefficients [ 0 ] , - plane_equation_coefficients [ 1 ] , 1 ) ;
planner . bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
vector_3 corrected_position = planner . adjusted_position ( ) ;
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = corrected_position . z ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " <<< set_bed_level_equation_lsq " , corrected_position ) ;
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
}
# endif // !DELTA
# else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts ( float z_at_pt_1 , float z_at_pt_2 , float z_at_pt_3 ) {
planner . bed_level_matrix . set_to_identity ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
vector_3 uncorrected_position = planner . adjusted_position ( ) ;
DEBUG_POS ( " set_bed_level_equation_3pts " , uncorrected_position ) ;
}
# endif
vector_3 pt1 = vector_3 ( ABL_PROBE_PT_1_X , ABL_PROBE_PT_1_Y , z_at_pt_1 ) ;
vector_3 pt2 = vector_3 ( ABL_PROBE_PT_2_X , ABL_PROBE_PT_2_Y , z_at_pt_2 ) ;
vector_3 pt3 = vector_3 ( ABL_PROBE_PT_3_X , ABL_PROBE_PT_3_Y , z_at_pt_3 ) ;
vector_3 planeNormal = vector_3 : : cross ( pt1 - pt2 , pt3 - pt2 ) . get_normal ( ) ;
if ( planeNormal . z < 0 ) {
planeNormal . x = - planeNormal . x ;
planeNormal . y = - planeNormal . y ;
planeNormal . z = - planeNormal . z ;
}
planner . bed_level_matrix = matrix_3x3 : : create_look_at ( planeNormal ) ;
vector_3 corrected_position = planner . adjusted_position ( ) ;
current_position [ X_AXIS ] = corrected_position . x ;
current_position [ Y_AXIS ] = corrected_position . y ;
current_position [ Z_AXIS ] = corrected_position . z ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " set_bed_level_equation_3pts " , corrected_position ) ;
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
}
# endif // !AUTO_BED_LEVELING_GRID
# if ENABLED(DELTA)
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
static void extrapolate_one_point ( int x , int y , int xdir , int ydir ) {
if ( bed_level [ x ] [ y ] ! = 0.0 ) {
return ; // Don't overwrite good values.
}
float a = 2 * bed_level [ x + xdir ] [ y ] - bed_level [ x + xdir * 2 ] [ y ] ; // Left to right.
float b = 2 * bed_level [ x ] [ y + ydir ] - bed_level [ x ] [ y + ydir * 2 ] ; // Front to back.
float c = 2 * bed_level [ x + xdir ] [ y + ydir ] - bed_level [ x + xdir * 2 ] [ y + ydir * 2 ] ; // Diagonal.
float median = c ; // Median is robust (ignores outliers).
if ( a < b ) {
if ( b < c ) median = b ;
if ( c < a ) median = a ;
}
else { // b <= a
if ( c < b ) median = b ;
if ( a < c ) median = a ;
}
bed_level [ x ] [ y ] = median ;
}
/**
* Fill in the unprobed points ( corners of circular print surface )
* using linear extrapolation , away from the center .
*/
static void extrapolate_unprobed_bed_level ( ) {
int half = ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) / 2 ;
for ( int y = 0 ; y < = half ; y + + ) {
for ( int x = 0 ; x < = half ; x + + ) {
if ( x + y < 3 ) continue ;
extrapolate_one_point ( half - x , half - y , x > 1 ? + 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half + x , half - y , x > 1 ? - 1 : 0 , y > 1 ? + 1 : 0 ) ;
extrapolate_one_point ( half - x , half + y , x > 1 ? + 1 : 0 , y > 1 ? - 1 : 0 ) ;
extrapolate_one_point ( half + x , half + y , x > 1 ? - 1 : 0 , y > 1 ? - 1 : 0 ) ;
}
}
}
/**
* Print calibration results for plotting or manual frame adjustment .
*/
static void print_bed_level ( ) {
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
SERIAL_PROTOCOL_F ( bed_level [ x ] [ y ] , 2 ) ;
SERIAL_PROTOCOLCHAR ( ' ' ) ;
}
SERIAL_EOL ;
}
}
/**
* Reset calibration results to zero .
*/
void reset_bed_level ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " reset_bed_level " ) ;
# endif
for ( int y = 0 ; y < AUTO_BED_LEVELING_GRID_POINTS ; y + + ) {
for ( int x = 0 ; x < AUTO_BED_LEVELING_GRID_POINTS ; x + + ) {
bed_level [ x ] [ y ] = 0.0 ;
}
}
}
# endif // DELTA
# endif // AUTO_BED_LEVELING_FEATURE
/**
* Home an individual axis
*/
# define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis ( AxisEnum axis ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " >>> homeaxis( " , axis ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
# define HOMEAXIS_DO(LETTER) \
( ( LETTER # # _MIN_PIN > - 1 & & LETTER # # _HOME_DIR = = - 1 ) | | ( LETTER # # _MAX_PIN > - 1 & & LETTER # # _HOME_DIR = = 1 ) )
if ( axis = = X_AXIS ? HOMEAXIS_DO ( X ) : axis = = Y_AXIS ? HOMEAXIS_DO ( Y ) : axis = = Z_AXIS ? HOMEAXIS_DO ( Z ) : 0 ) {
int axis_home_dir =
# if ENABLED(DUAL_X_CARRIAGE)
( axis = = X_AXIS ) ? x_home_dir ( active_extruder ) :
# endif
home_dir ( axis ) ;
// Set the axis position as setup for the move
current_position [ axis ] = 0 ;
sync_plan_position ( ) ;
// Homing Z towards the bed? Deploy the Z probe or endstop.
# if HAS_BED_PROBE
if ( axis = = Z_AXIS & & axis_home_dir < 0 ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > deploy_z_probe() " ) ;
# endif
deploy_z_probe ( ) ;
}
# endif
// Set a flag for Z motor locking
# if ENABLED(Z_DUAL_ENDSTOPS)
if ( axis = = Z_AXIS ) stepper . set_homing_flag ( true ) ;
# endif
// Move towards the endstop until an endstop is triggered
destination [ axis ] = 1.5 * max_length ( axis ) * axis_home_dir ;
feedrate = homing_feedrate [ axis ] ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
// Set the axis position as setup for the move
current_position [ axis ] = 0 ;
sync_plan_position ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > endstops.enable(false) " ) ;
# endif
endstops . enable ( false ) ; // Disable endstops while moving away
// Move away from the endstop by the axis HOME_BUMP_MM
destination [ axis ] = - home_bump_mm ( axis ) * axis_home_dir ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > endstops.enable(true) " ) ;
# endif
endstops . enable ( true ) ; // Enable endstops for next homing move
// Slow down the feedrate for the next move
set_homing_bump_feedrate ( axis ) ;
// Move slowly towards the endstop until triggered
destination [ axis ] = 2 * home_bump_mm ( axis ) * axis_home_dir ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > TRIGGER ENDSTOP " , current_position ) ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
if ( axis = = Z_AXIS ) {
float adj = fabs ( z_endstop_adj ) ;
bool lockZ1 ;
if ( axis_home_dir > 0 ) {
adj = - adj ;
lockZ1 = ( z_endstop_adj > 0 ) ;
}
else
lockZ1 = ( z_endstop_adj < 0 ) ;
if ( lockZ1 ) stepper . set_z_lock ( true ) ; else stepper . set_z2_lock ( true ) ;
sync_plan_position ( ) ;
// Move to the adjusted endstop height
feedrate = homing_feedrate [ axis ] ;
destination [ Z_AXIS ] = adj ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
if ( lockZ1 ) stepper . set_z_lock ( false ) ; else stepper . set_z2_lock ( false ) ;
stepper . set_homing_flag ( false ) ;
} // Z_AXIS
# endif
# if ENABLED(DELTA)
// retrace by the amount specified in endstop_adj
if ( endstop_adj [ axis ] * axis_home_dir < 0 ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > endstops.enable(false) " ) ;
# endif
endstops . enable ( false ) ; // Disable endstops while moving away
sync_plan_position ( ) ;
destination [ axis ] = endstop_adj [ axis ] ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > endstop_adj = " , endstop_adj [ axis ] ) ;
DEBUG_POS ( " " , destination ) ;
}
# endif
line_to_destination ( ) ;
stepper . synchronize ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > endstops.enable(true) " ) ;
# endif
endstops . enable ( true ) ; // Enable endstops for next homing move
}
# if ENABLED(DEBUG_LEVELING_FEATURE)
else {
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > endstop_adj * axis_home_dir = " , endstop_adj [ axis ] * axis_home_dir ) ;
SERIAL_EOL ;
}
}
# endif
# endif
// Set the axis position to its home position (plus home offsets)
set_axis_is_at_home ( axis ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > AFTER set_axis_is_at_home " , current_position ) ;
# endif
destination [ axis ] = current_position [ axis ] ;
feedrate = 0.0 ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
axis_known_position [ axis ] = true ;
axis_homed [ axis ] = true ;
// Put away the Z probe
# if HAS_BED_PROBE
if ( axis = = Z_AXIS & & axis_home_dir < 0 ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > stow_z_probe() " ) ;
# endif
stow_z_probe ( ) ;
}
# endif
}
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " <<< homeaxis( " , axis ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
}
# endif
}
# if ENABLED(FWRETRACT)
void retract ( bool retracting , bool swapping = false ) {
if ( retracting = = retracted [ active_extruder ] ) return ;
float old_feedrate = feedrate ;
set_destination_to_current ( ) ;
if ( retracting ) {
feedrate = retract_feedrate_mm_s * 60 ;
current_position [ E_AXIS ] + = ( swapping ? retract_length_swap : retract_length ) / volumetric_multiplier [ active_extruder ] ;
sync_plan_position_e ( ) ;
prepare_move_to_destination ( ) ;
if ( retract_zlift > 0.01 ) {
current_position [ Z_AXIS ] - = retract_zlift ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
prepare_move_to_destination ( ) ;
}
}
else {
if ( retract_zlift > 0.01 ) {
current_position [ Z_AXIS ] + = retract_zlift ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
}
feedrate = retract_recover_feedrate * 60 ;
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length ;
current_position [ E_AXIS ] - = move_e / volumetric_multiplier [ active_extruder ] ;
sync_plan_position_e ( ) ;
prepare_move_to_destination ( ) ;
}
feedrate = old_feedrate ;
retracted [ active_extruder ] = retracting ;
} // retract()
# endif // FWRETRACT
/**
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * G - CODE HANDLING * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*/
/**
* Set XYZE destination and feedrate from the current GCode command
*
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate , if included
*/
void gcode_get_destination ( ) {
for ( int i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) )
destination [ i ] = code_value_axis_units ( i ) + ( axis_relative_modes [ i ] | | relative_mode ? current_position [ i ] : 0 ) ;
else
destination [ i ] = current_position [ i ] ;
}
if ( code_seen ( ' F ' ) ) {
float next_feedrate = code_value_linear_units ( ) ;
if ( next_feedrate > 0.0 ) feedrate = next_feedrate ;
}
}
void unknown_command_error ( ) {
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_UNKNOWN_COMMAND ) ;
SERIAL_ECHO ( current_command ) ;
SERIAL_ECHOPGM ( " \" \n " ) ;
}
# if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* Output a " busy " message at regular intervals
* while the machine is not accepting commands .
*/
void host_keepalive ( ) {
millis_t ms = millis ( ) ;
if ( host_keepalive_interval & & busy_state ! = NOT_BUSY ) {
if ( PENDING ( ms , next_busy_signal_ms ) ) return ;
switch ( busy_state ) {
case IN_HANDLER :
case IN_PROCESS :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_BUSY_PROCESSING ) ;
break ;
case PAUSED_FOR_USER :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_BUSY_PAUSED_FOR_USER ) ;
break ;
case PAUSED_FOR_INPUT :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_BUSY_PAUSED_FOR_INPUT ) ;
break ;
default :
break ;
}
}
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL ;
}
# endif //HOST_KEEPALIVE_FEATURE
/**
* G0 , G1 : Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1 ( ) {
if ( IsRunning ( ) ) {
gcode_get_destination ( ) ; // For X Y Z E F
# if ENABLED(FWRETRACT)
if ( autoretract_enabled & & ! ( code_seen ( ' X ' ) | | code_seen ( ' Y ' ) | | code_seen ( ' Z ' ) ) & & code_seen ( ' E ' ) ) {
float echange = destination [ E_AXIS ] - current_position [ E_AXIS ] ;
// Is this move an attempt to retract or recover?
if ( ( echange < - MIN_RETRACT & & ! retracted [ active_extruder ] ) | | ( echange > MIN_RETRACT & & retracted [ active_extruder ] ) ) {
current_position [ E_AXIS ] = destination [ E_AXIS ] ; // hide the slicer-generated retract/recover from calculations
sync_plan_position_e ( ) ; // AND from the planner
retract ( ! retracted [ active_extruder ] ) ;
return ;
}
}
# endif //FWRETRACT
prepare_move_to_destination ( ) ;
}
}
/**
* G2 : Clockwise Arc
* G3 : Counterclockwise Arc
*/
# if ENABLED(ARC_SUPPORT)
inline void gcode_G2_G3 ( bool clockwise ) {
if ( IsRunning ( ) ) {
# if ENABLED(SF_ARC_FIX)
bool relative_mode_backup = relative_mode ;
relative_mode = true ;
# endif
gcode_get_destination ( ) ;
# if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup ;
# endif
// Center of arc as offset from current_position
float arc_offset [ 2 ] = {
code_seen ( ' I ' ) ? code_value_axis_units ( X_AXIS ) : 0 ,
code_seen ( ' J ' ) ? code_value_axis_units ( Y_AXIS ) : 0
} ;
// Send an arc to the planner
plan_arc ( destination , arc_offset , clockwise ) ;
refresh_cmd_timeout ( ) ;
}
}
# endif
/**
* G4 : Dwell S < seconds > or P < milliseconds >
*/
inline void gcode_G4 ( ) {
millis_t codenum = 0 ;
if ( code_seen ( ' P ' ) ) codenum = code_value_millis ( ) ; // milliseconds to wait
if ( code_seen ( ' S ' ) ) codenum = code_value_millis_from_seconds ( ) ; // seconds to wait
stepper . synchronize ( ) ;
refresh_cmd_timeout ( ) ;
codenum + = previous_cmd_ms ; // keep track of when we started waiting
if ( ! lcd_hasstatus ( ) ) LCD_MESSAGEPGM ( MSG_DWELL ) ;
while ( PENDING ( millis ( ) , codenum ) ) idle ( ) ;
}
# if ENABLED(BEZIER_CURVE_SUPPORT)
/**
* Parameters interpreted according to :
* http : //linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
* However I , J omission is not supported at this point ; all
* parameters can be omitted and default to zero .
*/
/**
* G5 : Cubic B - spline
*/
inline void gcode_G5 ( ) {
if ( IsRunning ( ) ) {
gcode_get_destination ( ) ;
float offset [ ] = {
code_seen ( ' I ' ) ? code_value_axis_units ( X_AXIS ) : 0.0 ,
code_seen ( ' J ' ) ? code_value_axis_units ( Y_AXIS ) : 0.0 ,
code_seen ( ' P ' ) ? code_value_axis_units ( X_AXIS ) : 0.0 ,
code_seen ( ' Q ' ) ? code_value_axis_units ( Y_AXIS ) : 0.0
} ;
plan_cubic_move ( offset ) ;
}
}
# endif // BEZIER_CURVE_SUPPORT
# if ENABLED(FWRETRACT)
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11 ( bool doRetract = false ) {
# if EXTRUDERS > 1
if ( doRetract ) {
retracted_swap [ active_extruder ] = ( code_seen ( ' S ' ) & & code_value_bool ( ) ) ; // checks for swap retract argument
}
# endif
retract ( doRetract
# if EXTRUDERS > 1
, retracted_swap [ active_extruder ]
# endif
) ;
}
# endif //FWRETRACT
# if ENABLED(INCH_MODE_SUPPORT)
/**
* G20 : Set input mode to inches
*/
inline void gcode_G20 ( ) {
set_input_linear_units ( LINEARUNIT_INCH ) ;
}
/**
* G21 : Set input mode to millimeters
*/
inline void gcode_G21 ( ) {
set_input_linear_units ( LINEARUNIT_MM ) ;
}
# endif
/**
* G28 : Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters .
* With QUICK_HOME enabled XY will home together , then Z .
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
*/
inline void gcode_G28 ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " gcode_G28 >>> " ) ;
# endif
// Wait for planner moves to finish!
stepper . synchronize ( ) ;
// For auto bed leveling, clear the level matrix
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
planner . bed_level_matrix . set_to_identity ( ) ;
# if ENABLED(DELTA)
reset_bed_level ( ) ;
# endif
# endif
/**
* For mesh bed leveling deactivate the mesh calculations , will be turned
* on again when homing all axis
*/
# if ENABLED(MESH_BED_LEVELING)
float pre_home_z = MESH_HOME_SEARCH_Z ;
if ( mbl . active ( ) ) {
// Save known Z position if already homed
if ( axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] & & axis_homed [ Z_AXIS ] ) {
pre_home_z = current_position [ Z_AXIS ] ;
pre_home_z + = mbl . get_z ( current_position [ X_AXIS ] - home_offset [ X_AXIS ] ,
current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] ) ;
}
mbl . set_active ( false ) ;
}
# endif
setup_for_endstop_move ( ) ;
/**
* Directly after a reset this is all 0. Later we get a hint if we have
* to raise z or not .
*/
set_destination_to_current ( ) ;
feedrate = 0.0 ;
# if ENABLED(DELTA)
/**
* A delta can only safely home all axis at the same time
* all axis have to home at the same time
*/
// Pretend the current position is 0,0,0
for ( int i = X_AXIS ; i < = Z_AXIS ; i + + ) current_position [ i ] = 0 ;
sync_plan_position ( ) ;
// Move all carriages up together until the first endstop is hit.
for ( int i = X_AXIS ; i < = Z_AXIS ; i + + ) destination [ i ] = 3 * ( Z_MAX_LENGTH ) ;
feedrate = 1.732 * homing_feedrate [ X_AXIS ] ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
// Destination reached
for ( int i = X_AXIS ; i < = Z_AXIS ; i + + ) current_position [ i ] = destination [ i ] ;
// take care of back off and rehome now we are all at the top
HOMEAXIS ( X ) ;
HOMEAXIS ( Y ) ;
HOMEAXIS ( Z ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " (DELTA) " , current_position ) ;
# endif
# else // NOT DELTA
bool homeX = code_seen ( axis_codes [ X_AXIS ] ) ,
homeY = code_seen ( axis_codes [ Y_AXIS ] ) ,
homeZ = code_seen ( axis_codes [ Z_AXIS ] ) ;
home_all_axis = ( ! homeX & & ! homeY & & ! homeZ ) | | ( homeX & & homeY & & homeZ ) ;
# if Z_HOME_DIR > 0 // If homing away from BED do Z first
if ( home_all_axis | | homeZ ) {
HOMEAXIS ( Z ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > HOMEAXIS(Z) " , current_position ) ;
# endif
}
# elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
// Raise Z before homing any other axes and z is not already high enough (never lower z)
if ( current_position [ Z_AXIS ] < = MIN_Z_HEIGHT_FOR_HOMING ) {
destination [ Z_AXIS ] = MIN_Z_HEIGHT_FOR_HOMING ;
feedrate = planner . max_feedrate [ Z_AXIS ] * 60 ; // feedrate (mm/m) = max_feedrate (mm/s)
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " Raise Z (before homing) to " , ( MIN_Z_HEIGHT_FOR_HOMING ) ) ;
SERIAL_EOL ;
DEBUG_POS ( " > (home_all_axis || homeZ) " , current_position ) ;
DEBUG_POS ( " > (home_all_axis || homeZ) " , destination ) ;
}
# endif
line_to_destination ( ) ;
stepper . synchronize ( ) ;
/**
* Update the current Z position even if it currently not real from
* Z - home otherwise each call to line_to_destination ( ) will want to
* move Z - axis by MIN_Z_HEIGHT_FOR_HOMING .
*/
current_position [ Z_AXIS ] = destination [ Z_AXIS ] ;
}
# endif
# if ENABLED(QUICK_HOME)
if ( home_all_axis | | ( homeX & & homeY ) ) { // First diagonal move
current_position [ X_AXIS ] = current_position [ Y_AXIS ] = 0 ;
# if ENABLED(DUAL_X_CARRIAGE)
int x_axis_home_dir = x_home_dir ( active_extruder ) ;
extruder_duplication_enabled = false ;
# else
int x_axis_home_dir = home_dir ( X_AXIS ) ;
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
float mlx = max_length ( X_AXIS ) , mly = max_length ( Y_AXIS ) ,
mlratio = mlx > mly ? mly / mlx : mlx / mly ;
destination [ X_AXIS ] = 1.5 * mlx * x_axis_home_dir ;
destination [ Y_AXIS ] = 1.5 * mly * home_dir ( Y_AXIS ) ;
feedrate = min ( homing_feedrate [ X_AXIS ] , homing_feedrate [ Y_AXIS ] ) * sqrt ( mlratio * mlratio + 1 ) ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
set_axis_is_at_home ( X_AXIS ) ;
set_axis_is_at_home ( Y_AXIS ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > QUICK_HOME 1 " , current_position ) ;
# endif
destination [ X_AXIS ] = current_position [ X_AXIS ] ;
destination [ Y_AXIS ] = current_position [ Y_AXIS ] ;
line_to_destination ( ) ;
feedrate = 0.0 ;
stepper . synchronize ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
# if DISABLED(SCARA)
current_position [ Z_AXIS ] = destination [ Z_AXIS ] ;
# endif
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > QUICK_HOME 2 " , current_position ) ;
# endif
}
# endif // QUICK_HOME
# if ENABLED(HOME_Y_BEFORE_X)
// Home Y
if ( home_all_axis | | homeY ) HOMEAXIS ( Y ) ;
# endif
// Home X
if ( home_all_axis | | homeX ) {
# if ENABLED(DUAL_X_CARRIAGE)
int tmp_extruder = active_extruder ;
extruder_duplication_enabled = false ;
active_extruder = ! active_extruder ;
HOMEAXIS ( X ) ;
inactive_extruder_x_pos = current_position [ X_AXIS ] ;
active_extruder = tmp_extruder ;
HOMEAXIS ( X ) ;
// reset state used by the different modes
memcpy ( raised_parked_position , current_position , sizeof ( raised_parked_position ) ) ;
delayed_move_time = 0 ;
active_extruder_parked = true ;
# else
HOMEAXIS ( X ) ;
# endif
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > homeX " , current_position ) ;
# endif
}
# if DISABLED(HOME_Y_BEFORE_X)
// Home Y
if ( home_all_axis | | homeY ) {
HOMEAXIS ( Y ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > homeY " , current_position ) ;
# endif
}
# endif
// Home Z last if homing towards the bed
# if Z_HOME_DIR < 0
if ( home_all_axis | | homeZ ) {
# if ENABLED(Z_SAFE_HOMING)
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " > Z_SAFE_HOMING >>> " ) ;
}
# endif
if ( home_all_axis ) {
/**
* At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
* No need to move Z any more as this height should already be safe
* enough to reach Z_SAFE_HOMING XY positions .
* Just make sure the planner is in sync .
*/
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
/**
* Set the Z probe ( or just the nozzle ) destination to the safe
* homing point
*/
destination [ X_AXIS ] = round ( Z_SAFE_HOMING_X_POINT - ( X_PROBE_OFFSET_FROM_EXTRUDER ) ) ;
destination [ Y_AXIS ] = round ( Z_SAFE_HOMING_Y_POINT - ( Y_PROBE_OFFSET_FROM_EXTRUDER ) ) ;
destination [ Z_AXIS ] = current_position [ Z_AXIS ] ; //z is already at the right height
feedrate = XY_PROBE_FEEDRATE ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
DEBUG_POS ( " > Z_SAFE_HOMING > home_all_axis " , current_position ) ;
DEBUG_POS ( " > Z_SAFE_HOMING > home_all_axis " , destination ) ;
}
# endif
// Move in the XY plane
line_to_destination ( ) ;
stepper . synchronize ( ) ;
/**
* Update the current positions for XY , Z is still at least at
* MIN_Z_HEIGHT_FOR_HOMING height , no changes there .
*/
current_position [ X_AXIS ] = destination [ X_AXIS ] ;
current_position [ Y_AXIS ] = destination [ Y_AXIS ] ;
// Home the Z axis
HOMEAXIS ( Z ) ;
}
else if ( homeZ ) { // Don't need to Home Z twice
// Let's see if X and Y are homed
if ( axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] ) {
/**
* Make sure the Z probe is within the physical limits
* NOTE : This doesn ' t necessarily ensure the Z probe is also
* within the bed !
*/
float cpx = current_position [ X_AXIS ] , cpy = current_position [ Y_AXIS ] ;
if ( cpx > = X_MIN_POS - ( X_PROBE_OFFSET_FROM_EXTRUDER )
& & cpx < = X_MAX_POS - ( X_PROBE_OFFSET_FROM_EXTRUDER )
& & cpy > = Y_MIN_POS - ( Y_PROBE_OFFSET_FROM_EXTRUDER )
& & cpy < = Y_MAX_POS - ( Y_PROBE_OFFSET_FROM_EXTRUDER ) ) {
// Home the Z axis
HOMEAXIS ( Z ) ;
}
else {
LCD_MESSAGEPGM ( MSG_ZPROBE_OUT ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_ZPROBE_OUT ) ;
}
}
else {
axis_unhomed_error ( ) ;
}
} // !home_all_axes && homeZ
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " <<< Z_SAFE_HOMING " ) ;
}
# endif
# else // !Z_SAFE_HOMING
HOMEAXIS ( Z ) ;
# endif // !Z_SAFE_HOMING
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > (home_all_axis || homeZ) > final " , current_position ) ;
# endif
} // home_all_axis || homeZ
# endif // Z_HOME_DIR < 0
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# endif // !DELTA (gcode_G28)
endstops . not_homing ( ) ;
// Enable mesh leveling again
# if ENABLED(MESH_BED_LEVELING)
if ( mbl . has_mesh ( ) ) {
if ( home_all_axis | | ( axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] & & homeZ ) ) {
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if Z_HOME_DIR > 0
+ Z_MAX_POS
# endif
;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
mbl . set_active ( true ) ;
# if ENABLED(MESH_G28_REST_ORIGIN)
current_position [ Z_AXIS ] = 0.0 ;
set_destination_to_current ( ) ;
feedrate = homing_feedrate [ Z_AXIS ] ;
line_to_destination ( ) ;
stepper . synchronize ( ) ;
# else
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z -
mbl . get_z ( current_position [ X_AXIS ] - home_offset [ X_AXIS ] ,
current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] )
# if Z_HOME_DIR > 0
+ Z_MAX_POS
# endif
;
# endif
}
else if ( ( axis_homed [ X_AXIS ] & & axis_homed [ Y_AXIS ] & & axis_homed [ Z_AXIS ] ) & & ( homeX | | homeY ) ) {
current_position [ Z_AXIS ] = pre_home_z ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
mbl . set_active ( true ) ;
current_position [ Z_AXIS ] = pre_home_z -
mbl . get_z ( current_position [ X_AXIS ] - home_offset [ X_AXIS ] ,
current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] ) ;
}
}
# endif
clean_up_after_endstop_or_probe_move ( ) ;
endstops . hit_on_purpose ( ) ; // clear endstop hit flags
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " <<< gcode_G28 " ) ;
# endif
report_current_position ( ) ;
}
# if HAS_PROBING_PROCEDURE
void out_of_range_error ( const char * p_edge ) {
SERIAL_PROTOCOLPGM ( " ?Probe " ) ;
serialprintPGM ( p_edge ) ;
SERIAL_PROTOCOLLNPGM ( " position out of range. " ) ;
}
# endif
# if ENABLED(MESH_BED_LEVELING)
enum MeshLevelingState { MeshReport , MeshStart , MeshNext , MeshSet , MeshSetZOffset , MeshReset } ;
inline void _mbl_goto_xy ( float x , float y ) {
saved_feedrate = feedrate ;
feedrate = homing_feedrate [ X_AXIS ] ;
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
+ Z_RAISE_BETWEEN_PROBINGS
# elif MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
# endif
;
line_to_current_position ( ) ;
current_position [ X_AXIS ] = x + home_offset [ X_AXIS ] ;
current_position [ Y_AXIS ] = y + home_offset [ Y_AXIS ] ;
line_to_current_position ( ) ;
# if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z ;
line_to_current_position ( ) ;
# endif
feedrate = saved_feedrate ;
stepper . synchronize ( ) ;
}
/**
* G29 : Mesh - based Z probe , probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING :
*
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn . nn Manually modify a single point
* S4 Zn . nn Set z offset . Positive away from bed , negative closer to bed .
* S5 Reset and disable mesh
*
* The S0 report the points as below
*
* + - - - - > X - axis 1 - n
* |
* |
* v Y - axis 1 - n
*
*/
inline void gcode_G29 ( ) {
static int probe_point = - 1 ;
MeshLevelingState state = code_seen ( ' S ' ) ? ( MeshLevelingState ) code_value_byte ( ) : MeshReport ;
if ( state < 0 | | state > 5 ) {
SERIAL_PROTOCOLLNPGM ( " S out of range (0-5). " ) ;
return ;
}
int8_t px , py ;
float z ;
switch ( state ) {
case MeshReport :
if ( mbl . has_mesh ( ) ) {
SERIAL_PROTOCOLPGM ( " State: " ) ;
if ( mbl . active ( ) )
SERIAL_PROTOCOLPGM ( " On " ) ;
else
SERIAL_PROTOCOLPGM ( " Off " ) ;
SERIAL_PROTOCOLPGM ( " \n Num X,Y: " ) ;
SERIAL_PROTOCOL ( MESH_NUM_X_POINTS ) ;
SERIAL_PROTOCOLCHAR ( ' , ' ) ;
SERIAL_PROTOCOL ( MESH_NUM_Y_POINTS ) ;
SERIAL_PROTOCOLPGM ( " \n Z search height: " ) ;
SERIAL_PROTOCOL ( MESH_HOME_SEARCH_Z ) ;
SERIAL_PROTOCOLPGM ( " \n Z offset: " ) ;
SERIAL_PROTOCOL_F ( mbl . z_offset , 5 ) ;
SERIAL_PROTOCOLLNPGM ( " \n Measured points: " ) ;
for ( py = 0 ; py < MESH_NUM_Y_POINTS ; py + + ) {
for ( px = 0 ; px < MESH_NUM_X_POINTS ; px + + ) {
SERIAL_PROTOCOLPGM ( " " ) ;
SERIAL_PROTOCOL_F ( mbl . z_values [ py ] [ px ] , 5 ) ;
}
SERIAL_EOL ;
}
}
else
SERIAL_PROTOCOLLNPGM ( " Mesh bed leveling not active. " ) ;
break ;
case MeshStart :
mbl . reset ( ) ;
probe_point = 0 ;
enqueue_and_echo_commands_P ( PSTR ( " G28 \n G29 S2 " ) ) ;
break ;
case MeshNext :
if ( probe_point < 0 ) {
SERIAL_PROTOCOLLNPGM ( " Start mesh probing with \" G29 S1 \" first. " ) ;
return ;
}
// For each G29 S2...
if ( probe_point = = 0 ) {
// For the intial G29 S2 make Z a positive value (e.g., 4.0)
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if Z_HOME_DIR > 0
+ Z_MAX_POS
# endif
;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
}
else {
// For G29 S2 after adjusting Z.
mbl . set_zigzag_z ( probe_point - 1 , current_position [ Z_AXIS ] ) ;
}
// If there's another point to sample, move there with optional lift.
if ( probe_point < ( MESH_NUM_X_POINTS ) * ( MESH_NUM_Y_POINTS ) ) {
mbl . zigzag ( probe_point , px , py ) ;
_mbl_goto_xy ( mbl . get_probe_x ( px ) , mbl . get_probe_y ( py ) ) ;
probe_point + + ;
}
else {
// One last "return to the bed" (as originally coded) at completion
current_position [ Z_AXIS ] = MESH_HOME_SEARCH_Z
# if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
+ Z_RAISE_BETWEEN_PROBINGS
# elif MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
# endif
;
line_to_current_position ( ) ;
stepper . synchronize ( ) ;
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM ( " Mesh probing done. " ) ;
probe_point = - 1 ;
mbl . set_has_mesh ( true ) ;
enqueue_and_echo_commands_P ( PSTR ( " G28 " ) ) ;
}
break ;
case MeshSet :
if ( code_seen ( ' X ' ) ) {
px = code_value_int ( ) - 1 ;
if ( px < 0 | | px > = MESH_NUM_X_POINTS ) {
SERIAL_PROTOCOLPGM ( " X out of range (1- " STRINGIFY ( MESH_NUM_X_POINTS ) " ). \n " ) ;
return ;
}
}
else {
SERIAL_PROTOCOLPGM ( " X not entered. \n " ) ;
return ;
}
if ( code_seen ( ' Y ' ) ) {
py = code_value_int ( ) - 1 ;
if ( py < 0 | | py > = MESH_NUM_Y_POINTS ) {
SERIAL_PROTOCOLPGM ( " Y out of range (1- " STRINGIFY ( MESH_NUM_Y_POINTS ) " ). \n " ) ;
return ;
}
}
else {
SERIAL_PROTOCOLPGM ( " Y not entered. \n " ) ;
return ;
}
if ( code_seen ( ' Z ' ) ) {
z = code_value_axis_units ( Z_AXIS ) ;
}
else {
SERIAL_PROTOCOLPGM ( " Z not entered. \n " ) ;
return ;
}
mbl . z_values [ py ] [ px ] = z ;
break ;
case MeshSetZOffset :
if ( code_seen ( ' Z ' ) ) {
z = code_value_axis_units ( Z_AXIS ) ;
}
else {
SERIAL_PROTOCOLPGM ( " Z not entered. \n " ) ;
return ;
}
mbl . z_offset = z ;
break ;
case MeshReset :
if ( mbl . active ( ) ) {
current_position [ Z_AXIS ] + =
mbl . get_z ( current_position [ X_AXIS ] - home_offset [ X_AXIS ] ,
current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] ) - MESH_HOME_SEARCH_Z ;
mbl . reset ( ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
}
else
mbl . reset ( ) ;
} // switch(state)
report_current_position ( ) ;
}
# elif ENABLED(AUTO_BED_LEVELING_FEATURE)
/**
* G29 : Detailed Z probe , probes the bed at 3 or more points .
* Will fail if the printer has not been homed with G28 .
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID :
*
* P Set the size of the grid that will be probed ( P x P points ) .
* Not supported by non - linear delta printer bed leveling .
* Example : " G29 P4 "
*
* S Set the XY travel speed between probe points ( in mm / min )
*
* D Dry - Run mode . Just evaluate the bed Topology - Don ' t apply
* or clean the rotation Matrix . Useful to check the topology
* after a first run of G29 .
*
* V Set the verbose level ( 0 - 4 ) . Example : " G29 V3 "
*
* T Generate a Bed Topology Report . Example : " G29 P5 T " for a detailed report .
* This is useful for manual bed leveling and finding flaws in the bed ( to
* assist with part placement ) .
* Not supported by non - linear delta printer bed leveling .
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters :
*
* E / e By default G29 will engage the Z probe , test the bed , then disengage .
* Include " E " to engage / disengage the Z probe for each sample .
* There ' s no extra effect if you have a fixed Z probe .
* Usage : " G29 E " or " G29 e "
*
*/
inline void gcode_G29 ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " gcode_G29 >>> " ) ;
DEBUG_POS ( " " , current_position ) ;
}
# endif
// Don't allow auto-leveling without homing first
if ( ! axis_homed [ X_AXIS ] | | ! axis_homed [ Y_AXIS ] | | ! axis_homed [ Z_AXIS ] ) {
axis_unhomed_error ( true ) ;
return ;
}
int verbose_level = code_seen ( ' V ' ) ? code_value_int ( ) : 1 ;
if ( verbose_level < 0 | | verbose_level > 4 ) {
SERIAL_ECHOLNPGM ( " ?(V)erbose Level is implausible (0-4). " ) ;
return ;
}
bool dryrun = code_seen ( ' D ' ) ;
# if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
const bool stow_probe_after_each = false ;
# else
bool stow_probe_after_each = code_seen ( ' E ' ) ;
# endif
# if ENABLED(AUTO_BED_LEVELING_GRID)
# if DISABLED(DELTA)
bool do_topography_map = verbose_level > 2 | | code_seen ( ' T ' ) ;
# endif
if ( verbose_level > 0 ) {
SERIAL_PROTOCOLPGM ( " G29 Auto Bed Leveling \n " ) ;
if ( dryrun ) SERIAL_ECHOLNPGM ( " Running in DRY-RUN mode " ) ;
}
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS ;
# if DISABLED(DELTA)
if ( code_seen ( ' P ' ) ) auto_bed_leveling_grid_points = code_value_int ( ) ;
if ( auto_bed_leveling_grid_points < 2 ) {
SERIAL_PROTOCOLPGM ( " ?Number of probed (P)oints is implausible (2 minimum). \n " ) ;
return ;
}
# endif
xy_probe_speed = code_seen ( ' S ' ) ? ( int ) code_value_linear_units ( ) : XY_PROBE_SPEED ;
int left_probe_bed_position = code_seen ( ' L ' ) ? ( int ) code_value_axis_units ( X_AXIS ) : LEFT_PROBE_BED_POSITION ,
right_probe_bed_position = code_seen ( ' R ' ) ? ( int ) code_value_axis_units ( X_AXIS ) : RIGHT_PROBE_BED_POSITION ,
front_probe_bed_position = code_seen ( ' F ' ) ? ( int ) code_value_axis_units ( Y_AXIS ) : FRONT_PROBE_BED_POSITION ,
back_probe_bed_position = code_seen ( ' B ' ) ? ( int ) code_value_axis_units ( Y_AXIS ) : BACK_PROBE_BED_POSITION ;
bool left_out_l = left_probe_bed_position < MIN_PROBE_X ,
left_out = left_out_l | | left_probe_bed_position > right_probe_bed_position - ( MIN_PROBE_EDGE ) ,
right_out_r = right_probe_bed_position > MAX_PROBE_X ,
right_out = right_out_r | | right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE ,
front_out_f = front_probe_bed_position < MIN_PROBE_Y ,
front_out = front_out_f | | front_probe_bed_position > back_probe_bed_position - ( MIN_PROBE_EDGE ) ,
back_out_b = back_probe_bed_position > MAX_PROBE_Y ,
back_out = back_out_b | | back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE ;
if ( left_out | | right_out | | front_out | | back_out ) {
if ( left_out ) {
out_of_range_error ( PSTR ( " (L)eft " ) ) ;
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - ( MIN_PROBE_EDGE ) ;
}
if ( right_out ) {
out_of_range_error ( PSTR ( " (R)ight " ) ) ;
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE ;
}
if ( front_out ) {
out_of_range_error ( PSTR ( " (F)ront " ) ) ;
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - ( MIN_PROBE_EDGE ) ;
}
if ( back_out ) {
out_of_range_error ( PSTR ( " (B)ack " ) ) ;
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE ;
}
return ;
}
# endif // AUTO_BED_LEVELING_GRID
if ( ! dryrun ) {
# if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
if ( DEBUGGING ( LEVELING ) ) {
vector_3 corrected_position = planner . adjusted_position ( ) ;
DEBUG_POS ( " BEFORE matrix.set_to_identity " , corrected_position ) ;
DEBUG_POS ( " BEFORE matrix.set_to_identity " , current_position ) ;
}
# endif
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
planner . bed_level_matrix . set_to_identity ( ) ;
# if ENABLED(DELTA)
reset_bed_level ( ) ;
# else //!DELTA
//vector_3 corrected_position = planner.adjusted_position();
//corrected_position.debug("position before G29");
vector_3 uncorrected_position = planner . adjusted_position ( ) ;
//uncorrected_position.debug("position during G29");
current_position [ X_AXIS ] = uncorrected_position . x ;
current_position [ Y_AXIS ] = uncorrected_position . y ;
current_position [ Z_AXIS ] = uncorrected_position . z ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " AFTER matrix.set_to_identity " , uncorrected_position ) ;
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# endif // !DELTA
}
stepper . synchronize ( ) ;
setup_for_endstop_or_probe_move ( ) ;
// Deploy the probe. Servo will raise if needed.
deploy_z_probe ( ) ;
bed_leveling_in_progress = true ;
# if ENABLED(AUTO_BED_LEVELING_GRID)
// probe at the points of a lattice grid
const int xGridSpacing = ( right_probe_bed_position - left_probe_bed_position ) / ( auto_bed_leveling_grid_points - 1 ) ,
yGridSpacing = ( back_probe_bed_position - front_probe_bed_position ) / ( auto_bed_leveling_grid_points - 1 ) ;
# if ENABLED(DELTA)
delta_grid_spacing [ 0 ] = xGridSpacing ;
delta_grid_spacing [ 1 ] = yGridSpacing ;
float zoffset = zprobe_zoffset ;
if ( code_seen ( axis_codes [ Z_AXIS ] ) ) zoffset + = code_value_axis_units ( Z_AXIS ) ;
# else // !DELTA
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [ x y 1 ] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form , which is Vx * x + Vy * y + Vz * z + d = 0
* so Vx = - a Vy = - b Vz = 1 ( we want the vector facing towards positive Z
*/
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points ;
double eqnAMatrix [ abl2 * 3 ] , // "A" matrix of the linear system of equations
eqnBVector [ abl2 ] , // "B" vector of Z points
mean = 0.0 ;
int8_t indexIntoAB [ auto_bed_leveling_grid_points ] [ auto_bed_leveling_grid_points ] ;
# endif // !DELTA
int probePointCounter = 0 ;
bool zig = ( auto_bed_leveling_grid_points & 1 ) ? true : false ; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
for ( int yCount = 0 ; yCount < auto_bed_leveling_grid_points ; yCount + + ) {
double yProbe = front_probe_bed_position + yGridSpacing * yCount ;
int xStart , xStop , xInc ;
if ( zig ) {
xStart = 0 ;
xStop = auto_bed_leveling_grid_points ;
xInc = 1 ;
}
else {
xStart = auto_bed_leveling_grid_points - 1 ;
xStop = - 1 ;
xInc = - 1 ;
}
zig = ! zig ;
for ( int xCount = xStart ; xCount ! = xStop ; xCount + = xInc ) {
double xProbe = left_probe_bed_position + xGridSpacing * xCount ;
# if ENABLED(DELTA)
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt ( xProbe * xProbe + yProbe * yProbe ) ;
if ( distance_from_center > DELTA_PROBEABLE_RADIUS ) continue ;
# endif //DELTA
float measured_z = probe_pt ( xProbe , yProbe , stow_probe_after_each , verbose_level ) ;
# if DISABLED(DELTA)
mean + = measured_z ;
eqnBVector [ probePointCounter ] = measured_z ;
eqnAMatrix [ probePointCounter + 0 * abl2 ] = xProbe ;
eqnAMatrix [ probePointCounter + 1 * abl2 ] = yProbe ;
eqnAMatrix [ probePointCounter + 2 * abl2 ] = 1 ;
indexIntoAB [ xCount ] [ yCount ] = probePointCounter ;
# else
bed_level [ xCount ] [ yCount ] = measured_z + zoffset ;
# endif
probePointCounter + + ;
idle ( ) ;
} //xProbe
} //yProbe
# else // !AUTO_BED_LEVELING_GRID
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " > 3-point Leveling " ) ;
# endif
// Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt ( ABL_PROBE_PT_1_X + home_offset [ X_AXIS ] ,
ABL_PROBE_PT_1_Y + home_offset [ Y_AXIS ] ,
stow_probe_after_each , verbose_level ) ,
z_at_pt_2 = probe_pt ( ABL_PROBE_PT_2_X + home_offset [ X_AXIS ] ,
ABL_PROBE_PT_2_Y + home_offset [ Y_AXIS ] ,
stow_probe_after_each , verbose_level ) ,
z_at_pt_3 = probe_pt ( ABL_PROBE_PT_3_X + home_offset [ X_AXIS ] ,
ABL_PROBE_PT_3_Y + home_offset [ Y_AXIS ] ,
stow_probe_after_each , verbose_level ) ;
if ( ! dryrun ) set_bed_level_equation_3pts ( z_at_pt_1 , z_at_pt_2 , z_at_pt_3 ) ;
# endif // !AUTO_BED_LEVELING_GRID
// Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
stow_z_probe ( ) ;
// Restore state after probing
clean_up_after_endstop_or_probe_move ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > probing complete " , current_position ) ;
# endif
// Calculate leveling, print reports, correct the position
# if ENABLED(AUTO_BED_LEVELING_GRID)
# if ENABLED(DELTA)
if ( ! dryrun ) extrapolate_unprobed_bed_level ( ) ;
print_bed_level ( ) ;
# else // !DELTA
// solve lsq problem
double plane_equation_coefficients [ 3 ] ;
qr_solve ( plane_equation_coefficients , abl2 , 3 , eqnAMatrix , eqnBVector ) ;
mean / = abl2 ;
if ( verbose_level ) {
SERIAL_PROTOCOLPGM ( " Eqn coefficients: a: " ) ;
SERIAL_PROTOCOL_F ( plane_equation_coefficients [ 0 ] , 8 ) ;
SERIAL_PROTOCOLPGM ( " b: " ) ;
SERIAL_PROTOCOL_F ( plane_equation_coefficients [ 1 ] , 8 ) ;
SERIAL_PROTOCOLPGM ( " d: " ) ;
SERIAL_PROTOCOL_F ( plane_equation_coefficients [ 2 ] , 8 ) ;
SERIAL_EOL ;
if ( verbose_level > 2 ) {
SERIAL_PROTOCOLPGM ( " Mean of sampled points: " ) ;
SERIAL_PROTOCOL_F ( mean , 8 ) ;
SERIAL_EOL ;
}
}
if ( ! dryrun ) set_bed_level_equation_lsq ( plane_equation_coefficients ) ;
// Show the Topography map if enabled
if ( do_topography_map ) {
SERIAL_PROTOCOLPGM ( " \n Bed Height Topography: \n " ) ;
SERIAL_PROTOCOLPGM ( " +--- BACK --+ \n " ) ;
SERIAL_PROTOCOLPGM ( " | | \n " ) ;
SERIAL_PROTOCOLPGM ( " L | (+) | R \n " ) ;
SERIAL_PROTOCOLPGM ( " E | | I \n " ) ;
SERIAL_PROTOCOLPGM ( " F | (-) N (+) | G \n " ) ;
SERIAL_PROTOCOLPGM ( " T | | H \n " ) ;
SERIAL_PROTOCOLPGM ( " | (-) | T \n " ) ;
SERIAL_PROTOCOLPGM ( " | | \n " ) ;
SERIAL_PROTOCOLPGM ( " O-- FRONT --+ \n " ) ;
SERIAL_PROTOCOLPGM ( " (0,0) \n " ) ;
float min_diff = 999 ;
for ( int yy = auto_bed_leveling_grid_points - 1 ; yy > = 0 ; yy - - ) {
for ( int xx = 0 ; xx < auto_bed_leveling_grid_points ; xx + + ) {
int ind = indexIntoAB [ xx ] [ yy ] ;
float diff = eqnBVector [ ind ] - mean ;
float x_tmp = eqnAMatrix [ ind + 0 * abl2 ] ,
y_tmp = eqnAMatrix [ ind + 1 * abl2 ] ,
z_tmp = 0 ;
apply_rotation_xyz ( planner . bed_level_matrix , x_tmp , y_tmp , z_tmp ) ;
NOMORE ( min_diff , eqnBVector [ ind ] - z_tmp ) ;
if ( diff > = 0.0 )
SERIAL_PROTOCOLPGM ( " + " ) ; // Include + for column alignment
else
SERIAL_PROTOCOLCHAR ( ' ' ) ;
SERIAL_PROTOCOL_F ( diff , 5 ) ;
} // xx
SERIAL_EOL ;
} // yy
SERIAL_EOL ;
if ( verbose_level > 3 ) {
SERIAL_PROTOCOLPGM ( " \n Corrected Bed Height vs. Bed Topology: \n " ) ;
for ( int yy = auto_bed_leveling_grid_points - 1 ; yy > = 0 ; yy - - ) {
for ( int xx = 0 ; xx < auto_bed_leveling_grid_points ; xx + + ) {
int ind = indexIntoAB [ xx ] [ yy ] ;
float x_tmp = eqnAMatrix [ ind + 0 * abl2 ] ,
y_tmp = eqnAMatrix [ ind + 1 * abl2 ] ,
z_tmp = 0 ;
apply_rotation_xyz ( planner . bed_level_matrix , x_tmp , y_tmp , z_tmp ) ;
float diff = eqnBVector [ ind ] - z_tmp - min_diff ;
if ( diff > = 0.0 )
SERIAL_PROTOCOLPGM ( " + " ) ;
// Include + for column alignment
else
SERIAL_PROTOCOLCHAR ( ' ' ) ;
SERIAL_PROTOCOL_F ( diff , 5 ) ;
} // xx
SERIAL_EOL ;
} // yy
SERIAL_EOL ;
}
} //do_topography_map
# endif //!DELTA
# endif // AUTO_BED_LEVELING_GRID
# if DISABLED(DELTA)
if ( verbose_level > 0 )
planner . bed_level_matrix . debug ( " \n \n Bed Level Correction Matrix: " ) ;
if ( ! dryrun ) {
/**
* Correct the Z height difference from Z probe position and nozzle tip position .
* The Z height on homing is measured by Z probe , but the Z probe is quite far
* from the nozzle . When the bed is uneven , this height must be corrected .
*/
float x_tmp = current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER ,
y_tmp = current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER ,
z_tmp = current_position [ Z_AXIS ] ,
stepper_z = stepper . get_axis_position_mm ( Z_AXIS ) ; //get the real Z (since planner.adjusted_position is now correcting the plane)
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > BEFORE apply_rotation_xyz > stepper_z = " , stepper_z ) ;
SERIAL_ECHOPAIR ( " ... z_tmp = " , z_tmp ) ;
SERIAL_EOL ;
}
# endif
// Apply the correction sending the Z probe offset
apply_rotation_xyz ( planner . bed_level_matrix , x_tmp , y_tmp , z_tmp ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPAIR ( " > AFTER apply_rotation_xyz > z_tmp = " , z_tmp ) ;
SERIAL_EOL ;
}
# endif
// Adjust the current Z and send it to the planner.
current_position [ Z_AXIS ] + = z_tmp - stepper_z ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) DEBUG_POS ( " > corrected Z in G29 " , current_position ) ;
# endif
}
# endif // !DELTA
# ifdef Z_PROBE_END_SCRIPT
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHO ( " Z Probe End Script: " ) ;
SERIAL_ECHOLNPGM ( Z_PROBE_END_SCRIPT ) ;
}
# endif
enqueue_and_echo_commands_P ( PSTR ( Z_PROBE_END_SCRIPT ) ) ;
stepper . synchronize ( ) ;
# endif
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) SERIAL_ECHOLNPGM ( " <<< gcode_G29 " ) ;
# endif
bed_leveling_in_progress = false ;
report_current_position ( ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
}
# endif //AUTO_BED_LEVELING_FEATURE
# if HAS_BED_PROBE
/**
* G30 : Do a single Z probe at the current XY
*/
inline void gcode_G30 ( ) {
setup_for_endstop_or_probe_move ( ) ;
// TODO: clear the leveling matrix or the planner will be set incorrectly
float measured_z = probe_pt ( current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER ,
current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER ,
true , 1 ) ;
SERIAL_PROTOCOLPGM ( " Bed X: " ) ;
SERIAL_PROTOCOL ( current_position [ X_AXIS ] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001 ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( current_position [ Y_AXIS ] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001 ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( measured_z + 0.0001 ) ;
SERIAL_EOL ;
clean_up_after_endstop_or_probe_move ( ) ;
report_current_position ( ) ;
}
# if ENABLED(Z_PROBE_SLED)
/**
* G31 : Deploy the Z probe
*/
inline void gcode_G31 ( ) { deploy_z_probe ( ) ; }
/**
* G32 : Stow the Z probe
*/
inline void gcode_G32 ( ) { stow_z_probe ( ) ; }
# endif // Z_PROBE_SLED
# endif // HAS_BED_PROBE
/**
* G92 : Set current position to given X Y Z E
*/
inline void gcode_G92 ( ) {
bool didE = code_seen ( axis_codes [ E_AXIS ] ) ;
if ( ! didE ) stepper . synchronize ( ) ;
bool didXYZ = false ;
for ( int i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
float p = current_position [ i ] ,
v = code_value_axis_units ( i ) ;
current_position [ i ] = v ;
if ( i ! = E_AXIS ) {
position_shift [ i ] + = v - p ; // Offset the coordinate space
update_software_endstops ( ( AxisEnum ) i ) ;
didXYZ = true ;
}
}
}
if ( didXYZ )
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
else if ( didE )
sync_plan_position_e ( ) ;
}
# if ENABLED(ULTIPANEL)
/**
* M0 : // M0 - Unconditional stop - Wait for user button press on LCD
* M1 : // M1 - Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1 ( ) {
char * args = current_command_args ;
uint8_t test_value = 12 ;
SERIAL_ECHOPAIR ( " TEST " , test_value ) ;
millis_t codenum = 0 ;
bool hasP = false , hasS = false ;
if ( code_seen ( ' P ' ) ) {
codenum = code_value_millis ( ) ; // milliseconds to wait
hasP = codenum > 0 ;
}
if ( code_seen ( ' S ' ) ) {
codenum = code_value_millis_from_seconds ( ) ; // seconds to wait
hasS = codenum > 0 ;
}
if ( ! hasP & & ! hasS & & * args ! = ' \0 ' )
lcd_setstatus ( args , true ) ;
else {
LCD_MESSAGEPGM ( MSG_USERWAIT ) ;
# if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus ( ) ;
# endif
}
lcd_ignore_click ( ) ;
stepper . synchronize ( ) ;
refresh_cmd_timeout ( ) ;
if ( codenum > 0 ) {
codenum + = previous_cmd_ms ; // wait until this time for a click
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
while ( PENDING ( millis ( ) , codenum ) & & ! lcd_clicked ( ) ) idle ( ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
lcd_ignore_click ( false ) ;
}
else {
if ( ! lcd_detected ( ) ) return ;
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
while ( ! lcd_clicked ( ) ) idle ( ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
}
if ( IS_SD_PRINTING )
LCD_MESSAGEPGM ( MSG_RESUMING ) ;
else
LCD_MESSAGEPGM ( WELCOME_MSG ) ;
}
# endif // ULTIPANEL
/**
* M17 : Enable power on all stepper motors
*/
inline void gcode_M17 ( ) {
LCD_MESSAGEPGM ( MSG_NO_MOVE ) ;
enable_all_steppers ( ) ;
}
# if ENABLED(SDSUPPORT)
/**
* M20 : List SD card to serial output
*/
inline void gcode_M20 ( ) {
SERIAL_PROTOCOLLNPGM ( MSG_BEGIN_FILE_LIST ) ;
card . ls ( ) ;
SERIAL_PROTOCOLLNPGM ( MSG_END_FILE_LIST ) ;
}
/**
* M21 : Init SD Card
*/
inline void gcode_M21 ( ) {
card . initsd ( ) ;
}
/**
* M22 : Release SD Card
*/
inline void gcode_M22 ( ) {
card . release ( ) ;
}
/**
* M23 : Open a file
*/
inline void gcode_M23 ( ) {
card . openFile ( current_command_args , true ) ;
}
/**
* M24 : Start SD Print
*/
inline void gcode_M24 ( ) {
card . startFileprint ( ) ;
print_job_timer . start ( ) ;
}
/**
* M25 : Pause SD Print
*/
inline void gcode_M25 ( ) {
card . pauseSDPrint ( ) ;
}
/**
* M26 : Set SD Card file index
*/
inline void gcode_M26 ( ) {
if ( card . cardOK & & code_seen ( ' S ' ) )
card . setIndex ( code_value_long ( ) ) ;
}
/**
* M27 : Get SD Card status
*/
inline void gcode_M27 ( ) {
card . getStatus ( ) ;
}
/**
* M28 : Start SD Write
*/
inline void gcode_M28 ( ) {
card . openFile ( current_command_args , false ) ;
}
/**
* M29 : Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29 ( ) {
// card.saving = false;
}
/**
* M30 < filename > : Delete SD Card file
*/
inline void gcode_M30 ( ) {
if ( card . cardOK ) {
card . closefile ( ) ;
card . removeFile ( current_command_args ) ;
}
}
# endif //SDSUPPORT
/**
* M31 : Get the time since the start of SD Print ( or last M109 )
*/
inline void gcode_M31 ( ) {
millis_t t = print_job_timer . duration ( ) ;
int min = t / 60 , sec = t % 60 ;
char time [ 30 ] ;
sprintf_P ( time , PSTR ( " %i min, %i sec " ) , min , sec ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOLN ( time ) ;
lcd_setstatus ( time ) ;
thermalManager . autotempShutdown ( ) ;
}
# if ENABLED(SDSUPPORT)
/**
* M32 : Select file and start SD Print
*/
inline void gcode_M32 ( ) {
if ( card . sdprinting )
stepper . synchronize ( ) ;
char * namestartpos = strchr ( current_command_args , ' ! ' ) ; // Find ! to indicate filename string start.
if ( ! namestartpos )
namestartpos = current_command_args ; // Default name position, 4 letters after the M
else
namestartpos + + ; //to skip the '!'
bool call_procedure = code_seen ( ' P ' ) & & ( seen_pointer < namestartpos ) ;
if ( card . cardOK ) {
card . openFile ( namestartpos , true , call_procedure ) ;
if ( code_seen ( ' S ' ) & & seen_pointer < namestartpos ) // "S" (must occur _before_ the filename!)
card . setIndex ( code_value_long ( ) ) ;
card . startFileprint ( ) ;
// Procedure calls count as normal print time.
if ( ! call_procedure ) print_job_timer . start ( ) ;
}
}
# if ENABLED(LONG_FILENAME_HOST_SUPPORT)
/**
* M33 : Get the long full path of a file or folder
*
* Parameters :
* < dospath > Case - insensitive DOS - style path to a file or folder
*
* Example :
* M33 miscel ~ 1 / armchair / armcha ~ 1. gco
*
* Output :
* / Miscellaneous / Armchair / Armchair . gcode
*/
inline void gcode_M33 ( ) {
card . printLongPath ( current_command_args ) ;
}
# endif
/**
* M928 : Start SD Write
*/
inline void gcode_M928 ( ) {
card . openLogFile ( current_command_args ) ;
}
# endif // SDSUPPORT
/**
* M42 : Change pin status via GCode
*
* P < pin > Pin number ( LED if omitted )
* S < byte > Pin status from 0 - 255
*/
inline void gcode_M42 ( ) {
if ( code_seen ( ' S ' ) ) {
int pin_status = code_value_int ( ) ;
if ( pin_status < 0 | | pin_status > 255 ) return ;
int pin_number = code_seen ( ' P ' ) ? code_value_int ( ) : LED_PIN ;
if ( pin_number < 0 ) return ;
for ( uint8_t i = 0 ; i < COUNT ( sensitive_pins ) ; i + + )
if ( pin_number = = sensitive_pins [ i ] ) return ;
pinMode ( pin_number , OUTPUT ) ;
digitalWrite ( pin_number , pin_status ) ;
analogWrite ( pin_number , pin_status ) ;
# if FAN_COUNT > 0
switch ( pin_number ) {
# if HAS_FAN0
case FAN_PIN : fanSpeeds [ 0 ] = pin_status ; break ;
# endif
# if HAS_FAN1
case FAN1_PIN : fanSpeeds [ 1 ] = pin_status ; break ;
# endif
# if HAS_FAN2
case FAN2_PIN : fanSpeeds [ 2 ] = pin_status ; break ;
# endif
}
# endif
} // code_seen('S')
}
# if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
/**
* M48 : Z probe repeatability measurement function .
*
* Usage :
* M48 < P # > < X # > < Y # > < V # > < E > < L # >
* P = Number of sampled points ( 4 - 50 , default 10 )
* X = Sample X position
* Y = Sample Y position
* V = Verbose level ( 0 - 4 , default = 1 )
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid ( Or Star if you prefer )
*
* This function assumes the bed has been homed . Specifically , that a G28 command
* as been issued prior to invoking the M48 Z probe repeatability measurement function .
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated .
*/
inline void gcode_M48 ( ) {
if ( ! axis_homed [ X_AXIS ] | | ! axis_homed [ Y_AXIS ] | | ! axis_homed [ Z_AXIS ] ) {
axis_unhomed_error ( true ) ;
return ;
}
int8_t verbose_level = code_seen ( ' V ' ) ? code_value_byte ( ) : 1 ;
if ( verbose_level < 0 | | verbose_level > 4 ) {
SERIAL_PROTOCOLPGM ( " ?Verbose Level not plausible (0-4). \n " ) ;
return ;
}
if ( verbose_level > 0 )
SERIAL_PROTOCOLPGM ( " M48 Z-Probe Repeatability test \n " ) ;
int8_t n_samples = code_seen ( ' P ' ) ? code_value_byte ( ) : 10 ;
if ( n_samples < 4 | | n_samples > 50 ) {
SERIAL_PROTOCOLPGM ( " ?Sample size not plausible (4-50). \n " ) ;
return ;
}
float X_current = current_position [ X_AXIS ] ,
Y_current = current_position [ Y_AXIS ] ;
# if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
const bool stow_probe_after_each = false ;
# else
bool stow_probe_after_each = code_seen ( ' E ' ) ;
# endif
float X_probe_location = code_seen ( ' X ' ) ? code_value_axis_units ( X_AXIS ) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER ;
# if DISABLED(DELTA)
if ( X_probe_location < MIN_PROBE_X | | X_probe_location > MAX_PROBE_X ) {
out_of_range_error ( PSTR ( " X " ) ) ;
return ;
}
# endif
float Y_probe_location = code_seen ( ' Y ' ) ? code_value_axis_units ( Y_AXIS ) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER ;
# if DISABLED(DELTA)
if ( Y_probe_location < MIN_PROBE_Y | | Y_probe_location > MAX_PROBE_Y ) {
out_of_range_error ( PSTR ( " Y " ) ) ;
return ;
}
# else
if ( sqrt ( X_probe_location * X_probe_location + Y_probe_location * Y_probe_location ) > DELTA_PROBEABLE_RADIUS ) {
SERIAL_PROTOCOLPGM ( " ? (X,Y) location outside of probeable radius. \n " ) ;
return ;
}
# endif
bool seen_L = code_seen ( ' L ' ) ;
uint8_t n_legs = seen_L ? code_value_byte ( ) : 0 ;
if ( n_legs > 15 ) {
SERIAL_PROTOCOLPGM ( " ?Number of legs in movement not plausible (0-15). \n " ) ;
return ;
}
if ( n_legs = = 1 ) n_legs = 2 ;
bool schizoid_flag = code_seen ( ' S ' ) ;
if ( schizoid_flag & & ! seen_L ) n_legs = 7 ;
/**
* Now get everything to the specified probe point So we can safely do a
* probe to get us close to the bed . If the Z - Axis is far from the bed ,
* we don ' t want to use that as a starting point for each probe .
*/
if ( verbose_level > 2 )
SERIAL_PROTOCOLPGM ( " Positioning the probe... \n " ) ;
# if ENABLED(DELTA)
// we don't do bed level correction in M48 because we want the raw data when we probe
reset_bed_level ( ) ;
# elif ENABLED(AUTO_BED_LEVELING_FEATURE)
// we don't do bed level correction in M48 because we want the raw data when we probe
planner . bed_level_matrix . set_to_identity ( ) ;
# endif
setup_for_endstop_or_probe_move ( ) ;
// Move to the first point, deploy, and probe
probe_pt ( X_probe_location , Y_probe_location , stow_probe_after_each , verbose_level ) ;
randomSeed ( millis ( ) ) ;
double mean = 0 , sigma = 0 , sample_set [ n_samples ] ;
for ( uint8_t n = 0 ; n < n_samples ; n + + ) {
if ( n_legs ) {
int dir = ( random ( 0 , 10 ) > 5.0 ) ? - 1 : 1 ; // clockwise or counter clockwise
float angle = random ( 0.0 , 360.0 ) ,
radius = random (
# if ENABLED(DELTA)
DELTA_PROBEABLE_RADIUS / 8 , DELTA_PROBEABLE_RADIUS / 3
# else
5 , X_MAX_LENGTH / 8
# endif
) ;
if ( verbose_level > 3 ) {
SERIAL_ECHOPAIR ( " Starting radius: " , radius ) ;
SERIAL_ECHOPAIR ( " angle: " , angle ) ;
SERIAL_ECHO ( " Direction: " ) ;
if ( dir > 0 ) SERIAL_ECHO ( " Counter " ) ;
SERIAL_ECHOLN ( " Clockwise " ) ;
}
for ( uint8_t l = 0 ; l < n_legs - 1 ; l + + ) {
double delta_angle ;
if ( schizoid_flag )
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0 ;
else
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * ( float ) random ( 25 , 45 ) ;
angle + = delta_angle ;
while ( angle > 360.0 ) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle - = 360.0 ; // Arduino documentation says the trig functions should not be given values
while ( angle < 0.0 ) // outside of this range. It looks like they behave correctly with
angle + = 360.0 ; // numbers outside of the range, but just to be safe we clamp them.
X_current = X_probe_location - ( X_PROBE_OFFSET_FROM_EXTRUDER ) + cos ( RADIANS ( angle ) ) * radius ;
Y_current = Y_probe_location - ( Y_PROBE_OFFSET_FROM_EXTRUDER ) + sin ( RADIANS ( angle ) ) * radius ;
# if DISABLED(DELTA)
X_current = constrain ( X_current , X_MIN_POS , X_MAX_POS ) ;
Y_current = constrain ( Y_current , Y_MIN_POS , Y_MAX_POS ) ;
# else
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
while ( sqrt ( X_current * X_current + Y_current * Y_current ) > DELTA_PROBEABLE_RADIUS ) {
X_current / = 1.25 ;
Y_current / = 1.25 ;
if ( verbose_level > 3 ) {
SERIAL_ECHOPAIR ( " Pulling point towards center: " , X_current ) ;
SERIAL_ECHOPAIR ( " , " , Y_current ) ;
SERIAL_EOL ;
}
}
# endif
if ( verbose_level > 3 ) {
SERIAL_PROTOCOL ( " Going to: " ) ;
SERIAL_ECHOPAIR ( " x: " , X_current ) ;
SERIAL_ECHOPAIR ( " y: " , Y_current ) ;
SERIAL_ECHOPAIR ( " z: " , current_position [ Z_AXIS ] ) ;
SERIAL_EOL ;
}
do_blocking_move_to_xy ( X_current , Y_current ) ;
} // n_legs loop
} // n_legs
// Probe a single point
sample_set [ n ] = probe_pt ( X_probe_location , Y_probe_location , stow_probe_after_each , verbose_level ) ;
/**
* Get the current mean for the data points we have so far
*/
double sum = 0.0 ;
for ( uint8_t j = 0 ; j < = n ; j + + ) sum + = sample_set [ j ] ;
mean = sum / ( n + 1 ) ;
/**
* Now , use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0 ;
for ( uint8_t j = 0 ; j < = n ; j + + ) {
float ss = sample_set [ j ] - mean ;
sum + = ss * ss ;
}
sigma = sqrt ( sum / ( n + 1 ) ) ;
if ( verbose_level > 0 ) {
if ( verbose_level > 1 ) {
SERIAL_PROTOCOL ( n + 1 ) ;
SERIAL_PROTOCOLPGM ( " of " ) ;
SERIAL_PROTOCOL ( ( int ) n_samples ) ;
SERIAL_PROTOCOLPGM ( " z: " ) ;
SERIAL_PROTOCOL_F ( current_position [ Z_AXIS ] , 6 ) ;
if ( verbose_level > 2 ) {
SERIAL_PROTOCOLPGM ( " mean: " ) ;
SERIAL_PROTOCOL_F ( mean , 6 ) ;
SERIAL_PROTOCOLPGM ( " sigma: " ) ;
SERIAL_PROTOCOL_F ( sigma , 6 ) ;
}
}
SERIAL_EOL ;
Fixed error found by the free coverity tool (https://scan.coverity.com/)
===================================================
Hi,
Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan.
Defect(s) Reported-by: Coverity Scan
Showing 15 of 15 defect(s)
** CID 59629: Unchecked return value (CHECKED_RETURN)
/Marlin_main.cpp: 2154 in process_commands()()
** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT)
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)()
** CID 59631: Missing break in switch (MISSING_BREAK)
/Marlin_main.cpp: 1187 in process_commands()()
** CID 59632: Missing break in switch (MISSING_BREAK)
/Marlin_main.cpp: 1193 in process_commands()()
** CID 59633: Out-of-bounds write (OVERRUN)
/temperature.cpp: 914 in disable_heater()()
** CID 59634: Out-of-bounds write (OVERRUN)
/temperature.cpp: 913 in disable_heater()()
** CID 59635: Out-of-bounds read (OVERRUN)
/temperature.cpp: 626 in analog2temp(int, unsigned char)()
** CID 59636: Out-of-bounds read (OVERRUN)
/temperature.cpp: 620 in analog2temp(int, unsigned char)()
** CID 59637: Out-of-bounds write (OVERRUN)
/temperature.cpp: 202 in PID_autotune(float, int, int)()
** CID 59638: Out-of-bounds read (OVERRUN)
/temperature.cpp: 214 in PID_autotune(float, int, int)()
** CID 59639: Out-of-bounds write (OVERRUN)
/Marlin_main.cpp: 2278 in process_commands()()
** CID 59640: Out-of-bounds read (OVERRUN)
/Marlin_main.cpp: 1802 in process_commands()()
** CID 59641: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
** CID 59642: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
** CID 59643: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
________________________________________________________________________________________________________
*** CID 59629: Unchecked return value (CHECKED_RETURN)
/Marlin_main.cpp: 2154 in process_commands()()
2148 }
2149 #endif
2150 }
2151 }
2152 break;
2153 case 85: // M85
CID 59629: Unchecked return value (CHECKED_RETURN)
Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times).
2154 code_seen('S');
2155 max_inactive_time = code_value() * 1000;
2156 break;
2157 case 92: // M92
2158 for(int8_t i=0; i < NUM_AXIS; i++)
2159 {
________________________________________________________________________________________________________
*** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT)
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)()
313 else
314 {
315 // two choices for the 16 bit timers: ck/1 or ck/64
316 ocr = F_CPU / frequency / 2 - 1;
317
318 prescalarbits = 0b001;
CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT)
"ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if.
319 if (ocr > 0xffff)
320 {
321 ocr = F_CPU / frequency / 2 / 64 - 1;
322 prescalarbits = 0b011;
323 }
324
________________________________________________________________________________________________________
*** CID 59631: Missing break in switch (MISSING_BREAK)
/Marlin_main.cpp: 1187 in process_commands()()
1181 case 2: // G2 - CW ARC
1182 if(Stopped == false) {
1183 get_arc_coordinates();
1184 prepare_arc_move(true);
1185 return;
1186 }
CID 59631: Missing break in switch (MISSING_BREAK)
The above case falls through to this one.
1187 case 3: // G3 - CCW ARC
1188 if(Stopped == false) {
1189 get_arc_coordinates();
1190 prepare_arc_move(false);
1191 return;
1192 }
________________________________________________________________________________________________________
*** CID 59632: Missing break in switch (MISSING_BREAK)
/Marlin_main.cpp: 1193 in process_commands()()
1187 case 3: // G3 - CCW ARC
1188 if(Stopped == false) {
1189 get_arc_coordinates();
1190 prepare_arc_move(false);
1191 return;
1192 }
CID 59632: Missing break in switch (MISSING_BREAK)
The above case falls through to this one.
1193 case 4: // G4 dwell
1194 LCD_MESSAGEPGM(MSG_DWELL);
1195 codenum = 0;
1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait
1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
1198
________________________________________________________________________________________________________
*** CID 59633: Out-of-bounds write (OVERRUN)
/temperature.cpp: 914 in disable_heater()()
908 WRITE(HEATER_0_PIN,LOW);
909 #endif
910 #endif
911
912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1
913 target_temperature[1]=0;
CID 59633: Out-of-bounds write (OVERRUN)
Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1".
914 soft_pwm[1]=0;
915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
916 WRITE(HEATER_1_PIN,LOW);
917 #endif
918 #endif
919
________________________________________________________________________________________________________
*** CID 59634: Out-of-bounds write (OVERRUN)
/temperature.cpp: 913 in disable_heater()()
907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
908 WRITE(HEATER_0_PIN,LOW);
909 #endif
910 #endif
911
912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1
CID 59634: Out-of-bounds write (OVERRUN)
Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1".
913 target_temperature[1]=0;
914 soft_pwm[1]=0;
915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
916 WRITE(HEATER_1_PIN,LOW);
917 #endif
918 #endif
________________________________________________________________________________________________________
*** CID 59635: Out-of-bounds read (OVERRUN)
/temperature.cpp: 626 in analog2temp(int, unsigned char)()
620 if(heater_ttbl_map[e] != NULL)
621 {
622 float celsius = 0;
623 uint8_t i;
624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
625
CID 59635: Out-of-bounds read (OVERRUN)
Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1).
626 for (i=1; i<heater_ttbllen_map[e]; i++)
627 {
628 if (PGM_RD_W((*tt)[i][0]) > raw)
629 {
630 celsius = PGM_RD_W((*tt)[i-1][1]) +
631 (raw - PGM_RD_W((*tt)[i-1][0])) *
________________________________________________________________________________________________________
*** CID 59636: Out-of-bounds read (OVERRUN)
/temperature.cpp: 620 in analog2temp(int, unsigned char)()
614 if (e == 0)
615 {
616 return 0.25 * raw;
617 }
618 #endif
619
CID 59636: Out-of-bounds read (OVERRUN)
Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1).
620 if(heater_ttbl_map[e] != NULL)
621 {
622 float celsius = 0;
623 uint8_t i;
624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
625
________________________________________________________________________________________________________
*** CID 59637: Out-of-bounds write (OVERRUN)
/temperature.cpp: 202 in PID_autotune(float, int, int)()
196 {
197 soft_pwm_bed = (MAX_BED_POWER)/2;
198 bias = d = (MAX_BED_POWER)/2;
199 }
200 else
201 {
CID 59637: Out-of-bounds write (OVERRUN)
Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1).
202 soft_pwm[extruder] = (PID_MAX)/2;
203 bias = d = (PID_MAX)/2;
204 }
205
206
207
________________________________________________________________________________________________________
*** CID 59638: Out-of-bounds read (OVERRUN)
/temperature.cpp: 214 in PID_autotune(float, int, int)()
208
209 for(;;) {
210
211 if(temp_meas_ready == true) { // temp sample ready
212 updateTemperaturesFromRawValues();
213
CID 59638: Out-of-bounds read (OVERRUN)
Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1).
214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
215
216 max=max(max,input);
217 min=min(min,input);
218 if(heating == true && input > temp) {
219 if(millis() - t2 > 5000) {
________________________________________________________________________________________________________
*** CID 59639: Out-of-bounds write (OVERRUN)
/Marlin_main.cpp: 2278 in process_commands()()
2272 tmp_extruder = code_value();
2273 if(tmp_extruder >= EXTRUDERS) {
2274 SERIAL_ECHO_START;
2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
2276 }
2277 }
CID 59639: Out-of-bounds write (OVERRUN)
Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1).
2278 volumetric_multiplier[tmp_extruder] = 1 / area;
2279 }
2280 break;
2281 case 201: // M201
2282 for(int8_t i=0; i < NUM_AXIS; i++)
2283 {
________________________________________________________________________________________________________
*** CID 59640: Out-of-bounds read (OVERRUN)
/Marlin_main.cpp: 1802 in process_commands()()
1796 int pin_status = code_value();
1797 int pin_number = LED_PIN;
1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
1799 pin_number = code_value();
1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
1801 {
CID 59640: Out-of-bounds read (OVERRUN)
Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55).
1802 if (sensitive_pins[i] == pin_number)
1803 {
1804 pin_number = -1;
1805 break;
1806 }
1807 }
________________________________________________________________________________________________________
*** CID 59641: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
45 }
46
47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable,
48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
49 {
50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
CID 59641: Uninitialized scalar field (UNINIT_CTOR)
Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls.
51 }
52
53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
56 {
________________________________________________________________________________________________________
*** CID 59642: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
39 }
40
41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
43 {
44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0);
CID 59642: Uninitialized scalar field (UNINIT_CTOR)
Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls.
45 }
46
47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable,
48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
49 {
50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
________________________________________________________________________________________________________
*** CID 59643: Uninitialized scalar field (UNINIT_CTOR)
/Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)()
26
27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
30 {
31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);
CID 59643: Uninitialized scalar field (UNINIT_CTOR)
Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls.
32 }
33
34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable,
35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
37 {
________________________________________________________________________________________________________
To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
11 years ago
}
} // End of probe loop
stow_z_probe ( ) ;
if ( verbose_level > 0 ) {
SERIAL_PROTOCOLPGM ( " Mean: " ) ;
SERIAL_PROTOCOL_F ( mean , 6 ) ;
SERIAL_EOL ;
}
SERIAL_PROTOCOLPGM ( " Standard Deviation: " ) ;
SERIAL_PROTOCOL_F ( sigma , 6 ) ;
SERIAL_EOL ; SERIAL_EOL ;
clean_up_after_endstop_or_probe_move ( ) ;
report_current_position ( ) ;
}
# endif // Z_MIN_PROBE_REPEATABILITY_TEST
/**
* M75 : Start print timer
*/
inline void gcode_M75 ( ) { print_job_timer . start ( ) ; }
/**
* M76 : Pause print timer
*/
inline void gcode_M76 ( ) { print_job_timer . pause ( ) ; }
/**
* M77 : Stop print timer
*/
inline void gcode_M77 ( ) { print_job_timer . stop ( ) ; }
# if ENABLED(PRINTCOUNTER)
/*+
* M78 : Show print statistics
*/
inline void gcode_M78 ( ) {
// "M78 S78" will reset the statistics
if ( code_seen ( ' S ' ) & & code_value_int ( ) = = 78 )
print_job_timer . initStats ( ) ;
else print_job_timer . showStats ( ) ;
}
# endif
/**
* M104 : Set hot end temperature
*/
inline void gcode_M104 ( ) {
if ( get_target_extruder_from_command ( 104 ) ) return ;
if ( DEBUGGING ( DRYRUN ) ) return ;
# if ENABLED(SINGLENOZZLE)
if ( target_extruder ! = active_extruder ) return ;
# endif
if ( code_seen ( ' S ' ) ) {
float temp = code_value_temp_abs ( ) ;
thermalManager . setTargetHotend ( temp , target_extruder ) ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE & & target_extruder = = 0 )
thermalManager . setTargetHotend ( temp = = 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset , 1 ) ;
# endif
# if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* stand by mode , for instance in a dual extruder setup , without affecting
* the running print timer .
*/
if ( temp < = ( EXTRUDE_MINTEMP ) / 2 ) {
print_job_timer . stop ( ) ;
LCD_MESSAGEPGM ( WELCOME_MSG ) ;
}
/**
* We do not check if the timer is already running because this check will
* be done for us inside the Stopwatch : : start ( ) method thus a running timer
* will not restart .
*/
else print_job_timer . start ( ) ;
# endif
if ( temp > thermalManager . degHotend ( target_extruder ) ) LCD_MESSAGEPGM ( MSG_HEATING ) ;
}
}
# if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates ( ) {
# if HAS_TEMP_HOTEND
SERIAL_PROTOCOLPGM ( " T: " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degHotend ( target_extruder ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degTargetHotend ( target_extruder ) , 1 ) ;
# endif
# if HAS_TEMP_BED
SERIAL_PROTOCOLPGM ( " B: " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degBed ( ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degTargetBed ( ) , 1 ) ;
# endif
# if HOTENDS > 1
for ( int8_t e = 0 ; e < HOTENDS ; + + e ) {
SERIAL_PROTOCOLPGM ( " T " ) ;
SERIAL_PROTOCOL ( e ) ;
SERIAL_PROTOCOLCHAR ( ' : ' ) ;
SERIAL_PROTOCOL_F ( thermalManager . degHotend ( e ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " / " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degTargetHotend ( e ) , 1 ) ;
}
# endif
# if HAS_TEMP_BED
SERIAL_PROTOCOLPGM ( " B@: " ) ;
# ifdef BED_WATTS
SERIAL_PROTOCOL ( ( ( BED_WATTS ) * thermalManager . getHeaterPower ( - 1 ) ) / 127 ) ;
SERIAL_PROTOCOLCHAR ( ' W ' ) ;
# else
SERIAL_PROTOCOL ( thermalManager . getHeaterPower ( - 1 ) ) ;
# endif
# endif
SERIAL_PROTOCOLPGM ( " @: " ) ;
# ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL ( ( ( EXTRUDER_WATTS ) * thermalManager . getHeaterPower ( target_extruder ) ) / 127 ) ;
SERIAL_PROTOCOLCHAR ( ' W ' ) ;
# else
SERIAL_PROTOCOL ( thermalManager . getHeaterPower ( target_extruder ) ) ;
# endif
# if HOTENDS > 1
for ( int8_t e = 0 ; e < HOTENDS ; + + e ) {
SERIAL_PROTOCOLPGM ( " @ " ) ;
SERIAL_PROTOCOL ( e ) ;
SERIAL_PROTOCOLCHAR ( ' : ' ) ;
# ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL ( ( ( EXTRUDER_WATTS ) * thermalManager . getHeaterPower ( e ) ) / 127 ) ;
SERIAL_PROTOCOLCHAR ( ' W ' ) ;
# else
SERIAL_PROTOCOL ( thermalManager . getHeaterPower ( e ) ) ;
# endif
}
# endif
# if ENABLED(SHOW_TEMP_ADC_VALUES)
# if HAS_TEMP_BED
SERIAL_PROTOCOLPGM ( " ADC B: " ) ;
SERIAL_PROTOCOL_F ( thermalManager . degBed ( ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " C-> " ) ;
SERIAL_PROTOCOL_F ( thermalManager . rawBedTemp ( ) / OVERSAMPLENR , 0 ) ;
# endif
for ( int8_t cur_hotend = 0 ; cur_hotend < HOTENDS ; + + cur_hotend ) {
SERIAL_PROTOCOLPGM ( " T " ) ;
SERIAL_PROTOCOL ( cur_hotend ) ;
SERIAL_PROTOCOLCHAR ( ' : ' ) ;
SERIAL_PROTOCOL_F ( thermalManager . degHotend ( cur_hotend ) , 1 ) ;
SERIAL_PROTOCOLPGM ( " C-> " ) ;
SERIAL_PROTOCOL_F ( thermalManager . rawHotendTemp ( cur_hotend ) / OVERSAMPLENR , 0 ) ;
}
# endif
}
# endif
/**
* M105 : Read hot end and bed temperature
*/
inline void gcode_M105 ( ) {
if ( get_target_extruder_from_command ( 105 ) ) return ;
# if HAS_TEMP_HOTEND || HAS_TEMP_BED
SERIAL_PROTOCOLPGM ( MSG_OK ) ;
print_heaterstates ( ) ;
# else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_NO_THERMISTORS ) ;
# endif
SERIAL_EOL ;
}
# if FAN_COUNT > 0
/**
* M106 : Set Fan Speed
*
* S < int > Speed between 0 - 255
* P < index > Fan index , if more than one fan
*/
inline void gcode_M106 ( ) {
uint16_t s = code_seen ( ' S ' ) ? code_value_ushort ( ) : 255 ,
p = code_seen ( ' P ' ) ? code_value_ushort ( ) : 0 ;
NOMORE ( s , 255 ) ;
if ( p < FAN_COUNT ) fanSpeeds [ p ] = s ;
}
/**
* M107 : Fan Off
*/
inline void gcode_M107 ( ) {
uint16_t p = code_seen ( ' P ' ) ? code_value_ushort ( ) : 0 ;
if ( p < FAN_COUNT ) fanSpeeds [ p ] = 0 ;
}
# endif // FAN_COUNT > 0
/**
* M109 : Sxxx Wait for extruder ( s ) to reach temperature . Waits only when heating .
* Rxxx Wait for extruder ( s ) to reach temperature . Waits when heating and cooling .
*/
inline void gcode_M109 ( ) {
if ( get_target_extruder_from_command ( 109 ) ) return ;
if ( DEBUGGING ( DRYRUN ) ) return ;
# if ENABLED(SINGLENOZZLE)
if ( target_extruder ! = active_extruder ) return ;
# endif
bool no_wait_for_cooling = code_seen ( ' S ' ) ;
if ( no_wait_for_cooling | | code_seen ( ' R ' ) ) {
float temp = code_value_temp_abs ( ) ;
thermalManager . setTargetHotend ( temp , target_extruder ) ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE & & target_extruder = = 0 )
thermalManager . setTargetHotend ( temp = = 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset , 1 ) ;
# endif
# if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* stand by mode , for instance in a dual extruder setup , without affecting
* the running print timer .
*/
if ( temp < = ( EXTRUDE_MINTEMP ) / 2 ) {
print_job_timer . stop ( ) ;
LCD_MESSAGEPGM ( WELCOME_MSG ) ;
}
/**
* We do not check if the timer is already running because this check will
* be done for us inside the Stopwatch : : start ( ) method thus a running timer
* will not restart .
*/
else print_job_timer . start ( ) ;
# endif
if ( temp > thermalManager . degHotend ( target_extruder ) ) LCD_MESSAGEPGM ( MSG_HEATING ) ;
}
# if ENABLED(AUTOTEMP)
planner . autotemp_M109 ( ) ;
# endif
# if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0 ;
// Loop until the temperature has stabilized
# define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
# else
// Loop until the temperature is very close target
# define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
# endif //TEMP_RESIDENCY_TIME > 0
float theTarget = - 1 ;
bool wants_to_cool ;
cancel_heatup = false ;
millis_t now , next_temp_ms = 0 ;
KEEPALIVE_STATE ( NOT_BUSY ) ;
do {
// Target temperature might be changed during the loop
if ( theTarget ! = thermalManager . degTargetHotend ( target_extruder ) ) {
wants_to_cool = thermalManager . isCoolingHotend ( target_extruder ) ;
theTarget = thermalManager . degTargetHotend ( target_extruder ) ;
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if ( no_wait_for_cooling & & wants_to_cool ) break ;
// Prevent a wait-forever situation if R is misused i.e. M109 R0
// Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
if ( wants_to_cool & & theTarget < ( EXTRUDE_MINTEMP ) / 2 ) break ;
}
now = millis ( ) ;
if ( ELAPSED ( now , next_temp_ms ) ) { //Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL ;
print_heaterstates ( ) ;
# if TEMP_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM ( " W: " ) ;
if ( residency_start_ms ) {
long rem = ( ( ( TEMP_RESIDENCY_TIME ) * 1000UL ) - ( now - residency_start_ms ) ) / 1000UL ;
SERIAL_PROTOCOLLN ( rem ) ;
}
else {
SERIAL_PROTOCOLLNPGM ( " ? " ) ;
}
# else
SERIAL_EOL ;
# endif
}
idle ( ) ;
refresh_cmd_timeout ( ) ; // to prevent stepper_inactive_time from running out
# if TEMP_RESIDENCY_TIME > 0
float temp_diff = fabs ( theTarget - thermalManager . degHotend ( target_extruder ) ) ;
if ( ! residency_start_ms ) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if ( temp_diff < TEMP_WINDOW ) residency_start_ms = now ;
}
else if ( temp_diff > TEMP_HYSTERESIS ) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now ;
}
# endif //TEMP_RESIDENCY_TIME > 0
} while ( ! cancel_heatup & & TEMP_CONDITIONS ) ;
LCD_MESSAGEPGM ( MSG_HEATING_COMPLETE ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
}
# if HAS_TEMP_BED
/**
* M190 : Sxxx Wait for bed current temp to reach target temp . Waits only when heating
* Rxxx Wait for bed current temp to reach target temp . Waits when heating and cooling
*/
inline void gcode_M190 ( ) {
if ( DEBUGGING ( DRYRUN ) ) return ;
LCD_MESSAGEPGM ( MSG_BED_HEATING ) ;
bool no_wait_for_cooling = code_seen ( ' S ' ) ;
if ( no_wait_for_cooling | | code_seen ( ' R ' ) ) thermalManager . setTargetBed ( code_value_temp_abs ( ) ) ;
# if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0 ;
// Loop until the temperature has stabilized
# define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
# else
// Loop until the temperature is very close target
# define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
# endif //TEMP_BED_RESIDENCY_TIME > 0
float theTarget = - 1 ;
bool wants_to_cool ;
cancel_heatup = false ;
millis_t now , next_temp_ms = 0 ;
KEEPALIVE_STATE ( NOT_BUSY ) ;
do {
// Target temperature might be changed during the loop
if ( theTarget ! = thermalManager . degTargetBed ( ) ) {
wants_to_cool = thermalManager . isCoolingBed ( ) ;
theTarget = thermalManager . degTargetBed ( ) ;
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if ( no_wait_for_cooling & & wants_to_cool ) break ;
// Prevent a wait-forever situation if R is misused i.e. M190 R0
// Simply don't wait to cool a bed under 30C
if ( wants_to_cool & & theTarget < 30 ) break ;
}
now = millis ( ) ;
if ( ELAPSED ( now , next_temp_ms ) ) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL ;
print_heaterstates ( ) ;
# if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM ( " W: " ) ;
if ( residency_start_ms ) {
long rem = ( ( ( TEMP_BED_RESIDENCY_TIME ) * 1000UL ) - ( now - residency_start_ms ) ) / 1000UL ;
SERIAL_PROTOCOLLN ( rem ) ;
}
else {
SERIAL_PROTOCOLLNPGM ( " ? " ) ;
}
# else
SERIAL_EOL ;
# endif
}
idle ( ) ;
refresh_cmd_timeout ( ) ; // to prevent stepper_inactive_time from running out
# if TEMP_BED_RESIDENCY_TIME > 0
float temp_diff = fabs ( theTarget - thermalManager . degBed ( ) ) ;
if ( ! residency_start_ms ) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if ( temp_diff < TEMP_BED_WINDOW ) residency_start_ms = now ;
}
else if ( temp_diff > TEMP_BED_HYSTERESIS ) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now ;
}
# endif //TEMP_BED_RESIDENCY_TIME > 0
} while ( ! cancel_heatup & & TEMP_BED_CONDITIONS ) ;
LCD_MESSAGEPGM ( MSG_BED_DONE ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
}
# endif // HAS_TEMP_BED
/**
* M110 : Set Current Line Number
*/
inline void gcode_M110 ( ) {
if ( code_seen ( ' N ' ) ) gcode_N = code_value_long ( ) ;
}
/**
* M111 : Set the debug level
*/
inline void gcode_M111 ( ) {
marlin_debug_flags = code_seen ( ' S ' ) ? code_value_byte ( ) : ( uint8_t ) DEBUG_NONE ;
const static char str_debug_1 [ ] PROGMEM = MSG_DEBUG_ECHO ;
const static char str_debug_2 [ ] PROGMEM = MSG_DEBUG_INFO ;
const static char str_debug_4 [ ] PROGMEM = MSG_DEBUG_ERRORS ;
const static char str_debug_8 [ ] PROGMEM = MSG_DEBUG_DRYRUN ;
const static char str_debug_16 [ ] PROGMEM = MSG_DEBUG_COMMUNICATION ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
const static char str_debug_32 [ ] PROGMEM = MSG_DEBUG_LEVELING ;
# endif
const static char * const debug_strings [ ] PROGMEM = {
str_debug_1 , str_debug_2 , str_debug_4 , str_debug_8 , str_debug_16 ,
# if ENABLED(DEBUG_LEVELING_FEATURE)
str_debug_32
# endif
} ;
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_DEBUG_PREFIX ) ;
if ( marlin_debug_flags ) {
uint8_t comma = 0 ;
for ( uint8_t i = 0 ; i < COUNT ( debug_strings ) ; i + + ) {
if ( TEST ( marlin_debug_flags , i ) ) {
if ( comma + + ) SERIAL_CHAR ( ' , ' ) ;
serialprintPGM ( ( char * ) pgm_read_word ( & ( debug_strings [ i ] ) ) ) ;
}
}
}
else {
SERIAL_ECHOPGM ( MSG_DEBUG_OFF ) ;
}
SERIAL_EOL ;
}
/**
* M112 : Emergency Stop
*/
inline void gcode_M112 ( ) { kill ( PSTR ( MSG_KILLED ) ) ; }
# if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* M113 : Get or set Host Keepalive interval ( 0 to disable )
*
* S < seconds > Optional . Set the keepalive interval .
*/
inline void gcode_M113 ( ) {
if ( code_seen ( ' S ' ) ) {
host_keepalive_interval = code_value_byte ( ) ;
NOMORE ( host_keepalive_interval , 60 ) ;
}
else {
SERIAL_ECHO_START ;
SERIAL_ECHOPAIR ( " M113 S " , ( unsigned long ) host_keepalive_interval ) ;
SERIAL_EOL ;
}
}
# endif
# if ENABLED(BARICUDA)
# if HAS_HEATER_1
/**
* M126 : Heater 1 valve open
*/
inline void gcode_M126 ( ) { baricuda_valve_pressure = code_seen ( ' S ' ) ? code_value_byte ( ) : 255 ; }
/**
* M127 : Heater 1 valve close
*/
inline void gcode_M127 ( ) { baricuda_valve_pressure = 0 ; }
# endif
# if HAS_HEATER_2
/**
* M128 : Heater 2 valve open
*/
inline void gcode_M128 ( ) { baricuda_e_to_p_pressure = code_seen ( ' S ' ) ? code_value_byte ( ) : 255 ; }
/**
* M129 : Heater 2 valve close
*/
inline void gcode_M129 ( ) { baricuda_e_to_p_pressure = 0 ; }
# endif
# endif //BARICUDA
/**
* M140 : Set bed temperature
*/
inline void gcode_M140 ( ) {
if ( DEBUGGING ( DRYRUN ) ) return ;
if ( code_seen ( ' S ' ) ) thermalManager . setTargetBed ( code_value_temp_abs ( ) ) ;
}
# if ENABLED(ULTIPANEL)
/**
* M145 : Set the heatup state for a material in the LCD menu
* S < material > ( 0 = PLA , 1 = ABS )
* H < hotend temp >
* B < bed temp >
* F < fan speed >
*/
inline void gcode_M145 ( ) {
int8_t material = code_seen ( ' S ' ) ? ( int8_t ) code_value_int ( ) : 0 ;
if ( material < 0 | | material > 1 ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_MATERIAL_INDEX ) ;
}
else {
int v ;
switch ( material ) {
case 0 :
if ( code_seen ( ' H ' ) ) {
v = code_value_int ( ) ;
plaPreheatHotendTemp = constrain ( v , EXTRUDE_MINTEMP , HEATER_0_MAXTEMP - 15 ) ;
}
if ( code_seen ( ' F ' ) ) {
v = code_value_int ( ) ;
plaPreheatFanSpeed = constrain ( v , 0 , 255 ) ;
}
# if TEMP_SENSOR_BED != 0
if ( code_seen ( ' B ' ) ) {
v = code_value_int ( ) ;
plaPreheatHPBTemp = constrain ( v , BED_MINTEMP , BED_MAXTEMP - 15 ) ;
}
# endif
break ;
case 1 :
if ( code_seen ( ' H ' ) ) {
v = code_value_int ( ) ;
absPreheatHotendTemp = constrain ( v , EXTRUDE_MINTEMP , HEATER_0_MAXTEMP - 15 ) ;
}
if ( code_seen ( ' F ' ) ) {
v = code_value_int ( ) ;
absPreheatFanSpeed = constrain ( v , 0 , 255 ) ;
}
# if TEMP_SENSOR_BED != 0
if ( code_seen ( ' B ' ) ) {
v = code_value_int ( ) ;
absPreheatHPBTemp = constrain ( v , BED_MINTEMP , BED_MAXTEMP - 15 ) ;
}
# endif
break ;
}
}
}
# endif
# if ENABLED(TEMPERATURE_UNITS_SUPPORT)
/**
* M149 : Set temperature units
*/
inline void gcode_M149 ( ) {
if ( code_seen ( ' C ' ) ) {
set_input_temp_units ( TEMPUNIT_C ) ;
} else if ( code_seen ( ' K ' ) ) {
set_input_temp_units ( TEMPUNIT_K ) ;
} else if ( code_seen ( ' F ' ) ) {
set_input_temp_units ( TEMPUNIT_F ) ;
}
}
# endif
# if HAS_POWER_SWITCH
/**
* M80 : Turn on Power Supply
*/
inline void gcode_M80 ( ) {
OUT_WRITE ( PS_ON_PIN , PS_ON_AWAKE ) ; //GND
/**
* If you have a switch on suicide pin , this is useful
* if you want to start another print with suicide feature after
* a print without suicide . . .
*/
# if HAS_SUICIDE
OUT_WRITE ( SUICIDE_PIN , HIGH ) ;
# endif
# if ENABLED(ULTIPANEL)
powersupply = true ;
LCD_MESSAGEPGM ( WELCOME_MSG ) ;
lcd_update ( ) ;
# endif
}
# endif // HAS_POWER_SWITCH
/**
* M81 : Turn off Power , including Power Supply , if there is one .
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN !
*/
inline void gcode_M81 ( ) {
thermalManager . disable_all_heaters ( ) ;
stepper . finish_and_disable ( ) ;
# if FAN_COUNT > 0
# if FAN_COUNT > 1
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) fanSpeeds [ i ] = 0 ;
# else
fanSpeeds [ 0 ] = 0 ;
# endif
# endif
delay ( 1000 ) ; // Wait 1 second before switching off
# if HAS_SUICIDE
stepper . synchronize ( ) ;
suicide ( ) ;
# elif HAS_POWER_SWITCH
OUT_WRITE ( PS_ON_PIN , PS_ON_ASLEEP ) ;
# endif
# if ENABLED(ULTIPANEL)
# if HAS_POWER_SWITCH
powersupply = false ;
# endif
LCD_MESSAGEPGM ( MACHINE_NAME " " MSG_OFF " . " ) ;
lcd_update ( ) ;
# endif
}
/**
* M82 : Set E codes absolute ( default )
*/
inline void gcode_M82 ( ) { axis_relative_modes [ E_AXIS ] = false ; }
/**
* M83 : Set E codes relative while in Absolute Coordinates ( G90 ) mode
*/
inline void gcode_M83 ( ) { axis_relative_modes [ E_AXIS ] = true ; }
/**
* M18 , M84 : Disable all stepper motors
*/
inline void gcode_M18_M84 ( ) {
if ( code_seen ( ' S ' ) ) {
stepper_inactive_time = code_value_millis_from_seconds ( ) ;
}
else {
bool all_axis = ! ( ( code_seen ( axis_codes [ X_AXIS ] ) ) | | ( code_seen ( axis_codes [ Y_AXIS ] ) ) | | ( code_seen ( axis_codes [ Z_AXIS ] ) ) | | ( code_seen ( axis_codes [ E_AXIS ] ) ) ) ;
if ( all_axis ) {
stepper . finish_and_disable ( ) ;
}
else {
stepper . synchronize ( ) ;
if ( code_seen ( ' X ' ) ) disable_x ( ) ;
if ( code_seen ( ' Y ' ) ) disable_y ( ) ;
if ( code_seen ( ' Z ' ) ) disable_z ( ) ;
# if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if ( code_seen ( ' E ' ) ) {
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
disable_e3 ( ) ;
}
# endif
}
}
}
/**
* M85 : Set inactivity shutdown timer with parameter S < seconds > . To disable set zero ( default )
*/
inline void gcode_M85 ( ) {
if ( code_seen ( ' S ' ) ) max_inactive_time = code_value_millis_from_seconds ( ) ;
}
/**
* M92 : Set axis steps - per - unit for one or more axes , X , Y , Z , and E .
* ( Follows the same syntax as G92 )
*/
inline void gcode_M92 ( ) {
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
if ( i = = E_AXIS ) {
float value = code_value_per_axis_unit ( i ) ;
if ( value < 20.0 ) {
float factor = planner . axis_steps_per_mm [ i ] / value ; // increase e constants if M92 E14 is given for netfab.
planner . max_e_jerk * = factor ;
planner . max_feedrate [ i ] * = factor ;
planner . max_acceleration_steps_per_s2 [ i ] * = factor ;
}
planner . axis_steps_per_mm [ i ] = value ;
}
else {
planner . axis_steps_per_mm [ i ] = code_value_per_axis_unit ( i ) ;
}
}
}
}
/**
* Output the current position to serial
*/
static void report_current_position ( ) {
SERIAL_PROTOCOLPGM ( " X: " ) ;
SERIAL_PROTOCOL ( current_position [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Y: " ) ;
SERIAL_PROTOCOL ( current_position [ Y_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Z: " ) ;
SERIAL_PROTOCOL ( current_position [ Z_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " E: " ) ;
SERIAL_PROTOCOL ( current_position [ E_AXIS ] ) ;
stepper . report_positions ( ) ;
# if ENABLED(SCARA)
SERIAL_PROTOCOLPGM ( " SCARA Theta: " ) ;
SERIAL_PROTOCOL ( delta [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Psi+Theta: " ) ;
SERIAL_PROTOCOL ( delta [ Y_AXIS ] ) ;
SERIAL_EOL ;
SERIAL_PROTOCOLPGM ( " SCARA Cal - Theta: " ) ;
SERIAL_PROTOCOL ( delta [ X_AXIS ] + home_offset [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Psi+Theta (90): " ) ;
SERIAL_PROTOCOL ( delta [ Y_AXIS ] - delta [ X_AXIS ] - 90 + home_offset [ Y_AXIS ] ) ;
SERIAL_EOL ;
SERIAL_PROTOCOLPGM ( " SCARA step Cal - Theta: " ) ;
SERIAL_PROTOCOL ( delta [ X_AXIS ] / 90 * planner . axis_steps_per_mm [ X_AXIS ] ) ;
SERIAL_PROTOCOLPGM ( " Psi+Theta: " ) ;
SERIAL_PROTOCOL ( ( delta [ Y_AXIS ] - delta [ X_AXIS ] ) / 90 * planner . axis_steps_per_mm [ Y_AXIS ] ) ;
SERIAL_EOL ; SERIAL_EOL ;
# endif
}
/**
* M114 : Output current position to serial port
*/
inline void gcode_M114 ( ) { report_current_position ( ) ; }
/**
* M115 : Capabilities string
*/
inline void gcode_M115 ( ) {
SERIAL_PROTOCOLPGM ( MSG_M115_REPORT ) ;
}
/**
* M117 : Set LCD Status Message
*/
inline void gcode_M117 ( ) {
lcd_setstatus ( current_command_args ) ;
}
/**
* M119 : Output endstop states to serial output
*/
inline void gcode_M119 ( ) { endstops . M119 ( ) ; }
/**
* M120 : Enable endstops and set non - homing endstop state to " enabled "
*/
inline void gcode_M120 ( ) { endstops . enable_globally ( true ) ; }
/**
* M121 : Disable endstops and set non - homing endstop state to " disabled "
*/
inline void gcode_M121 ( ) { endstops . enable_globally ( false ) ; }
# if ENABLED(BLINKM)
/**
* M150 : Set Status LED Color - Use R - U - B for R - G - B
*/
inline void gcode_M150 ( ) {
SendColors (
code_seen ( ' R ' ) ? code_value_byte ( ) : 0 ,
code_seen ( ' U ' ) ? code_value_byte ( ) : 0 ,
code_seen ( ' B ' ) ? code_value_byte ( ) : 0
) ;
}
# endif // BLINKM
# if ENABLED(EXPERIMENTAL_I2CBUS)
/**
* M155 : Send data to a I2C slave device
*
* This is a PoC , the formating and arguments for the GCODE will
* change to be more compatible , the current proposal is :
*
* M155 A < slave device address base 10 > ; Sets the I2C slave address the data will be sent to
*
* M155 B < byte - 1 value in base 10 >
* M155 B < byte - 2 value in base 10 >
* M155 B < byte - 3 value in base 10 >
*
* M155 S1 ; Send the buffered data and reset the buffer
* M155 R1 ; Reset the buffer without sending data
*
*/
inline void gcode_M155 ( ) {
// Set the target address
if ( code_seen ( ' A ' ) )
i2c . address ( code_value_byte ( ) ) ;
// Add a new byte to the buffer
else if ( code_seen ( ' B ' ) )
i2c . addbyte ( code_value_int ( ) ) ;
// Flush the buffer to the bus
else if ( code_seen ( ' S ' ) ) i2c . send ( ) ;
// Reset and rewind the buffer
else if ( code_seen ( ' R ' ) ) i2c . reset ( ) ;
}
/**
* M156 : Request X bytes from I2C slave device
*
* Usage : M156 A < slave device address base 10 > B < number of bytes >
*/
inline void gcode_M156 ( ) {
uint8_t addr = code_seen ( ' A ' ) ? code_value_byte ( ) : 0 ;
int bytes = code_seen ( ' B ' ) ? code_value_int ( ) : 1 ;
if ( addr & & bytes > 0 & & bytes < = 32 ) {
i2c . address ( addr ) ;
i2c . reqbytes ( bytes ) ;
}
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLN ( " Bad i2c request " ) ;
}
}
# endif //EXPERIMENTAL_I2CBUS
/**
* M200 : Set filament diameter and set E axis units to cubic units
*
* T < extruder > - Optional extruder number . Current extruder if omitted .
* D < mm > - Diameter of the filament . Use " D0 " to switch back to linear units on the E axis .
*/
inline void gcode_M200 ( ) {
if ( get_target_extruder_from_command ( 200 ) ) return ;
if ( code_seen ( ' D ' ) ) {
float diameter = code_value_linear_units ( ) ;
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = ( diameter ! = 0.0 ) ;
if ( volumetric_enabled ) {
filament_size [ target_extruder ] = diameter ;
// make sure all extruders have some sane value for the filament size
for ( int i = 0 ; i < EXTRUDERS ; i + + )
if ( ! filament_size [ i ] ) filament_size [ i ] = DEFAULT_NOMINAL_FILAMENT_DIA ;
}
}
else {
//reserved for setting filament diameter via UFID or filament measuring device
return ;
}
calculate_volumetric_multipliers ( ) ;
}
/**
* M201 : Set max acceleration in units / s ^ 2 for print moves ( M201 X1000 Y1000 )
*/
inline void gcode_M201 ( ) {
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
planner . max_acceleration_mm_per_s2 [ i ] = code_value_axis_units ( i ) ;
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
planner . reset_acceleration_rates ( ) ;
}
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202 ( ) {
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) axis_travel_steps_per_sqr_second [ i ] = code_value_axis_units ( i ) * planner . axis_steps_per_mm [ i ] ;
}
}
# endif
/**
* M203 : Set maximum feedrate that your machine can sustain ( M203 X200 Y200 Z300 E10000 ) in mm / sec
*/
inline void gcode_M203 ( ) {
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
planner . max_feedrate [ i ] = code_value_axis_units ( i ) ;
}
}
}
/**
* M204 : Set Accelerations in mm / sec ^ 2 ( M204 P1200 R3000 T3000 )
*
* P = Printing moves
* R = Retract only ( no X , Y , Z ) moves
* T = Travel ( non printing ) moves
*
* Also sets minimum segment time in ms ( B20000 ) to prevent buffer under - runs and M20 minimum feedrate
*/
inline void gcode_M204 ( ) {
if ( code_seen ( ' S ' ) ) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
planner . travel_acceleration = planner . acceleration = code_value_linear_units ( ) ;
SERIAL_ECHOPAIR ( " Setting Print and Travel Acceleration: " , planner . acceleration ) ;
SERIAL_EOL ;
}
if ( code_seen ( ' P ' ) ) {
planner . acceleration = code_value_linear_units ( ) ;
SERIAL_ECHOPAIR ( " Setting Print Acceleration: " , planner . acceleration ) ;
SERIAL_EOL ;
}
if ( code_seen ( ' R ' ) ) {
planner . retract_acceleration = code_value_linear_units ( ) ;
SERIAL_ECHOPAIR ( " Setting Retract Acceleration: " , planner . retract_acceleration ) ;
SERIAL_EOL ;
}
if ( code_seen ( ' T ' ) ) {
planner . travel_acceleration = code_value_linear_units ( ) ;
SERIAL_ECHOPAIR ( " Setting Travel Acceleration: " , planner . travel_acceleration ) ;
SERIAL_EOL ;
}
}
/**
* M205 : Set Advanced Settings
*
* S = Min Feed Rate ( mm / s )
* T = Min Travel Feed Rate ( mm / s )
* B = Min Segment Time ( µ s )
* X = Max XY Jerk ( mm / s / s )
* Z = Max Z Jerk ( mm / s / s )
* E = Max E Jerk ( mm / s / s )
*/
inline void gcode_M205 ( ) {
if ( code_seen ( ' S ' ) ) planner . min_feedrate = code_value_linear_units ( ) ;
if ( code_seen ( ' T ' ) ) planner . min_travel_feedrate = code_value_linear_units ( ) ;
if ( code_seen ( ' B ' ) ) planner . min_segment_time = code_value_millis ( ) ;
if ( code_seen ( ' X ' ) ) planner . max_xy_jerk = code_value_linear_units ( ) ;
if ( code_seen ( ' Z ' ) ) planner . max_z_jerk = code_value_axis_units ( Z_AXIS ) ;
if ( code_seen ( ' E ' ) ) planner . max_e_jerk = code_value_axis_units ( E_AXIS ) ;
}
/**
* M206 : Set Additional Homing Offset ( X Y Z ) . SCARA aliases T = X , P = Y
*/
inline void gcode_M206 ( ) {
for ( int8_t i = X_AXIS ; i < = Z_AXIS ; i + + )
if ( code_seen ( axis_codes [ i ] ) )
set_home_offset ( ( AxisEnum ) i , code_value_axis_units ( i ) ) ;
# if ENABLED(SCARA)
if ( code_seen ( ' T ' ) ) set_home_offset ( X_AXIS , code_value_axis_units ( X_AXIS ) ) ; // Theta
if ( code_seen ( ' P ' ) ) set_home_offset ( Y_AXIS , code_value_axis_units ( Y_AXIS ) ) ; // Psi
# endif
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
report_current_position ( ) ;
}
# if ENABLED(DELTA)
/**
* M665 : Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
* A = Alpha ( Tower 1 ) diagonal rod trim
* B = Beta ( Tower 2 ) diagonal rod trim
* C = Gamma ( Tower 3 ) diagonal rod trim
*/
inline void gcode_M665 ( ) {
if ( code_seen ( ' L ' ) ) delta_diagonal_rod = code_value_linear_units ( ) ;
if ( code_seen ( ' R ' ) ) delta_radius = code_value_linear_units ( ) ;
if ( code_seen ( ' S ' ) ) delta_segments_per_second = code_value_float ( ) ;
if ( code_seen ( ' A ' ) ) delta_diagonal_rod_trim_tower_1 = code_value_linear_units ( ) ;
if ( code_seen ( ' B ' ) ) delta_diagonal_rod_trim_tower_2 = code_value_linear_units ( ) ;
if ( code_seen ( ' C ' ) ) delta_diagonal_rod_trim_tower_3 = code_value_linear_units ( ) ;
recalc_delta_settings ( delta_radius , delta_diagonal_rod ) ;
}
/**
* M666 : Set delta endstop adjustment
*/
inline void gcode_M666 ( ) {
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " >>> gcode_M666 " ) ;
}
# endif
for ( int8_t i = X_AXIS ; i < = Z_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
endstop_adj [ i ] = code_value_axis_units ( i ) ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOPGM ( " endstop_adj[ " ) ;
SERIAL_ECHO ( axis_codes [ i ] ) ;
SERIAL_ECHOPAIR ( " ] = " , endstop_adj [ i ] ) ;
SERIAL_EOL ;
}
# endif
}
}
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " <<< gcode_M666 " ) ;
}
# endif
}
# elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
/**
* M666 : For Z Dual Endstop setup , set z axis offset to the z2 axis .
*/
inline void gcode_M666 ( ) {
if ( code_seen ( ' Z ' ) ) z_endstop_adj = code_value_axis_units ( Z_AXIS ) ;
SERIAL_ECHOPAIR ( " Z Endstop Adjustment set to (mm): " , z_endstop_adj ) ;
SERIAL_EOL ;
}
# endif // !DELTA && Z_DUAL_ENDSTOPS
# if ENABLED(FWRETRACT)
/**
* M207 : Set firmware retraction values
*
* S [ + mm ] retract_length
* W [ + mm ] retract_length_swap ( multi - extruder )
* F [ mm / min ] retract_feedrate_mm_s
* Z [ mm ] retract_zlift
*/
inline void gcode_M207 ( ) {
if ( code_seen ( ' S ' ) ) retract_length = code_value_axis_units ( E_AXIS ) ;
if ( code_seen ( ' F ' ) ) retract_feedrate_mm_s = code_value_axis_units ( E_AXIS ) / 60 ;
if ( code_seen ( ' Z ' ) ) retract_zlift = code_value_axis_units ( Z_AXIS ) ;
# if EXTRUDERS > 1
if ( code_seen ( ' W ' ) ) retract_length_swap = code_value_axis_units ( E_AXIS ) ;
# endif
}
/**
* M208 : Set firmware un - retraction values
*
* S [ + mm ] retract_recover_length ( in addition to M207 S * )
* W [ + mm ] retract_recover_length_swap ( multi - extruder )
* F [ mm / min ] retract_recover_feedrate
*/
inline void gcode_M208 ( ) {
if ( code_seen ( ' S ' ) ) retract_recover_length = code_value_axis_units ( E_AXIS ) ;
if ( code_seen ( ' F ' ) ) retract_recover_feedrate = code_value_axis_units ( E_AXIS ) / 60 ;
# if EXTRUDERS > 1
if ( code_seen ( ' W ' ) ) retract_recover_length_swap = code_value_axis_units ( E_AXIS ) ;
# endif
}
/**
* M209 : Enable automatic retract ( M209 S1 )
* detect if the slicer did not support G10 / 11 : every normal extrude - only move will be classified as retract depending on the direction .
*/
inline void gcode_M209 ( ) {
if ( code_seen ( ' S ' ) ) {
int t = code_value_int ( ) ;
switch ( t ) {
case 0 :
autoretract_enabled = false ;
break ;
case 1 :
autoretract_enabled = true ;
break ;
default :
unknown_command_error ( ) ;
return ;
}
for ( int i = 0 ; i < EXTRUDERS ; i + + ) retracted [ i ] = false ;
}
}
# endif // FWRETRACT
# if HOTENDS > 1
/**
* M218 - set hotend offset ( in mm )
*
* T < tool >
* X < xoffset >
* Y < yoffset >
* Z < zoffset > - Available with DUAL_X_CARRIAGE
*/
inline void gcode_M218 ( ) {
if ( get_target_extruder_from_command ( 218 ) ) return ;
if ( code_seen ( ' X ' ) ) hotend_offset [ X_AXIS ] [ target_extruder ] = code_value_axis_units ( X_AXIS ) ;
if ( code_seen ( ' Y ' ) ) hotend_offset [ Y_AXIS ] [ target_extruder ] = code_value_axis_units ( Y_AXIS ) ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( code_seen ( ' Z ' ) ) hotend_offset [ Z_AXIS ] [ target_extruder ] = code_value_axis_units ( Z_AXIS ) ;
# endif
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_HOTEND_OFFSET ) ;
for ( int e = 0 ; e < HOTENDS ; e + + ) {
SERIAL_CHAR ( ' ' ) ;
SERIAL_ECHO ( hotend_offset [ X_AXIS ] [ e ] ) ;
SERIAL_CHAR ( ' , ' ) ;
SERIAL_ECHO ( hotend_offset [ Y_AXIS ] [ e ] ) ;
# if ENABLED(DUAL_X_CARRIAGE)
SERIAL_CHAR ( ' , ' ) ;
SERIAL_ECHO ( hotend_offset [ Z_AXIS ] [ e ] ) ;
# endif
}
SERIAL_EOL ;
}
# endif // HOTENDS > 1
/**
* M220 : Set speed percentage factor , aka " Feed Rate " ( M220 S95 )
*/
inline void gcode_M220 ( ) {
if ( code_seen ( ' S ' ) ) feedrate_multiplier = code_value_int ( ) ;
}
/**
* M221 : Set extrusion percentage ( M221 T0 S95 )
*/
inline void gcode_M221 ( ) {
if ( code_seen ( ' S ' ) ) {
int sval = code_value_int ( ) ;
if ( get_target_extruder_from_command ( 221 ) ) return ;
extruder_multiplier [ target_extruder ] = sval ;
}
}
/**
* M226 : Wait until the specified pin reaches the state required ( M226 P < pin > S < state > )
*/
inline void gcode_M226 ( ) {
if ( code_seen ( ' P ' ) ) {
int pin_number = code_value_int ( ) ;
int pin_state = code_seen ( ' S ' ) ? code_value_int ( ) : - 1 ; // required pin state - default is inverted
if ( pin_state > = - 1 & & pin_state < = 1 ) {
for ( uint8_t i = 0 ; i < COUNT ( sensitive_pins ) ; i + + ) {
if ( sensitive_pins [ i ] = = pin_number ) {
pin_number = - 1 ;
break ;
}
}
if ( pin_number > - 1 ) {
int target = LOW ;
stepper . synchronize ( ) ;
pinMode ( pin_number , INPUT ) ;
switch ( pin_state ) {
case 1 :
target = HIGH ;
break ;
case 0 :
target = LOW ;
break ;
case - 1 :
target = ! digitalRead ( pin_number ) ;
break ;
}
while ( digitalRead ( pin_number ) ! = target ) idle ( ) ;
} // pin_number > -1
} // pin_state -1 0 1
} // code_seen('P')
}
# if HAS_SERVOS
/**
* M280 : Get or set servo position . P < index > S < angle >
*/
inline void gcode_M280 ( ) {
int servo_index = code_seen ( ' P ' ) ? code_value_int ( ) : - 1 ;
int servo_position = 0 ;
if ( code_seen ( ' S ' ) ) {
servo_position = code_value_int ( ) ;
if ( servo_index > = 0 & & servo_index < NUM_SERVOS )
MOVE_SERVO ( servo_index , servo_position ) ;
else {
SERIAL_ERROR_START ;
SERIAL_ERROR ( " Servo " ) ;
SERIAL_ERROR ( servo_index ) ;
SERIAL_ERRORLN ( " out of range " ) ;
}
}
else if ( servo_index > = 0 ) {
SERIAL_ECHO_START ;
SERIAL_ECHO ( " Servo " ) ;
SERIAL_ECHO ( servo_index ) ;
SERIAL_ECHO ( " : " ) ;
SERIAL_ECHOLN ( servo [ servo_index ] . read ( ) ) ;
}
}
# endif // HAS_SERVOS
# if HAS_BUZZER
/**
* M300 : Play beep sound S < frequency Hz > P < duration ms >
*/
inline void gcode_M300 ( ) {
uint16_t const frequency = code_seen ( ' S ' ) ? code_value_ushort ( ) : 260 ;
uint16_t duration = code_seen ( ' P ' ) ? code_value_ushort ( ) : 1000 ;
// Limits the tone duration to 0-5 seconds.
NOMORE ( duration , 5000 ) ;
buzzer . tone ( duration , frequency ) ;
}
# endif // HAS_BUZZER
# if ENABLED(PIDTEMP)
/**
* M301 : Set PID parameters P I D ( and optionally C , L )
*
* P [ float ] Kp term
* I [ float ] Ki term ( unscaled )
* D [ float ] Kd term ( unscaled )
*
* With PID_ADD_EXTRUSION_RATE :
*
* C [ float ] Kc term
* L [ float ] LPQ length
*/
inline void gcode_M301 ( ) {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = code_seen ( ' E ' ) ? code_value_int ( ) : 0 ; // extruder being updated
if ( e < HOTENDS ) { // catch bad input value
if ( code_seen ( ' P ' ) ) PID_PARAM ( Kp , e ) = code_value_float ( ) ;
if ( code_seen ( ' I ' ) ) PID_PARAM ( Ki , e ) = scalePID_i ( code_value_float ( ) ) ;
if ( code_seen ( ' D ' ) ) PID_PARAM ( Kd , e ) = scalePID_d ( code_value_float ( ) ) ;
# if ENABLED(PID_ADD_EXTRUSION_RATE)
if ( code_seen ( ' C ' ) ) PID_PARAM ( Kc , e ) = code_value_float ( ) ;
if ( code_seen ( ' L ' ) ) lpq_len = code_value_float ( ) ;
NOMORE ( lpq_len , LPQ_MAX_LEN ) ;
# endif
thermalManager . updatePID ( ) ;
SERIAL_ECHO_START ;
# if ENABLED(PID_PARAMS_PER_HOTEND)
SERIAL_ECHO ( " e: " ) ; // specify extruder in serial output
SERIAL_ECHO ( e ) ;
# endif // PID_PARAMS_PER_HOTEND
SERIAL_ECHO ( " p: " ) ;
SERIAL_ECHO ( PID_PARAM ( Kp , e ) ) ;
SERIAL_ECHO ( " i: " ) ;
SERIAL_ECHO ( unscalePID_i ( PID_PARAM ( Ki , e ) ) ) ;
SERIAL_ECHO ( " d: " ) ;
SERIAL_ECHO ( unscalePID_d ( PID_PARAM ( Kd , e ) ) ) ;
# if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHO ( " c: " ) ;
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_ECHO ( PID_PARAM ( Kc , e ) ) ;
# endif
SERIAL_EOL ;
}
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLN ( MSG_INVALID_EXTRUDER ) ;
}
}
# endif // PIDTEMP
# if ENABLED(PIDTEMPBED)
inline void gcode_M304 ( ) {
if ( code_seen ( ' P ' ) ) thermalManager . bedKp = code_value_float ( ) ;
if ( code_seen ( ' I ' ) ) thermalManager . bedKi = scalePID_i ( code_value_float ( ) ) ;
if ( code_seen ( ' D ' ) ) thermalManager . bedKd = scalePID_d ( code_value_float ( ) ) ;
thermalManager . updatePID ( ) ;
SERIAL_ECHO_START ;
SERIAL_ECHO ( " p: " ) ;
SERIAL_ECHO ( thermalManager . bedKp ) ;
SERIAL_ECHO ( " i: " ) ;
SERIAL_ECHO ( unscalePID_i ( thermalManager . bedKi ) ) ;
SERIAL_ECHO ( " d: " ) ;
SERIAL_ECHOLN ( unscalePID_d ( thermalManager . bedKd ) ) ;
}
# endif // PIDTEMPBED
# if defined(CHDK) || HAS_PHOTOGRAPH
/**
* M240 : Trigger a camera by emulating a Canon RC - 1
* See http : //www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240 ( ) {
# ifdef CHDK
OUT_WRITE ( CHDK , HIGH ) ;
chdkHigh = millis ( ) ;
chdkActive = true ;
# elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16 ;
const float PULSE_LENGTH = 0.01524 ;
for ( int i = 0 ; i < NUM_PULSES ; i + + ) {
WRITE ( PHOTOGRAPH_PIN , HIGH ) ;
_delay_ms ( PULSE_LENGTH ) ;
WRITE ( PHOTOGRAPH_PIN , LOW ) ;
_delay_ms ( PULSE_LENGTH ) ;
}
delay ( 7.33 ) ;
for ( int i = 0 ; i < NUM_PULSES ; i + + ) {
WRITE ( PHOTOGRAPH_PIN , HIGH ) ;
_delay_ms ( PULSE_LENGTH ) ;
WRITE ( PHOTOGRAPH_PIN , LOW ) ;
_delay_ms ( PULSE_LENGTH ) ;
}
# endif // !CHDK && HAS_PHOTOGRAPH
}
# endif // CHDK || PHOTOGRAPH_PIN
# if HAS_LCD_CONTRAST
/**
* M250 : Read and optionally set the LCD contrast
*/
inline void gcode_M250 ( ) {
if ( code_seen ( ' C ' ) ) set_lcd_contrast ( code_value_int ( ) ) ;
SERIAL_PROTOCOLPGM ( " lcd contrast value: " ) ;
SERIAL_PROTOCOL ( lcd_contrast ) ;
SERIAL_EOL ;
}
# endif // HAS_LCD_CONTRAST
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
/**
* M302 : Allow cold extrudes , or set the minimum extrude S < temperature > .
*/
inline void gcode_M302 ( ) {
thermalManager . extrude_min_temp = code_seen ( ' S ' ) ? code_value_temp_abs ( ) : 0 ;
}
# endif // PREVENT_DANGEROUS_EXTRUDE
/**
* M303 : PID relay autotune
*
* S < temperature > sets the target temperature . ( default 150 C )
* E < extruder > ( - 1 for the bed ) ( default 0 )
* C < cycles >
* U < bool > with a non - zero value will apply the result to current settings
*/
inline void gcode_M303 ( ) {
# if HAS_PID_HEATING
int e = code_seen ( ' E ' ) ? code_value_int ( ) : 0 ;
int c = code_seen ( ' C ' ) ? code_value_int ( ) : 5 ;
bool u = code_seen ( ' U ' ) & & code_value_bool ( ) ;
float temp = code_seen ( ' S ' ) ? code_value_temp_abs ( ) : ( e < 0 ? 70.0 : 150.0 ) ;
if ( e > = 0 & & e < HOTENDS )
target_extruder = e ;
KEEPALIVE_STATE ( NOT_BUSY ) ; // don't send "busy: processing" messages during autotune output
thermalManager . PID_autotune ( temp , e , c , u ) ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
# else
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_M303_DISABLED ) ;
# endif
}
# if ENABLED(SCARA)
bool SCARA_move_to_cal ( uint8_t delta_x , uint8_t delta_y ) {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if ( IsRunning ( ) ) {
//gcode_get_destination(); // For X Y Z E F
delta [ X_AXIS ] = delta_x ;
delta [ Y_AXIS ] = delta_y ;
calculate_SCARA_forward_Transform ( delta ) ;
destination [ X_AXIS ] = delta [ X_AXIS ] / axis_scaling [ X_AXIS ] ;
destination [ Y_AXIS ] = delta [ Y_AXIS ] / axis_scaling [ Y_AXIS ] ;
prepare_move_to_destination ( ) ;
//ok_to_send();
return true ;
}
return false ;
}
/**
* M360 : SCARA calibration : Move to cal - position ThetaA ( 0 deg calibration )
*/
inline bool gcode_M360 ( ) {
SERIAL_ECHOLN ( " Cal: Theta 0 " ) ;
return SCARA_move_to_cal ( 0 , 120 ) ;
}
/**
* M361 : SCARA calibration : Move to cal - position ThetaB ( 90 deg calibration - steps per degree )
*/
inline bool gcode_M361 ( ) {
SERIAL_ECHOLN ( " Cal: Theta 90 " ) ;
return SCARA_move_to_cal ( 90 , 130 ) ;
}
/**
* M362 : SCARA calibration : Move to cal - position PsiA ( 0 deg calibration )
*/
inline bool gcode_M362 ( ) {
SERIAL_ECHOLN ( " Cal: Psi 0 " ) ;
return SCARA_move_to_cal ( 60 , 180 ) ;
}
/**
* M363 : SCARA calibration : Move to cal - position PsiB ( 90 deg calibration - steps per degree )
*/
inline bool gcode_M363 ( ) {
SERIAL_ECHOLN ( " Cal: Psi 90 " ) ;
return SCARA_move_to_cal ( 50 , 90 ) ;
}
/**
* M364 : SCARA calibration : Move to cal - position PSIC ( 90 deg to Theta calibration position )
*/
inline bool gcode_M364 ( ) {
SERIAL_ECHOLN ( " Cal: Theta-Psi 90 " ) ;
return SCARA_move_to_cal ( 45 , 135 ) ;
}
/**
* M365 : SCARA calibration : Scaling factor , X , Y , Z axis
*/
inline void gcode_M365 ( ) {
for ( int8_t i = X_AXIS ; i < = Z_AXIS ; i + + ) {
if ( code_seen ( axis_codes [ i ] ) ) {
axis_scaling [ i ] = code_value_float ( ) ;
}
}
}
# endif // SCARA
# if ENABLED(EXT_SOLENOID)
void enable_solenoid ( uint8_t num ) {
switch ( num ) {
case 0 :
OUT_WRITE ( SOL0_PIN , HIGH ) ;
break ;
# if HAS_SOLENOID_1
case 1 :
OUT_WRITE ( SOL1_PIN , HIGH ) ;
break ;
# endif
# if HAS_SOLENOID_2
case 2 :
OUT_WRITE ( SOL2_PIN , HIGH ) ;
break ;
# endif
# if HAS_SOLENOID_3
case 3 :
OUT_WRITE ( SOL3_PIN , HIGH ) ;
break ;
# endif
default :
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_INVALID_SOLENOID ) ;
break ;
}
}
void enable_solenoid_on_active_extruder ( ) { enable_solenoid ( active_extruder ) ; }
void disable_all_solenoids ( ) {
OUT_WRITE ( SOL0_PIN , LOW ) ;
OUT_WRITE ( SOL1_PIN , LOW ) ;
OUT_WRITE ( SOL2_PIN , LOW ) ;
OUT_WRITE ( SOL3_PIN , LOW ) ;
}
/**
* M380 : Enable solenoid on the active extruder
*/
inline void gcode_M380 ( ) { enable_solenoid_on_active_extruder ( ) ; }
/**
* M381 : Disable all solenoids
*/
inline void gcode_M381 ( ) { disable_all_solenoids ( ) ; }
# endif // EXT_SOLENOID
/**
* M400 : Finish all moves
*/
inline void gcode_M400 ( ) { stepper . synchronize ( ) ; }
# if HAS_BED_PROBE
/**
* M401 : Engage Z Servo endstop if available
*/
inline void gcode_M401 ( ) { deploy_z_probe ( ) ; }
/**
* M402 : Retract Z Servo endstop if enabled
*/
inline void gcode_M402 ( ) { stow_z_probe ( ) ; }
# endif // HAS_BED_PROBE
# if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* M404 : Display or set the nominal filament width ( 3 mm , 1.75 mm ) W < 3.0 >
*/
inline void gcode_M404 ( ) {
if ( code_seen ( ' W ' ) ) {
filament_width_nominal = code_value_linear_units ( ) ;
}
else {
SERIAL_PROTOCOLPGM ( " Filament dia (nominal mm): " ) ;
SERIAL_PROTOCOLLN ( filament_width_nominal ) ;
}
}
/**
* M405 : Turn on filament sensor for control
*/
inline void gcode_M405 ( ) {
// This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
// everything else, it uses code_value_int() instead of code_value_linear_units().
if ( code_seen ( ' D ' ) ) meas_delay_cm = code_value_int ( ) ;
NOMORE ( meas_delay_cm , MAX_MEASUREMENT_DELAY ) ;
if ( filwidth_delay_index2 = = - 1 ) { // Initialize the ring buffer if not done since startup
int temp_ratio = thermalManager . widthFil_to_size_ratio ( ) ;
for ( uint8_t i = 0 ; i < COUNT ( measurement_delay ) ; + + i )
measurement_delay [ i ] = temp_ratio - 100 ; // Subtract 100 to scale within a signed byte
filwidth_delay_index1 = filwidth_delay_index2 = 0 ;
}
filament_sensor = true ;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
}
/**
* M406 : Turn off filament sensor for control
*/
inline void gcode_M406 ( ) { filament_sensor = false ; }
/**
* M407 : Get measured filament diameter on serial output
*/
inline void gcode_M407 ( ) {
SERIAL_PROTOCOLPGM ( " Filament dia (measured mm): " ) ;
SERIAL_PROTOCOLLN ( filament_width_meas ) ;
}
# endif // FILAMENT_WIDTH_SENSOR
# if DISABLED(DELTA) && DISABLED(SCARA)
void set_current_position_from_planner ( ) {
stepper . synchronize ( ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
vector_3 pos = planner . adjusted_position ( ) ; // values directly from steppers...
current_position [ X_AXIS ] = pos . x ;
current_position [ Y_AXIS ] = pos . y ;
current_position [ Z_AXIS ] = pos . z ;
# else
current_position [ X_AXIS ] = stepper . get_axis_position_mm ( X_AXIS ) ;
current_position [ Y_AXIS ] = stepper . get_axis_position_mm ( Y_AXIS ) ;
current_position [ Z_AXIS ] = stepper . get_axis_position_mm ( Z_AXIS ) ;
# endif
sync_plan_position ( ) ; // ...re-apply to planner position
}
# endif
/**
* M410 : Quickstop - Abort all planned moves
*
* This will stop the carriages mid - move , so most likely they
* will be out of sync with the stepper position after this .
*/
inline void gcode_M410 ( ) {
stepper . quick_stop ( ) ;
# if DISABLED(DELTA) && DISABLED(SCARA)
set_current_position_from_planner ( ) ;
# endif
}
# if ENABLED(MESH_BED_LEVELING)
/**
* M420 : Enable / Disable Mesh Bed Leveling
*/
inline void gcode_M420 ( ) { if ( code_seen ( ' S ' ) & & code_has_value ( ) ) mbl . set_has_mesh ( code_value_bool ( ) ) ; }
/**
* M421 : Set a single Mesh Bed Leveling Z coordinate
* Use either ' M421 X < mm > Y < mm > Z < mm > ' or ' M421 I < xindex > J < yindex > Z < mm > '
*/
inline void gcode_M421 ( ) {
int8_t px , py ;
float z = 0 ;
bool hasX , hasY , hasZ , hasI , hasJ ;
if ( ( hasX = code_seen ( ' X ' ) ) ) px = mbl . probe_index_x ( code_value_axis_units ( X_AXIS ) ) ;
if ( ( hasY = code_seen ( ' Y ' ) ) ) py = mbl . probe_index_y ( code_value_axis_units ( Y_AXIS ) ) ;
if ( ( hasI = code_seen ( ' I ' ) ) ) px = code_value_axis_units ( X_AXIS ) ;
if ( ( hasJ = code_seen ( ' J ' ) ) ) py = code_value_axis_units ( Y_AXIS ) ;
if ( ( hasZ = code_seen ( ' Z ' ) ) ) z = code_value_axis_units ( Z_AXIS ) ;
if ( hasX & & hasY & & hasZ ) {
if ( px > = 0 & & py > = 0 )
mbl . set_z ( px , py , z ) ;
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_MESH_XY ) ;
}
}
else if ( hasI & & hasJ & & hasZ ) {
if ( px > = 0 & & px < MESH_NUM_X_POINTS & & py > = 0 & & py < MESH_NUM_Y_POINTS )
mbl . set_z ( px , py , z ) ;
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_MESH_XY ) ;
}
}
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_M421_PARAMETERS ) ;
}
}
# endif
/**
* M428 : Set home_offset based on the distance between the
* current_position and the nearest " reference point. "
* If an axis is past center its endstop position
* is the reference - point . Otherwise it uses 0. This allows
* the Z offset to be set near the bed when using a max endstop .
*
* M428 can ' t be used more than 2 cm away from 0 or an endstop .
*
* Use M206 to set these values directly .
*/
inline void gcode_M428 ( ) {
bool err = false ;
for ( int8_t i = X_AXIS ; i < = Z_AXIS ; i + + ) {
if ( axis_homed [ i ] ) {
float base = ( current_position [ i ] > ( sw_endstop_min [ i ] + sw_endstop_max [ i ] ) / 2 ) ? base_home_pos ( i ) : 0 ,
diff = current_position [ i ] - base ;
if ( diff > - 20 & & diff < 20 ) {
set_home_offset ( ( AxisEnum ) i , home_offset [ i ] - diff ) ;
}
else {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_M428_TOO_FAR ) ;
LCD_ALERTMESSAGEPGM ( " Err: Too far! " ) ;
# if HAS_BUZZER
buzzer . tone ( 200 , 40 ) ;
# endif
err = true ;
break ;
}
}
}
if ( ! err ) {
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
report_current_position ( ) ;
LCD_MESSAGEPGM ( MSG_HOME_OFFSETS_APPLIED ) ;
# if HAS_BUZZER
buzzer . tone ( 200 , 659 ) ;
buzzer . tone ( 200 , 698 ) ;
# endif
}
}
/**
* M500 : Store settings in EEPROM
*/
inline void gcode_M500 ( ) {
Config_StoreSettings ( ) ;
}
/**
* M501 : Read settings from EEPROM
*/
inline void gcode_M501 ( ) {
Config_RetrieveSettings ( ) ;
}
/**
* M502 : Revert to default settings
*/
inline void gcode_M502 ( ) {
Config_ResetDefault ( ) ;
}
/**
* M503 : print settings currently in memory
*/
inline void gcode_M503 ( ) {
Config_PrintSettings ( code_seen ( ' S ' ) & & ! code_value_bool ( ) ) ;
}
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
/**
* M540 : Set whether SD card print should abort on endstop hit ( M540 S < 0 | 1 > )
*/
inline void gcode_M540 ( ) {
if ( code_seen ( ' S ' ) ) stepper . abort_on_endstop_hit = code_value_bool ( ) ;
}
# endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
# if HAS_BED_PROBE
inline void gcode_M851 ( ) {
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_ZPROBE_ZOFFSET ) ;
SERIAL_CHAR ( ' ' ) ;
if ( code_seen ( ' Z ' ) ) {
float value = code_value_axis_units ( Z_AXIS ) ;
if ( Z_PROBE_OFFSET_RANGE_MIN < = value & & value < = Z_PROBE_OFFSET_RANGE_MAX ) {
zprobe_zoffset = value ;
SERIAL_ECHO ( zprobe_zoffset ) ;
}
else {
SERIAL_ECHOPGM ( MSG_Z_MIN ) ;
SERIAL_ECHO ( Z_PROBE_OFFSET_RANGE_MIN ) ;
SERIAL_ECHOPGM ( MSG_Z_MAX ) ;
SERIAL_ECHO ( Z_PROBE_OFFSET_RANGE_MAX ) ;
}
}
else {
SERIAL_ECHOPAIR ( " : " , zprobe_zoffset ) ;
}
SERIAL_EOL ;
}
# endif // HAS_BED_PROBE
# if ENABLED(FILAMENTCHANGEENABLE)
/**
* M600 : Pause for filament change
*
* E [ distance ] - Retract the filament this far ( negative value )
* Z [ distance ] - Move the Z axis by this distance
* X [ position ] - Move to this X position , with Y
* Y [ position ] - Move to this Y position , with X
* L [ distance ] - Retract distance for removal ( manual reload )
*
* Default values are used for omitted arguments .
*
*/
inline void gcode_M600 ( ) {
if ( thermalManager . tooColdToExtrude ( active_extruder ) ) {
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_TOO_COLD_FOR_M600 ) ;
return ;
}
float lastpos [ NUM_AXIS ] ;
# if ENABLED(DELTA)
float fr60 = feedrate / 60 ;
# endif
for ( int i = 0 ; i < NUM_AXIS ; i + + )
lastpos [ i ] = destination [ i ] = current_position [ i ] ;
# if ENABLED(DELTA)
# define RUNPLAN calculate_delta(destination); \
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , destination [ E_AXIS ] , fr60 , active_extruder ) ;
# else
# define RUNPLAN line_to_destination();
# endif
//retract by E
if ( code_seen ( ' E ' ) ) destination [ E_AXIS ] + = code_value_axis_units ( E_AXIS ) ;
# ifdef FILAMENTCHANGE_FIRSTRETRACT
else destination [ E_AXIS ] + = FILAMENTCHANGE_FIRSTRETRACT ;
# endif
RUNPLAN ;
//lift Z
if ( code_seen ( ' Z ' ) ) destination [ Z_AXIS ] + = code_value_axis_units ( Z_AXIS ) ;
# ifdef FILAMENTCHANGE_ZADD
else destination [ Z_AXIS ] + = FILAMENTCHANGE_ZADD ;
# endif
RUNPLAN ;
//move xy
if ( code_seen ( ' X ' ) ) destination [ X_AXIS ] = code_value_axis_units ( X_AXIS ) ;
# ifdef FILAMENTCHANGE_XPOS
else destination [ X_AXIS ] = FILAMENTCHANGE_XPOS ;
# endif
if ( code_seen ( ' Y ' ) ) destination [ Y_AXIS ] = code_value_axis_units ( Y_AXIS ) ;
# ifdef FILAMENTCHANGE_YPOS
else destination [ Y_AXIS ] = FILAMENTCHANGE_YPOS ;
# endif
RUNPLAN ;
if ( code_seen ( ' L ' ) ) destination [ E_AXIS ] + = code_value_axis_units ( E_AXIS ) ;
# ifdef FILAMENTCHANGE_FINALRETRACT
else destination [ E_AXIS ] + = FILAMENTCHANGE_FINALRETRACT ;
# endif
RUNPLAN ;
//finish moves
stepper . synchronize ( ) ;
//disable extruder steppers so filament can be removed
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
disable_e3 ( ) ;
delay ( 100 ) ;
LCD_ALERTMESSAGEPGM ( MSG_FILAMENTCHANGE ) ;
# if DISABLED(AUTO_FILAMENT_CHANGE)
millis_t next_tick = 0 ;
# endif
KEEPALIVE_STATE ( PAUSED_FOR_USER ) ;
while ( ! lcd_clicked ( ) ) {
# if DISABLED(AUTO_FILAMENT_CHANGE)
millis_t ms = millis ( ) ;
if ( ELAPSED ( ms , next_tick ) ) {
lcd_quick_feedback ( ) ;
next_tick = ms + 2500UL ; // feedback every 2.5s while waiting
}
idle ( true ) ;
# else
current_position [ E_AXIS ] + = AUTO_FILAMENT_CHANGE_LENGTH ;
destination [ E_AXIS ] = current_position [ E_AXIS ] ;
line_to_destination ( AUTO_FILAMENT_CHANGE_FEEDRATE ) ;
stepper . synchronize ( ) ;
# endif
} // while(!lcd_clicked)
KEEPALIVE_STATE ( IN_HANDLER ) ;
lcd_quick_feedback ( ) ; // click sound feedback
# if ENABLED(AUTO_FILAMENT_CHANGE)
current_position [ E_AXIS ] = 0 ;
stepper . synchronize ( ) ;
# endif
//return to normal
if ( code_seen ( ' L ' ) ) destination [ E_AXIS ] - = code_value_axis_units ( E_AXIS ) ;
# ifdef FILAMENTCHANGE_FINALRETRACT
else destination [ E_AXIS ] - = FILAMENTCHANGE_FINALRETRACT ;
# endif
current_position [ E_AXIS ] = destination [ E_AXIS ] ; //the long retract of L is compensated by manual filament feeding
sync_plan_position_e ( ) ;
RUNPLAN ; //should do nothing
lcd_reset_alert_level ( ) ;
# if ENABLED(DELTA)
// Move XYZ to starting position, then E
calculate_delta ( lastpos ) ;
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , destination [ E_AXIS ] , fr60 , active_extruder ) ;
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , lastpos [ E_AXIS ] , fr60 , active_extruder ) ;
# else
// Move XY to starting position, then Z, then E
destination [ X_AXIS ] = lastpos [ X_AXIS ] ;
destination [ Y_AXIS ] = lastpos [ Y_AXIS ] ;
line_to_destination ( ) ;
destination [ Z_AXIS ] = lastpos [ Z_AXIS ] ;
line_to_destination ( ) ;
destination [ E_AXIS ] = lastpos [ E_AXIS ] ;
line_to_destination ( ) ;
# endif
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
filament_ran_out = false ;
# endif
}
# endif // FILAMENTCHANGEENABLE
# if ENABLED(DUAL_X_CARRIAGE)
/**
* M605 : Set dual x - carriage movement mode
*
* M605 S0 : Full control mode . The slicer has full control over x - carriage movement
* M605 S1 : Auto - park mode . The inactive head will auto park / unpark without slicer involvement
* M605 S2 [ Xnnn ] [ Rmmm ] : Duplication mode . The second extruder will duplicate the first with nnn
* millimeters x - offset and an optional differential hotend temperature of
* mmm degrees . E . g . , with " M605 S2 X100 R2 " the second extruder will duplicate
* the first with a spacing of 100 mm in the x direction and 2 degrees hotter .
*
* Note : the X axis should be homed after changing dual x - carriage mode .
*/
inline void gcode_M605 ( ) {
stepper . synchronize ( ) ;
if ( code_seen ( ' S ' ) ) dual_x_carriage_mode = code_value_byte ( ) ;
switch ( dual_x_carriage_mode ) {
case DXC_DUPLICATION_MODE :
if ( code_seen ( ' X ' ) ) duplicate_extruder_x_offset = max ( code_value_axis_units ( X_AXIS ) , X2_MIN_POS - x_home_pos ( 0 ) ) ;
if ( code_seen ( ' R ' ) ) duplicate_extruder_temp_offset = code_value_temp_diff ( ) ;
SERIAL_ECHO_START ;
SERIAL_ECHOPGM ( MSG_HOTEND_OFFSET ) ;
SERIAL_CHAR ( ' ' ) ;
SERIAL_ECHO ( hotend_offset [ X_AXIS ] [ 0 ] ) ;
SERIAL_CHAR ( ' , ' ) ;
SERIAL_ECHO ( hotend_offset [ Y_AXIS ] [ 0 ] ) ;
SERIAL_CHAR ( ' ' ) ;
SERIAL_ECHO ( duplicate_extruder_x_offset ) ;
SERIAL_CHAR ( ' , ' ) ;
SERIAL_ECHOLN ( hotend_offset [ Y_AXIS ] [ 1 ] ) ;
break ;
case DXC_FULL_CONTROL_MODE :
case DXC_AUTO_PARK_MODE :
break ;
default :
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE ;
break ;
}
active_extruder_parked = false ;
extruder_duplication_enabled = false ;
delayed_move_time = 0 ;
}
# endif // DUAL_X_CARRIAGE
# if ENABLED(LIN_ADVANCE)
/**
* M905 : Set advance factor
*/
inline void gcode_M905 ( ) {
stepper . synchronize ( ) ;
stepper . advance_M905 ( code_seen ( ' K ' ) ? code_value_float ( ) : - 1.0 ) ;
}
# endif
/**
* M907 : Set digital trimpot motor current using axis codes X , Y , Z , E , B , S
*/
inline void gcode_M907 ( ) {
# if HAS_DIGIPOTSS
for ( int i = 0 ; i < NUM_AXIS ; i + + )
if ( code_seen ( axis_codes [ i ] ) ) stepper . digipot_current ( i , code_value_int ( ) ) ;
if ( code_seen ( ' B ' ) ) stepper . digipot_current ( 4 , code_value_int ( ) ) ;
if ( code_seen ( ' S ' ) ) for ( int i = 0 ; i < = 4 ; i + + ) stepper . digipot_current ( i , code_value_int ( ) ) ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
if ( code_seen ( ' X ' ) ) stepper . digipot_current ( 0 , code_value_int ( ) ) ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
if ( code_seen ( ' Z ' ) ) stepper . digipot_current ( 1 , code_value_int ( ) ) ;
# endif
# if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
if ( code_seen ( ' E ' ) ) stepper . digipot_current ( 2 , code_value_int ( ) ) ;
# endif
# if ENABLED(DIGIPOT_I2C)
// this one uses actual amps in floating point
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) digipot_i2c_set_current ( i , code_value_float ( ) ) ;
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for ( int i = NUM_AXIS ; i < DIGIPOT_I2C_NUM_CHANNELS ; i + + ) if ( code_seen ( ' B ' + i - ( NUM_AXIS ) ) ) digipot_i2c_set_current ( i , code_value_float ( ) ) ;
# endif
# if ENABLED(DAC_STEPPER_CURRENT)
if ( code_seen ( ' S ' ) ) {
float dac_percent = code_value_float ( ) ;
for ( uint8_t i = 0 ; i < = 4 ; i + + ) dac_current_percent ( i , dac_percent ) ;
}
for ( uint8_t i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) dac_current_percent ( i , code_value_float ( ) ) ;
# endif
}
# if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
/**
* M908 : Control digital trimpot directly ( M908 P < pin > S < current > )
*/
inline void gcode_M908 ( ) {
# if HAS_DIGIPOTSS
stepper . digitalPotWrite (
code_seen ( ' P ' ) ? code_value_int ( ) : 0 ,
code_seen ( ' S ' ) ? code_value_int ( ) : 0
) ;
# endif
# ifdef DAC_STEPPER_CURRENT
dac_current_raw (
code_seen ( ' P ' ) ? code_value_byte ( ) : - 1 ,
code_seen ( ' S ' ) ? code_value_ushort ( ) : 0
) ;
# endif
}
# if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
inline void gcode_M909 ( ) { dac_print_values ( ) ; }
inline void gcode_M910 ( ) { dac_commit_eeprom ( ) ; }
# endif
# endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
# if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350 ( ) {
if ( code_seen ( ' S ' ) ) for ( int i = 0 ; i < = 4 ; i + + ) stepper . microstep_mode ( i , code_value_byte ( ) ) ;
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) stepper . microstep_mode ( i , code_value_byte ( ) ) ;
if ( code_seen ( ' B ' ) ) stepper . microstep_mode ( 4 , code_value_byte ( ) ) ;
stepper . microstep_readings ( ) ;
}
/**
* M351 : Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S # determines MS1 or MS2 , X # sets the pin high / low .
*/
inline void gcode_M351 ( ) {
if ( code_seen ( ' S ' ) ) switch ( code_value_byte ( ) ) {
case 1 :
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) stepper . microstep_ms ( i , code_value_byte ( ) , - 1 ) ;
if ( code_seen ( ' B ' ) ) stepper . microstep_ms ( 4 , code_value_byte ( ) , - 1 ) ;
break ;
case 2 :
for ( int i = 0 ; i < NUM_AXIS ; i + + ) if ( code_seen ( axis_codes [ i ] ) ) stepper . microstep_ms ( i , - 1 , code_value_byte ( ) ) ;
if ( code_seen ( ' B ' ) ) stepper . microstep_ms ( 4 , - 1 , code_value_byte ( ) ) ;
break ;
}
stepper . microstep_readings ( ) ;
}
# endif // HAS_MICROSTEPS
/**
* M999 : Restart after being stopped
*
* Default behaviour is to flush the serial buffer and request
* a resend to the host starting on the last N line received .
*
* Sending " M999 S1 " will resume printing without flushing the
* existing command buffer .
*
*/
inline void gcode_M999 ( ) {
Running = true ;
lcd_reset_alert_level ( ) ;
if ( code_seen ( ' S ' ) & & code_value_bool ( ) ) return ;
// gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend ( ) ;
}
/**
* T0 - T3 : Switch tool , usually switching extruders
*
* F [ mm / min ] Set the movement feedrate
* S1 Don ' t move the tool in XY after change
*/
inline void gcode_T ( uint8_t tmp_extruder ) {
if ( tmp_extruder > = EXTRUDERS ) {
SERIAL_ECHO_START ;
SERIAL_CHAR ( ' T ' ) ;
SERIAL_PROTOCOL_F ( tmp_extruder , DEC ) ;
SERIAL_ECHOLN ( MSG_INVALID_EXTRUDER ) ;
return ;
}
# if HOTENDS > 1
float stored_feedrate = feedrate ;
if ( code_seen ( ' F ' ) ) {
float next_feedrate = code_value_axis_units ( X_AXIS ) ;
if ( next_feedrate > 0.0 ) stored_feedrate = feedrate = next_feedrate ;
}
else
feedrate = XY_PROBE_FEEDRATE ;
if ( tmp_extruder ! = active_extruder ) {
bool no_move = code_seen ( ' S ' ) & & code_value_bool ( ) ;
// Save current position to return to after applying extruder offset
if ( ! no_move ) set_destination_to_current ( ) ;
# if ENABLED(DUAL_X_CARRIAGE)
if ( dual_x_carriage_mode = = DXC_AUTO_PARK_MODE & & IsRunning ( ) & &
( delayed_move_time | | current_position [ X_AXIS ] ! = x_home_pos ( active_extruder ) ) ) {
// Park old head: 1) raise 2) move to park position 3) lower
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] + TOOLCHANGE_PARK_ZLIFT ,
current_position [ E_AXIS ] , planner . max_feedrate [ Z_AXIS ] , active_extruder ) ;
planner . buffer_line ( x_home_pos ( active_extruder ) , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] + TOOLCHANGE_PARK_ZLIFT ,
current_position [ E_AXIS ] , planner . max_feedrate [ X_AXIS ] , active_extruder ) ;
planner . buffer_line ( x_home_pos ( active_extruder ) , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ,
current_position [ E_AXIS ] , planner . max_feedrate [ Z_AXIS ] , active_extruder ) ;
stepper . synchronize ( ) ;
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position [ Y_AXIS ] - = hotend_offset [ Y_AXIS ] [ active_extruder ] - hotend_offset [ Y_AXIS ] [ tmp_extruder ] ;
current_position [ Z_AXIS ] - = hotend_offset [ Z_AXIS ] [ active_extruder ] - hotend_offset [ Z_AXIS ] [ tmp_extruder ] ;
active_extruder = tmp_extruder ;
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home ( X_AXIS ) ;
if ( dual_x_carriage_mode = = DXC_FULL_CONTROL_MODE ) {
current_position [ X_AXIS ] = inactive_extruder_x_pos ;
inactive_extruder_x_pos = destination [ X_AXIS ] ;
}
else if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE ) {
active_extruder_parked = ( active_extruder = = 0 ) ; // this triggers the second extruder to move into the duplication position
if ( active_extruder_parked )
current_position [ X_AXIS ] = inactive_extruder_x_pos ;
else
current_position [ X_AXIS ] = destination [ X_AXIS ] + duplicate_extruder_x_offset ;
inactive_extruder_x_pos = destination [ X_AXIS ] ;
extruder_duplication_enabled = false ;
}
else {
// record raised toolhead position for use by unpark
memcpy ( raised_parked_position , current_position , sizeof ( raised_parked_position ) ) ;
raised_parked_position [ Z_AXIS ] + = TOOLCHANGE_UNPARK_ZLIFT ;
active_extruder_parked = true ;
delayed_move_time = 0 ;
}
// No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
# else // !DUAL_X_CARRIAGE
//
// Set current_position to the position of the new nozzle.
// Offsets are based on linear distance, so we need to get
// the resulting position in coordinate space.
//
// - With grid or 3-point leveling, offset XYZ by a tilted vector
// - With mesh leveling, update Z for the new position
// - Otherwise, just use the raw linear distance
//
// Software endstops are altered here too. Consider a case where:
// E0 at X=0 ... E1 at X=10
// When we switch to E1 now X=10, but E1 can't move left.
// To express this we apply the change in XY to the software endstops.
// E1 can move farther right than E0, so the right limit is extended.
//
// Note that we don't adjust the Z software endstops. Why not?
// Consider a case where Z=0 (here) and switching to E1 makes Z=1
// because the bed is 1mm lower at the new position. As long as
// the first nozzle is out of the way, the carriage should be
// allowed to move 1mm lower. This technically "breaks" the
// Z software endstop. But this is technically correct (and
// there is no viable alternative).
//
float xydiff [ 2 ] = {
hotend_offset [ X_AXIS ] [ tmp_extruder ] - hotend_offset [ X_AXIS ] [ active_extruder ] ,
hotend_offset [ Y_AXIS ] [ tmp_extruder ] - hotend_offset [ Y_AXIS ] [ active_extruder ]
} ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Offset extruder, make sure to apply the bed level rotation matrix
vector_3 tmp_offset_vec = vector_3 ( hotend_offset [ X_AXIS ] [ tmp_extruder ] ,
hotend_offset [ Y_AXIS ] [ tmp_extruder ] ,
0 ) ,
act_offset_vec = vector_3 ( hotend_offset [ X_AXIS ] [ active_extruder ] ,
hotend_offset [ Y_AXIS ] [ active_extruder ] ,
0 ) ,
offset_vec = tmp_offset_vec - act_offset_vec ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
SERIAL_ECHOLNPGM ( " >>> gcode_T " ) ;
tmp_offset_vec . debug ( " tmp_offset_vec " ) ;
act_offset_vec . debug ( " act_offset_vec " ) ;
offset_vec . debug ( " offset_vec (BEFORE) " ) ;
DEBUG_POS ( " BEFORE rotation " , current_position ) ;
}
# endif
offset_vec . apply_rotation ( planner . bed_level_matrix . transpose ( planner . bed_level_matrix ) ) ;
// Adjust the current position
current_position [ X_AXIS ] + = offset_vec . x ;
current_position [ Y_AXIS ] + = offset_vec . y ;
current_position [ Z_AXIS ] + = offset_vec . z ;
# if ENABLED(DEBUG_LEVELING_FEATURE)
if ( DEBUGGING ( LEVELING ) ) {
offset_vec . debug ( " offset_vec (AFTER) " ) ;
DEBUG_POS ( " AFTER rotation " , current_position ) ;
SERIAL_ECHOLNPGM ( " <<< gcode_T " ) ;
}
# endif
# elif ENABLED(MESH_BED_LEVELING)
if ( mbl . active ( ) ) {
float xpos = current_position [ X_AXIS ] - home_offset [ X_AXIS ] ,
ypos = current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] ;
current_position [ Z_AXIS ] + = mbl . get_z ( xpos + xydiff [ X_AXIS ] , ypos + xydiff [ Y_AXIS ] ) - mbl . get_z ( xpos , ypos ) ;
}
# else // no bed leveling
// The newly-selected extruder XY is actually at...
current_position [ X_AXIS ] + = xydiff [ X_AXIS ] ;
current_position [ Y_AXIS ] + = xydiff [ Y_AXIS ] ;
# endif // no bed leveling
for ( uint8_t i = X_AXIS ; i < = Y_AXIS ; i + + ) {
position_shift [ i ] + = xydiff [ i ] ;
update_software_endstops ( ( AxisEnum ) i ) ;
}
// Set the new active extruder
active_extruder = tmp_extruder ;
# endif // !DUAL_X_CARRIAGE
// Tell the planner the new "current position"
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
// Move to the "old position" (move the extruder into place)
if ( ! no_move & & IsRunning ( ) ) prepare_move_to_destination ( ) ;
} // (tmp_extruder != active_extruder)
# if ENABLED(EXT_SOLENOID)
stepper . synchronize ( ) ;
disable_all_solenoids ( ) ;
enable_solenoid_on_active_extruder ( ) ;
# endif // EXT_SOLENOID
feedrate = stored_feedrate ;
# else // !HOTENDS > 1
// Set the new active extruder
active_extruder = tmp_extruder ;
# endif
SERIAL_ECHO_START ;
SERIAL_ECHO ( MSG_ACTIVE_EXTRUDER ) ;
SERIAL_PROTOCOLLN ( ( int ) active_extruder ) ;
}
/**
* Process a single command and dispatch it to its handler
* This is called from the main loop ( )
*/
void process_next_command ( ) {
current_command = command_queue [ cmd_queue_index_r ] ;
if ( DEBUGGING ( ECHO ) ) {
SERIAL_ECHO_START ;
SERIAL_ECHOLN ( current_command ) ;
}
// Sanitize the current command:
// - Skip leading spaces
// - Bypass N[-0-9][0-9]*[ ]*
// - Overwrite * with nul to mark the end
while ( * current_command = = ' ' ) + + current_command ;
if ( * current_command = = ' N ' & & NUMERIC_SIGNED ( current_command [ 1 ] ) ) {
current_command + = 2 ; // skip N[-0-9]
while ( NUMERIC ( * current_command ) ) + + current_command ; // skip [0-9]*
while ( * current_command = = ' ' ) + + current_command ; // skip [ ]*
}
char * starpos = strchr ( current_command , ' * ' ) ; // * should always be the last parameter
if ( starpos ) while ( * starpos = = ' ' | | * starpos = = ' * ' ) * starpos - - = ' \0 ' ; // nullify '*' and ' '
char * cmd_ptr = current_command ;
// Get the command code, which must be G, M, or T
char command_code = * cmd_ptr + + ;
// Skip spaces to get the numeric part
while ( * cmd_ptr = = ' ' ) cmd_ptr + + ;
uint16_t codenum = 0 ; // define ahead of goto
// Bail early if there's no code
bool code_is_good = NUMERIC ( * cmd_ptr ) ;
if ( ! code_is_good ) goto ExitUnknownCommand ;
// Get and skip the code number
do {
codenum = ( codenum * 10 ) + ( * cmd_ptr - ' 0 ' ) ;
cmd_ptr + + ;
} while ( NUMERIC ( * cmd_ptr ) ) ;
// Skip all spaces to get to the first argument, or nul
while ( * cmd_ptr = = ' ' ) cmd_ptr + + ;
// The command's arguments (if any) start here, for sure!
current_command_args = cmd_ptr ;
KEEPALIVE_STATE ( IN_HANDLER ) ;
// Handle a known G, M, or T
switch ( command_code ) {
case ' G ' : switch ( codenum ) {
// G0, G1
case 0 :
case 1 :
gcode_G0_G1 ( ) ;
break ;
// G2, G3
# if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
case 2 : // G2 - CW ARC
case 3 : // G3 - CCW ARC
gcode_G2_G3 ( codenum = = 2 ) ;
break ;
# endif
// G4 Dwell
case 4 :
gcode_G4 ( ) ;
break ;
# if ENABLED(BEZIER_CURVE_SUPPORT)
// G5
case 5 : // G5 - Cubic B_spline
gcode_G5 ( ) ;
break ;
# endif // BEZIER_CURVE_SUPPORT
# if ENABLED(FWRETRACT)
case 10 : // G10: retract
case 11 : // G11: retract_recover
gcode_G10_G11 ( codenum = = 10 ) ;
break ;
# endif // FWRETRACT
# if ENABLED(INCH_MODE_SUPPORT)
case 20 : //G20: Inch Mode
gcode_G20 ( ) ;
break ;
case 21 : //G21: MM Mode
gcode_G21 ( ) ;
break ;
# endif
case 28 : // G28: Home all axes, one at a time
gcode_G28 ( ) ;
break ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
case 29 : // G29 Detailed Z probe, probes the bed at 3 or more points.
gcode_G29 ( ) ;
break ;
# endif
# if HAS_BED_PROBE
case 30 : // G30 Single Z probe
gcode_G30 ( ) ;
break ;
# if ENABLED(Z_PROBE_SLED)
case 31 : // G31: dock the sled
gcode_G31 ( ) ;
break ;
case 32 : // G32: undock the sled
gcode_G32 ( ) ;
break ;
# endif // Z_PROBE_SLED
# endif // HAS_BED_PROBE
case 90 : // G90
relative_mode = false ;
break ;
case 91 : // G91
relative_mode = true ;
break ;
case 92 : // G92
gcode_G92 ( ) ;
break ;
}
break ;
case ' M ' : switch ( codenum ) {
# if ENABLED(ULTIPANEL)
case 0 : // M0 - Unconditional stop - Wait for user button press on LCD
case 1 : // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1 ( ) ;
break ;
# endif // ULTIPANEL
case 17 :
gcode_M17 ( ) ;
break ;
# if ENABLED(SDSUPPORT)
case 20 : // M20 - list SD card
gcode_M20 ( ) ; break ;
case 21 : // M21 - init SD card
gcode_M21 ( ) ; break ;
case 22 : //M22 - release SD card
gcode_M22 ( ) ; break ;
case 23 : //M23 - Select file
gcode_M23 ( ) ; break ;
case 24 : //M24 - Start SD print
gcode_M24 ( ) ; break ;
case 25 : //M25 - Pause SD print
gcode_M25 ( ) ; break ;
case 26 : //M26 - Set SD index
gcode_M26 ( ) ; break ;
case 27 : //M27 - Get SD status
gcode_M27 ( ) ; break ;
case 28 : //M28 - Start SD write
gcode_M28 ( ) ; break ;
case 29 : //M29 - Stop SD write
gcode_M29 ( ) ; break ;
case 30 : //M30 <filename> Delete File
gcode_M30 ( ) ; break ;
case 32 : //M32 - Select file and start SD print
gcode_M32 ( ) ; break ;
# if ENABLED(LONG_FILENAME_HOST_SUPPORT)
case 33 : //M33 - Get the long full path to a file or folder
gcode_M33 ( ) ; break ;
# endif // LONG_FILENAME_HOST_SUPPORT
case 928 : //M928 - Start SD write
gcode_M928 ( ) ; break ;
# endif //SDSUPPORT
case 31 : //M31 take time since the start of the SD print or an M109 command
gcode_M31 ( ) ;
break ;
case 42 : //M42 -Change pin status via gcode
gcode_M42 ( ) ;
break ;
# if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
case 48 : // M48 Z probe repeatability
gcode_M48 ( ) ;
break ;
# endif // Z_MIN_PROBE_REPEATABILITY_TEST
case 75 : // Start print timer
gcode_M75 ( ) ;
break ;
case 76 : // Pause print timer
gcode_M76 ( ) ;
break ;
case 77 : // Stop print timer
gcode_M77 ( ) ;
break ;
# if ENABLED(PRINTCOUNTER)
case 78 : // Show print statistics
gcode_M78 ( ) ;
break ;
# endif
# if ENABLED(M100_FREE_MEMORY_WATCHER)
case 100 :
gcode_M100 ( ) ;
break ;
# endif
case 104 : // M104
gcode_M104 ( ) ;
break ;
case 110 : // M110: Set Current Line Number
gcode_M110 ( ) ;
break ;
case 111 : // M111: Set debug level
gcode_M111 ( ) ;
break ;
case 112 : // M112: Emergency Stop
gcode_M112 ( ) ;
break ;
# if ENABLED(HOST_KEEPALIVE_FEATURE)
case 113 : // M113: Set Host Keepalive interval
gcode_M113 ( ) ;
break ;
# endif
case 140 : // M140: Set bed temp
gcode_M140 ( ) ;
break ;
case 105 : // M105: Read current temperature
gcode_M105 ( ) ;
KEEPALIVE_STATE ( NOT_BUSY ) ;
return ; // "ok" already printed
case 109 : // M109: Wait for temperature
gcode_M109 ( ) ;
break ;
# if HAS_TEMP_BED
case 190 : // M190: Wait for bed heater to reach target
gcode_M190 ( ) ;
break ;
# endif // HAS_TEMP_BED
# if FAN_COUNT > 0
case 106 : // M106: Fan On
gcode_M106 ( ) ;
break ;
case 107 : // M107: Fan Off
gcode_M107 ( ) ;
break ;
# endif // FAN_COUNT > 0
# if ENABLED(BARICUDA)
// PWM for HEATER_1_PIN
# if HAS_HEATER_1
case 126 : // M126: valve open
gcode_M126 ( ) ;
break ;
case 127 : // M127: valve closed
gcode_M127 ( ) ;
break ;
# endif // HAS_HEATER_1
// PWM for HEATER_2_PIN
# if HAS_HEATER_2
case 128 : // M128: valve open
gcode_M128 ( ) ;
break ;
case 129 : // M129: valve closed
gcode_M129 ( ) ;
break ;
# endif // HAS_HEATER_2
# endif // BARICUDA
# if HAS_POWER_SWITCH
case 80 : // M80: Turn on Power Supply
gcode_M80 ( ) ;
break ;
# endif // HAS_POWER_SWITCH
case 81 : // M81: Turn off Power, including Power Supply, if possible
gcode_M81 ( ) ;
break ;
case 82 :
gcode_M82 ( ) ;
break ;
case 83 :
gcode_M83 ( ) ;
break ;
case 18 : // (for compatibility)
case 84 : // M84
gcode_M18_M84 ( ) ;
break ;
case 85 : // M85
gcode_M85 ( ) ;
break ;
case 92 : // M92: Set the steps-per-unit for one or more axes
gcode_M92 ( ) ;
break ;
case 115 : // M115: Report capabilities
gcode_M115 ( ) ;
break ;
case 117 : // M117: Set LCD message text, if possible
gcode_M117 ( ) ;
break ;
case 114 : // M114: Report current position
gcode_M114 ( ) ;
break ;
case 120 : // M120: Enable endstops
gcode_M120 ( ) ;
break ;
case 121 : // M121: Disable endstops
gcode_M121 ( ) ;
break ;
case 119 : // M119: Report endstop states
gcode_M119 ( ) ;
break ;
# if ENABLED(ULTIPANEL)
case 145 : // M145: Set material heatup parameters
gcode_M145 ( ) ;
break ;
# endif
# if ENABLED(TEMPERATURE_UNITS_SUPPORT)
case 149 :
gcode_M149 ( ) ;
break ;
# endif
# if ENABLED(BLINKM)
case 150 : // M150
gcode_M150 ( ) ;
break ;
# endif //BLINKM
# if ENABLED(EXPERIMENTAL_I2CBUS)
case 155 :
gcode_M155 ( ) ;
break ;
case 156 :
gcode_M156 ( ) ;
break ;
# endif //EXPERIMENTAL_I2CBUS
case 200 : // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
gcode_M200 ( ) ;
break ;
case 201 : // M201
gcode_M201 ( ) ;
break ;
#if 0 // Not used for Sprinter/grbl gen6
case 202 : // M202
gcode_M202 ( ) ;
break ;
# endif
case 203 : // M203 max feedrate mm/sec
gcode_M203 ( ) ;
break ;
case 204 : // M204 acclereration S normal moves T filmanent only moves
gcode_M204 ( ) ;
break ;
case 205 : //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205 ( ) ;
break ;
case 206 : // M206 additional homing offset
gcode_M206 ( ) ;
break ;
# if ENABLED(DELTA)
case 665 : // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665 ( ) ;
break ;
# endif
# if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
case 666 : // M666 set delta / dual endstop adjustment
gcode_M666 ( ) ;
break ;
# endif
# if ENABLED(FWRETRACT)
case 207 : //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
gcode_M207 ( ) ;
break ;
case 208 : // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
gcode_M208 ( ) ;
break ;
case 209 : // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209 ( ) ;
break ;
# endif // FWRETRACT
# if HOTENDS > 1
case 218 : // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
gcode_M218 ( ) ;
break ;
# endif
case 220 : // M220 S<factor in percent>- set speed factor override percentage
gcode_M220 ( ) ;
break ;
case 221 : // M221 S<factor in percent>- set extrude factor override percentage
gcode_M221 ( ) ;
break ;
case 226 : // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226 ( ) ;
break ;
# if HAS_SERVOS
case 280 : // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280 ( ) ;
break ;
# endif // HAS_SERVOS
# if HAS_BUZZER
case 300 : // M300 - Play beep tone
gcode_M300 ( ) ;
break ;
# endif // HAS_BUZZER
# if ENABLED(PIDTEMP)
case 301 : // M301
gcode_M301 ( ) ;
break ;
# endif // PIDTEMP
# if ENABLED(PIDTEMPBED)
case 304 : // M304
gcode_M304 ( ) ;
break ;
# endif // PIDTEMPBED
# if defined(CHDK) || HAS_PHOTOGRAPH
case 240 : // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240 ( ) ;
break ;
# endif // CHDK || PHOTOGRAPH_PIN
# if HAS_LCD_CONTRAST
case 250 : // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250 ( ) ;
break ;
# endif // HAS_LCD_CONTRAST
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
case 302 : // allow cold extrudes, or set the minimum extrude temperature
gcode_M302 ( ) ;
break ;
# endif // PREVENT_DANGEROUS_EXTRUDE
case 303 : // M303 PID autotune
gcode_M303 ( ) ;
break ;
# if ENABLED(SCARA)
case 360 : // M360 SCARA Theta pos1
if ( gcode_M360 ( ) ) return ;
break ;
case 361 : // M361 SCARA Theta pos2
if ( gcode_M361 ( ) ) return ;
break ;
case 362 : // M362 SCARA Psi pos1
if ( gcode_M362 ( ) ) return ;
break ;
case 363 : // M363 SCARA Psi pos2
if ( gcode_M363 ( ) ) return ;
break ;
case 364 : // M364 SCARA Psi pos3 (90 deg to Theta)
if ( gcode_M364 ( ) ) return ;
break ;
case 365 : // M365 Set SCARA scaling for X Y Z
gcode_M365 ( ) ;
break ;
# endif // SCARA
case 400 : // M400 finish all moves
gcode_M400 ( ) ;
break ;
# if HAS_BED_PROBE
case 401 :
gcode_M401 ( ) ;
break ;
case 402 :
gcode_M402 ( ) ;
break ;
# endif // HAS_BED_PROBE
# if ENABLED(FILAMENT_WIDTH_SENSOR)
case 404 : //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404 ( ) ;
break ;
case 405 : //M405 Turn on filament sensor for control
gcode_M405 ( ) ;
break ;
case 406 : //M406 Turn off filament sensor for control
gcode_M406 ( ) ;
break ;
case 407 : //M407 Display measured filament diameter
gcode_M407 ( ) ;
break ;
# endif // ENABLED(FILAMENT_WIDTH_SENSOR)
case 410 : // M410 quickstop - Abort all the planned moves.
gcode_M410 ( ) ;
break ;
# if ENABLED(MESH_BED_LEVELING)
case 420 : // M420 Enable/Disable Mesh Bed Leveling
gcode_M420 ( ) ;
break ;
case 421 : // M421 Set a Mesh Bed Leveling Z coordinate
gcode_M421 ( ) ;
break ;
# endif
case 428 : // M428 Apply current_position to home_offset
gcode_M428 ( ) ;
break ;
case 500 : // M500 Store settings in EEPROM
gcode_M500 ( ) ;
break ;
case 501 : // M501 Read settings from EEPROM
gcode_M501 ( ) ;
break ;
case 502 : // M502 Revert to default settings
gcode_M502 ( ) ;
break ;
case 503 : // M503 print settings currently in memory
gcode_M503 ( ) ;
break ;
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
case 540 :
gcode_M540 ( ) ;
break ;
# endif
# if HAS_BED_PROBE
case 851 :
gcode_M851 ( ) ;
break ;
# endif // HAS_BED_PROBE
# if ENABLED(FILAMENTCHANGEENABLE)
case 600 : //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600 ( ) ;
break ;
# endif // FILAMENTCHANGEENABLE
# if ENABLED(DUAL_X_CARRIAGE)
case 605 :
gcode_M605 ( ) ;
break ;
# endif // DUAL_X_CARRIAGE
# if ENABLED(LIN_ADVANCE)
case 905 : // M905 Set advance factor.
gcode_M905 ( ) ;
break ;
# endif
case 907 : // M907 Set digital trimpot motor current using axis codes.
gcode_M907 ( ) ;
break ;
# if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
case 908 : // M908 Control digital trimpot directly.
gcode_M908 ( ) ;
break ;
# if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
case 909 : // M909 Print digipot/DAC current value
gcode_M909 ( ) ;
break ;
case 910 : // M910 Commit digipot/DAC value to external EEPROM
gcode_M910 ( ) ;
break ;
# endif
# endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
# if HAS_MICROSTEPS
case 350 : // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350 ( ) ;
break ;
case 351 : // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351 ( ) ;
break ;
# endif // HAS_MICROSTEPS
case 999 : // M999: Restart after being Stopped
gcode_M999 ( ) ;
break ;
}
break ;
case ' T ' :
gcode_T ( codenum ) ;
break ;
default : code_is_good = false ;
}
KEEPALIVE_STATE ( NOT_BUSY ) ;
ExitUnknownCommand :
// Still unknown command? Throw an error
if ( ! code_is_good ) unknown_command_error ( ) ;
ok_to_send ( ) ;
}
void FlushSerialRequestResend ( ) {
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL . flush ( ) ;
SERIAL_PROTOCOLPGM ( MSG_RESEND ) ;
SERIAL_PROTOCOLLN ( gcode_LastN + 1 ) ;
ok_to_send ( ) ;
}
void ok_to_send ( ) {
refresh_cmd_timeout ( ) ;
if ( ! send_ok [ cmd_queue_index_r ] ) return ;
SERIAL_PROTOCOLPGM ( MSG_OK ) ;
# if ENABLED(ADVANCED_OK)
char * p = command_queue [ cmd_queue_index_r ] ;
if ( * p = = ' N ' ) {
SERIAL_PROTOCOL ( ' ' ) ;
SERIAL_ECHO ( * p + + ) ;
while ( NUMERIC_SIGNED ( * p ) )
SERIAL_ECHO ( * p + + ) ;
}
SERIAL_PROTOCOLPGM ( " P " ) ; SERIAL_PROTOCOL ( int ( BLOCK_BUFFER_SIZE - planner . movesplanned ( ) - 1 ) ) ;
SERIAL_PROTOCOLPGM ( " B " ) ; SERIAL_PROTOCOL ( BUFSIZE - commands_in_queue ) ;
# endif
SERIAL_EOL ;
}
void clamp_to_software_endstops ( float target [ 3 ] ) {
if ( min_software_endstops ) {
NOLESS ( target [ X_AXIS ] , sw_endstop_min [ X_AXIS ] ) ;
NOLESS ( target [ Y_AXIS ] , sw_endstop_min [ Y_AXIS ] ) ;
NOLESS ( target [ Z_AXIS ] , sw_endstop_min [ Z_AXIS ] ) ;
}
if ( max_software_endstops ) {
NOMORE ( target [ X_AXIS ] , sw_endstop_max [ X_AXIS ] ) ;
NOMORE ( target [ Y_AXIS ] , sw_endstop_max [ Y_AXIS ] ) ;
NOMORE ( target [ Z_AXIS ] , sw_endstop_max [ Z_AXIS ] ) ;
}
}
# if ENABLED(DELTA)
void recalc_delta_settings ( float radius , float diagonal_rod ) {
delta_tower1_x = - SIN_60 * ( radius + DELTA_RADIUS_TRIM_TOWER_1 ) ; // front left tower
delta_tower1_y = - COS_60 * ( radius + DELTA_RADIUS_TRIM_TOWER_1 ) ;
delta_tower2_x = SIN_60 * ( radius + DELTA_RADIUS_TRIM_TOWER_2 ) ; // front right tower
delta_tower2_y = - COS_60 * ( radius + DELTA_RADIUS_TRIM_TOWER_2 ) ;
delta_tower3_x = 0.0 ; // back middle tower
delta_tower3_y = ( radius + DELTA_RADIUS_TRIM_TOWER_3 ) ;
delta_diagonal_rod_2_tower_1 = sq ( diagonal_rod + delta_diagonal_rod_trim_tower_1 ) ;
delta_diagonal_rod_2_tower_2 = sq ( diagonal_rod + delta_diagonal_rod_trim_tower_2 ) ;
delta_diagonal_rod_2_tower_3 = sq ( diagonal_rod + delta_diagonal_rod_trim_tower_3 ) ;
}
void calculate_delta ( float cartesian [ 3 ] ) {
delta [ TOWER_1 ] = sqrt ( delta_diagonal_rod_2_tower_1
- sq ( delta_tower1_x - cartesian [ X_AXIS ] )
- sq ( delta_tower1_y - cartesian [ Y_AXIS ] )
) + cartesian [ Z_AXIS ] ;
delta [ TOWER_2 ] = sqrt ( delta_diagonal_rod_2_tower_2
- sq ( delta_tower2_x - cartesian [ X_AXIS ] )
- sq ( delta_tower2_y - cartesian [ Y_AXIS ] )
) + cartesian [ Z_AXIS ] ;
delta [ TOWER_3 ] = sqrt ( delta_diagonal_rod_2_tower_3
- sq ( delta_tower3_x - cartesian [ X_AXIS ] )
- sq ( delta_tower3_y - cartesian [ Y_AXIS ] )
) + cartesian [ Z_AXIS ] ;
/**
SERIAL_ECHOPGM ( " cartesian x= " ) ; SERIAL_ECHO ( cartesian [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " y= " ) ; SERIAL_ECHO ( cartesian [ Y_AXIS ] ) ;
SERIAL_ECHOPGM ( " z= " ) ; SERIAL_ECHOLN ( cartesian [ Z_AXIS ] ) ;
SERIAL_ECHOPGM ( " delta a= " ) ; SERIAL_ECHO ( delta [ TOWER_1 ] ) ;
SERIAL_ECHOPGM ( " b= " ) ; SERIAL_ECHO ( delta [ TOWER_2 ] ) ;
SERIAL_ECHOPGM ( " c= " ) ; SERIAL_ECHOLN ( delta [ TOWER_3 ] ) ;
*/
}
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta ( float cartesian [ 3 ] ) {
if ( delta_grid_spacing [ 0 ] = = 0 | | delta_grid_spacing [ 1 ] = = 0 ) return ; // G29 not done!
int half = ( AUTO_BED_LEVELING_GRID_POINTS - 1 ) / 2 ;
float h1 = 0.001 - half , h2 = half - 0.001 ,
grid_x = max ( h1 , min ( h2 , cartesian [ X_AXIS ] / delta_grid_spacing [ 0 ] ) ) ,
grid_y = max ( h1 , min ( h2 , cartesian [ Y_AXIS ] / delta_grid_spacing [ 1 ] ) ) ;
int floor_x = floor ( grid_x ) , floor_y = floor ( grid_y ) ;
float ratio_x = grid_x - floor_x , ratio_y = grid_y - floor_y ,
z1 = bed_level [ floor_x + half ] [ floor_y + half ] ,
z2 = bed_level [ floor_x + half ] [ floor_y + half + 1 ] ,
z3 = bed_level [ floor_x + half + 1 ] [ floor_y + half ] ,
z4 = bed_level [ floor_x + half + 1 ] [ floor_y + half + 1 ] ,
left = ( 1 - ratio_y ) * z1 + ratio_y * z2 ,
right = ( 1 - ratio_y ) * z3 + ratio_y * z4 ,
offset = ( 1 - ratio_x ) * left + ratio_x * right ;
delta [ X_AXIS ] + = offset ;
delta [ Y_AXIS ] + = offset ;
delta [ Z_AXIS ] + = offset ;
/**
SERIAL_ECHOPGM ( " grid_x= " ) ; SERIAL_ECHO ( grid_x ) ;
SERIAL_ECHOPGM ( " grid_y= " ) ; SERIAL_ECHO ( grid_y ) ;
SERIAL_ECHOPGM ( " floor_x= " ) ; SERIAL_ECHO ( floor_x ) ;
SERIAL_ECHOPGM ( " floor_y= " ) ; SERIAL_ECHO ( floor_y ) ;
SERIAL_ECHOPGM ( " ratio_x= " ) ; SERIAL_ECHO ( ratio_x ) ;
SERIAL_ECHOPGM ( " ratio_y= " ) ; SERIAL_ECHO ( ratio_y ) ;
SERIAL_ECHOPGM ( " z1= " ) ; SERIAL_ECHO ( z1 ) ;
SERIAL_ECHOPGM ( " z2= " ) ; SERIAL_ECHO ( z2 ) ;
SERIAL_ECHOPGM ( " z3= " ) ; SERIAL_ECHO ( z3 ) ;
SERIAL_ECHOPGM ( " z4= " ) ; SERIAL_ECHO ( z4 ) ;
SERIAL_ECHOPGM ( " left= " ) ; SERIAL_ECHO ( left ) ;
SERIAL_ECHOPGM ( " right= " ) ; SERIAL_ECHO ( right ) ;
SERIAL_ECHOPGM ( " offset= " ) ; SERIAL_ECHOLN ( offset ) ;
*/
}
# endif // AUTO_BED_LEVELING_FEATURE
# endif // DELTA
# if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_buffer_line ( float x , float y , float z , const float e , float feed_rate , const uint8_t & extruder , uint8_t x_splits = 0xff , uint8_t y_splits = 0xff ) {
if ( ! mbl . active ( ) ) {
planner . buffer_line ( x , y , z , e , feed_rate , extruder ) ;
set_current_to_destination ( ) ;
return ;
}
int pcx = mbl . cell_index_x ( current_position [ X_AXIS ] - home_offset [ X_AXIS ] ) ;
int pcy = mbl . cell_index_y ( current_position [ Y_AXIS ] - home_offset [ Y_AXIS ] ) ;
int cx = mbl . cell_index_x ( x - home_offset [ X_AXIS ] ) ;
int cy = mbl . cell_index_y ( y - home_offset [ Y_AXIS ] ) ;
NOMORE ( pcx , MESH_NUM_X_POINTS - 2 ) ;
NOMORE ( pcy , MESH_NUM_Y_POINTS - 2 ) ;
NOMORE ( cx , MESH_NUM_X_POINTS - 2 ) ;
NOMORE ( cy , MESH_NUM_Y_POINTS - 2 ) ;
if ( pcx = = cx & & pcy = = cy ) {
// Start and end on same mesh square
planner . buffer_line ( x , y , z , e , feed_rate , extruder ) ;
set_current_to_destination ( ) ;
return ;
}
float nx , ny , nz , ne , normalized_dist ;
if ( cx > pcx & & TEST ( x_splits , cx ) ) {
nx = mbl . get_probe_x ( cx ) + home_offset [ X_AXIS ] ;
normalized_dist = ( nx - current_position [ X_AXIS ] ) / ( x - current_position [ X_AXIS ] ) ;
ny = current_position [ Y_AXIS ] + ( y - current_position [ Y_AXIS ] ) * normalized_dist ;
nz = current_position [ Z_AXIS ] + ( z - current_position [ Z_AXIS ] ) * normalized_dist ;
ne = current_position [ E_AXIS ] + ( e - current_position [ E_AXIS ] ) * normalized_dist ;
CBI ( x_splits , cx ) ;
}
else if ( cx < pcx & & TEST ( x_splits , pcx ) ) {
nx = mbl . get_probe_x ( pcx ) + home_offset [ X_AXIS ] ;
normalized_dist = ( nx - current_position [ X_AXIS ] ) / ( x - current_position [ X_AXIS ] ) ;
ny = current_position [ Y_AXIS ] + ( y - current_position [ Y_AXIS ] ) * normalized_dist ;
nz = current_position [ Z_AXIS ] + ( z - current_position [ Z_AXIS ] ) * normalized_dist ;
ne = current_position [ E_AXIS ] + ( e - current_position [ E_AXIS ] ) * normalized_dist ;
CBI ( x_splits , pcx ) ;
}
else if ( cy > pcy & & TEST ( y_splits , cy ) ) {
ny = mbl . get_probe_y ( cy ) + home_offset [ Y_AXIS ] ;
normalized_dist = ( ny - current_position [ Y_AXIS ] ) / ( y - current_position [ Y_AXIS ] ) ;
nx = current_position [ X_AXIS ] + ( x - current_position [ X_AXIS ] ) * normalized_dist ;
nz = current_position [ Z_AXIS ] + ( z - current_position [ Z_AXIS ] ) * normalized_dist ;
ne = current_position [ E_AXIS ] + ( e - current_position [ E_AXIS ] ) * normalized_dist ;
CBI ( y_splits , cy ) ;
}
else if ( cy < pcy & & TEST ( y_splits , pcy ) ) {
ny = mbl . get_probe_y ( pcy ) + home_offset [ Y_AXIS ] ;
normalized_dist = ( ny - current_position [ Y_AXIS ] ) / ( y - current_position [ Y_AXIS ] ) ;
nx = current_position [ X_AXIS ] + ( x - current_position [ X_AXIS ] ) * normalized_dist ;
nz = current_position [ Z_AXIS ] + ( z - current_position [ Z_AXIS ] ) * normalized_dist ;
ne = current_position [ E_AXIS ] + ( e - current_position [ E_AXIS ] ) * normalized_dist ;
CBI ( y_splits , pcy ) ;
}
else {
// Already split on a border
planner . buffer_line ( x , y , z , e , feed_rate , extruder ) ;
set_current_to_destination ( ) ;
return ;
}
// Do the split and look for more borders
destination [ X_AXIS ] = nx ;
destination [ Y_AXIS ] = ny ;
destination [ Z_AXIS ] = nz ;
destination [ E_AXIS ] = ne ;
mesh_buffer_line ( nx , ny , nz , ne , feed_rate , extruder , x_splits , y_splits ) ;
destination [ X_AXIS ] = x ;
destination [ Y_AXIS ] = y ;
destination [ Z_AXIS ] = z ;
destination [ E_AXIS ] = e ;
mesh_buffer_line ( x , y , z , e , feed_rate , extruder , x_splits , y_splits ) ;
}
# endif // MESH_BED_LEVELING
# if ENABLED(DELTA) || ENABLED(SCARA)
inline bool prepare_delta_move_to ( float target [ NUM_AXIS ] ) {
float difference [ NUM_AXIS ] ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + ) difference [ i ] = target [ i ] - current_position [ i ] ;
float cartesian_mm = sqrt ( sq ( difference [ X_AXIS ] ) + sq ( difference [ Y_AXIS ] ) + sq ( difference [ Z_AXIS ] ) ) ;
if ( cartesian_mm < 0.000001 ) cartesian_mm = abs ( difference [ E_AXIS ] ) ;
if ( cartesian_mm < 0.000001 ) return false ;
float _feedrate = feedrate * feedrate_multiplier / 6000.0 ;
float seconds = cartesian_mm / _feedrate ;
int steps = max ( 1 , int ( delta_segments_per_second * seconds ) ) ;
float inv_steps = 1.0 / steps ;
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for ( int s = 1 ; s < = steps ; s + + ) {
float fraction = float ( s ) * inv_steps ;
for ( int8_t i = 0 ; i < NUM_AXIS ; i + + )
target [ i ] = current_position [ i ] + difference [ i ] * fraction ;
calculate_delta ( target ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
if ( ! bed_leveling_in_progress ) adjust_delta ( target ) ;
# endif
//DEBUG_POS("prepare_delta_move_to", target);
//DEBUG_POS("prepare_delta_move_to", delta);
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , target [ E_AXIS ] , _feedrate , active_extruder ) ;
}
return true ;
}
# endif // DELTA || SCARA
# if ENABLED(SCARA)
inline bool prepare_scara_move_to ( float target [ NUM_AXIS ] ) { return prepare_delta_move_to ( target ) ; }
# endif
# if ENABLED(DUAL_X_CARRIAGE)
inline bool prepare_move_dual_x_carriage ( ) {
if ( active_extruder_parked ) {
if ( dual_x_carriage_mode = = DXC_DUPLICATION_MODE & & active_extruder = = 0 ) {
// move duplicate extruder into correct duplication position.
planner . set_position_mm ( inactive_extruder_x_pos , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
planner . buffer_line ( current_position [ X_AXIS ] + duplicate_extruder_x_offset ,
current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , planner . max_feedrate [ X_AXIS ] , 1 ) ;
SYNC_PLAN_POSITION_KINEMATIC ( ) ;
stepper . synchronize ( ) ;
extruder_duplication_enabled = true ;
active_extruder_parked = false ;
}
else if ( dual_x_carriage_mode = = DXC_AUTO_PARK_MODE ) { // handle unparking of head
if ( current_position [ E_AXIS ] = = destination [ E_AXIS ] ) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if ( delayed_move_time ! = 0xFFFFFFFFUL ) {
set_current_to_destination ( ) ;
NOLESS ( raised_parked_position [ Z_AXIS ] , destination [ Z_AXIS ] ) ;
delayed_move_time = millis ( ) ;
return false ;
}
}
delayed_move_time = 0 ;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
planner . buffer_line ( raised_parked_position [ X_AXIS ] , raised_parked_position [ Y_AXIS ] , raised_parked_position [ Z_AXIS ] , current_position [ E_AXIS ] , planner . max_feedrate [ Z_AXIS ] , active_extruder ) ;
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , raised_parked_position [ Z_AXIS ] , current_position [ E_AXIS ] , PLANNER_XY_FEEDRATE ( ) , active_extruder ) ;
planner . buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , planner . max_feedrate [ Z_AXIS ] , active_extruder ) ;
active_extruder_parked = false ;
}
}
return true ;
}
# endif // DUAL_X_CARRIAGE
# if DISABLED(DELTA) && DISABLED(SCARA)
inline bool prepare_cartesian_move_to_destination ( ) {
// Do not use feedrate_multiplier for E or Z only moves
if ( current_position [ X_AXIS ] = = destination [ X_AXIS ] & & current_position [ Y_AXIS ] = = destination [ Y_AXIS ] ) {
line_to_destination ( ) ;
}
else {
# if ENABLED(MESH_BED_LEVELING)
mesh_buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] , destination [ E_AXIS ] , ( feedrate / 60 ) * ( feedrate_multiplier / 100.0 ) , active_extruder ) ;
return false ;
# else
line_to_destination ( feedrate * feedrate_multiplier / 100.0 ) ;
# endif
}
return true ;
}
# endif // !DELTA && !SCARA
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
inline void prevent_dangerous_extrude ( float & curr_e , float & dest_e ) {
if ( DEBUGGING ( DRYRUN ) ) return ;
float de = dest_e - curr_e ;
if ( de ) {
if ( thermalManager . tooColdToExtrude ( active_extruder ) ) {
curr_e = dest_e ; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_ERR_COLD_EXTRUDE_STOP ) ;
}
# if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if ( labs ( de ) > EXTRUDE_MAXLENGTH ) {
curr_e = dest_e ; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START ;
SERIAL_ECHOLNPGM ( MSG_ERR_LONG_EXTRUDE_STOP ) ;
}
# endif
}
}
# endif // PREVENT_DANGEROUS_EXTRUDE
/**
* Prepare a single move and get ready for the next one
*
* ( This may call planner . buffer_line several times to put
* smaller moves into the planner for DELTA or SCARA . )
*/
void prepare_move_to_destination ( ) {
clamp_to_software_endstops ( destination ) ;
refresh_cmd_timeout ( ) ;
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
prevent_dangerous_extrude ( current_position [ E_AXIS ] , destination [ E_AXIS ] ) ;
# endif
# if ENABLED(SCARA)
if ( ! prepare_scara_move_to ( destination ) ) return ;
# elif ENABLED(DELTA)
if ( ! prepare_delta_move_to ( destination ) ) return ;
# else
# if ENABLED(DUAL_X_CARRIAGE)
if ( ! prepare_move_dual_x_carriage ( ) ) return ;
# endif
if ( ! prepare_cartesian_move_to_destination ( ) ) return ;
# endif
set_current_to_destination ( ) ;
}
# if ENABLED(ARC_SUPPORT)
/**
* Plan an arc in 2 dimensions
*
* The arc is approximated by generating many small linear segments .
* The length of each segment is configured in MM_PER_ARC_SEGMENT ( Default 1 mm )
* Arcs should only be made relatively large ( over 5 mm ) , as larger arcs with
* larger segments will tend to be more efficient . Your slicer should have
* options for G2 / G3 arc generation . In future these options may be GCode tunable .
*/
void plan_arc (
float target [ NUM_AXIS ] , // Destination position
float * offset , // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = hypot ( offset [ X_AXIS ] , offset [ Y_AXIS ] ) ,
center_X = current_position [ X_AXIS ] + offset [ X_AXIS ] ,
center_Y = current_position [ Y_AXIS ] + offset [ Y_AXIS ] ,
linear_travel = target [ Z_AXIS ] - current_position [ Z_AXIS ] ,
extruder_travel = target [ E_AXIS ] - current_position [ E_AXIS ] ,
r_X = - offset [ X_AXIS ] , // Radius vector from center to current location
r_Y = - offset [ Y_AXIS ] ,
rt_X = target [ X_AXIS ] - center_X ,
rt_Y = target [ Y_AXIS ] - center_Y ;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2 ( r_X * rt_Y - r_Y * rt_X , r_X * rt_X + r_Y * rt_Y ) ;
if ( angular_travel < 0 ) angular_travel + = RADIANS ( 360 ) ;
if ( clockwise ) angular_travel - = RADIANS ( 360 ) ;
// Make a circle if the angular rotation is 0
if ( angular_travel = = 0 & & current_position [ X_AXIS ] = = target [ X_AXIS ] & & current_position [ Y_AXIS ] = = target [ Y_AXIS ] )
angular_travel + = RADIANS ( 360 ) ;
float mm_of_travel = hypot ( angular_travel * radius , fabs ( linear_travel ) ) ;
if ( mm_of_travel < 0.001 ) return ;
uint16_t segments = floor ( mm_of_travel / ( MM_PER_ARC_SEGMENT ) ) ;
if ( segments = = 0 ) segments = 1 ;
float theta_per_segment = angular_travel / segments ;
float linear_per_segment = linear_travel / segments ;
float extruder_per_segment = extruder_travel / segments ;
/**
* Vector rotation by transformation matrix : r is the original vector , r_T is the rotated vector ,
* and phi is the angle of rotation . Based on the solution approach by Jens Geisler .
* r_T = [ cos ( phi ) - sin ( phi ) ;
* sin ( phi ) cos ( phi ] * r ;
*
* For arc generation , the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position . Each line segment is formed by successive
* vector rotations . This requires only two cos ( ) and sin ( ) computations to form the rotation
* matrix for the duration of the entire arc . Error may accumulate from numerical round - off , since
* all double numbers are single precision on the Arduino . ( True double precision will not have
* round off issues for CNC applications . ) Single precision error can accumulate to be greater than
* tool precision in some cases . Therefore , arc path correction is implemented .
*
* Small angle approximation may be used to reduce computation overhead further . This approximation
* holds for everything , but very small circles and large MM_PER_ARC_SEGMENT values . In other words ,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error . N_ARC_CORRECTION ~ = 25 is more than small enough to correct for
* numerical drift error . N_ARC_CORRECTION may be on the order a hundred ( s ) before error becomes an
* issue for CNC machines with the single precision Arduino calculations .
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos ( ) or sin ( ) . By the time the arc needs to be applied
* a correction , the planner should have caught up to the lag caused by the initial plan_arc overhead .
* This is important when there are successive arc motions .
*/
// Vector rotation matrix values
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment ; // Small angle approximation
float sin_T = theta_per_segment ;
float arc_target [ NUM_AXIS ] ;
float sin_Ti , cos_Ti , r_new_Y ;
uint16_t i ;
int8_t count = 0 ;
// Initialize the linear axis
arc_target [ Z_AXIS ] = current_position [ Z_AXIS ] ;
// Initialize the extruder axis
arc_target [ E_AXIS ] = current_position [ E_AXIS ] ;
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0 ;
millis_t next_idle_ms = millis ( ) + 200UL ;
for ( i = 1 ; i < segments ; i + + ) { // Iterate (segments-1) times
thermalManager . manage_heater ( ) ;
millis_t now = millis ( ) ;
if ( ELAPSED ( now , next_idle_ms ) ) {
next_idle_ms = now + 200UL ;
idle ( ) ;
}
if ( + + count < N_ARC_CORRECTION ) {
// Apply vector rotation matrix to previous r_X / 1
r_new_Y = r_X * sin_T + r_Y * cos_T ;
r_X = r_X * cos_T - r_Y * sin_T ;
r_Y = r_new_Y ;
}
else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
cos_Ti = cos ( i * theta_per_segment ) ;
sin_Ti = sin ( i * theta_per_segment ) ;
r_X = - offset [ X_AXIS ] * cos_Ti + offset [ Y_AXIS ] * sin_Ti ;
r_Y = - offset [ X_AXIS ] * sin_Ti - offset [ Y_AXIS ] * cos_Ti ;
count = 0 ;
}
// Update arc_target location
arc_target [ X_AXIS ] = center_X + r_X ;
arc_target [ Y_AXIS ] = center_Y + r_Y ;
arc_target [ Z_AXIS ] + = linear_per_segment ;
arc_target [ E_AXIS ] + = extruder_per_segment ;
clamp_to_software_endstops ( arc_target ) ;
# if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta ( arc_target ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta ( arc_target ) ;
# endif
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , arc_target [ E_AXIS ] , feed_rate , active_extruder ) ;
# else
planner . buffer_line ( arc_target [ X_AXIS ] , arc_target [ Y_AXIS ] , arc_target [ Z_AXIS ] , arc_target [ E_AXIS ] , feed_rate , active_extruder ) ;
# endif
}
// Ensure last segment arrives at target location.
# if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta ( target ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta ( target ) ;
# endif
planner . buffer_line ( delta [ X_AXIS ] , delta [ Y_AXIS ] , delta [ Z_AXIS ] , target [ E_AXIS ] , feed_rate , active_extruder ) ;
# else
planner . buffer_line ( target [ X_AXIS ] , target [ Y_AXIS ] , target [ Z_AXIS ] , target [ E_AXIS ] , feed_rate , active_extruder ) ;
# endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination ( ) ;
}
# endif
# if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move ( const float offset [ 4 ] ) {
cubic_b_spline ( current_position , destination , offset , feedrate * feedrate_multiplier / 60 / 100.0 , active_extruder ) ;
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination ( ) ;
}
# endif // BEZIER_CURVE_SUPPORT
# if HAS_CONTROLLERFAN
void controllerFan ( ) {
static millis_t lastMotorOn = 0 ; // Last time a motor was turned on
static millis_t nextMotorCheck = 0 ; // Last time the state was checked
millis_t ms = millis ( ) ;
if ( ELAPSED ( ms , nextMotorCheck ) ) {
nextMotorCheck = ms + 2500UL ; // Not a time critical function, so only check every 2.5s
if ( X_ENABLE_READ = = X_ENABLE_ON | | Y_ENABLE_READ = = Y_ENABLE_ON | | Z_ENABLE_READ = = Z_ENABLE_ON | | thermalManager . soft_pwm_bed > 0
| | E0_ENABLE_READ = = E_ENABLE_ON // If any of the drivers are enabled...
# if EXTRUDERS > 1
| | E1_ENABLE_READ = = E_ENABLE_ON
# if HAS_X2_ENABLE
| | X2_ENABLE_READ = = X_ENABLE_ON
# endif
# if EXTRUDERS > 2
| | E2_ENABLE_READ = = E_ENABLE_ON
# if EXTRUDERS > 3
| | E3_ENABLE_READ = = E_ENABLE_ON
# endif
# endif
# endif
) {
lastMotorOn = ms ; //... set time to NOW so the fan will turn on
}
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
uint8_t speed = ( ! lastMotorOn | | ELAPSED ( ms , lastMotorOn + ( CONTROLLERFAN_SECS ) * 1000UL ) ) ? 0 : CONTROLLERFAN_SPEED ;
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite ( CONTROLLERFAN_PIN , speed ) ;
analogWrite ( CONTROLLERFAN_PIN , speed ) ;
}
}
# endif // HAS_CONTROLLERFAN
# if ENABLED(SCARA)
void calculate_SCARA_forward_Transform ( float f_scara [ 3 ] ) {
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin , x_cos , y_sin , y_cos ;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin ( f_scara [ X_AXIS ] / SCARA_RAD2DEG ) * Linkage_1 ;
x_cos = cos ( f_scara [ X_AXIS ] / SCARA_RAD2DEG ) * Linkage_1 ;
y_sin = sin ( f_scara [ Y_AXIS ] / SCARA_RAD2DEG ) * Linkage_2 ;
y_cos = cos ( f_scara [ Y_AXIS ] / SCARA_RAD2DEG ) * Linkage_2 ;
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta [ X_AXIS ] = x_cos + y_cos + SCARA_offset_x ; //theta
delta [ Y_AXIS ] = x_sin + y_sin + SCARA_offset_y ; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta ( float cartesian [ 3 ] ) {
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos [ 2 ] ;
static float SCARA_C2 , SCARA_S2 , SCARA_K1 , SCARA_K2 , SCARA_theta , SCARA_psi ;
SCARA_pos [ X_AXIS ] = cartesian [ X_AXIS ] * axis_scaling [ X_AXIS ] - SCARA_offset_x ; //Translate SCARA to standard X Y
SCARA_pos [ Y_AXIS ] = cartesian [ Y_AXIS ] * axis_scaling [ Y_AXIS ] - SCARA_offset_y ; // With scaling factor.
# if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( sq ( SCARA_pos [ X_AXIS ] ) + sq ( SCARA_pos [ Y_AXIS ] ) ) / ( 2 * ( float ) L1_2 ) ) - 1 ;
# else
SCARA_C2 = ( sq ( SCARA_pos [ X_AXIS ] ) + sq ( SCARA_pos [ Y_AXIS ] ) - ( float ) L1_2 - ( float ) L2_2 ) / 45000 ;
# endif
SCARA_S2 = sqrt ( 1 - sq ( SCARA_C2 ) ) ;
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2 ;
SCARA_K2 = Linkage_2 * SCARA_S2 ;
SCARA_theta = ( atan2 ( SCARA_pos [ X_AXIS ] , SCARA_pos [ Y_AXIS ] ) - atan2 ( SCARA_K1 , SCARA_K2 ) ) * - 1 ;
SCARA_psi = atan2 ( SCARA_S2 , SCARA_C2 ) ;
delta [ X_AXIS ] = SCARA_theta * SCARA_RAD2DEG ; // Multiply by 180/Pi - theta is support arm angle
delta [ Y_AXIS ] = ( SCARA_theta + SCARA_psi ) * SCARA_RAD2DEG ; // - equal to sub arm angle (inverted motor)
delta [ Z_AXIS ] = cartesian [ Z_AXIS ] ;
/**
SERIAL_ECHOPGM ( " cartesian x= " ) ; SERIAL_ECHO ( cartesian [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " y= " ) ; SERIAL_ECHO ( cartesian [ Y_AXIS ] ) ;
SERIAL_ECHOPGM ( " z= " ) ; SERIAL_ECHOLN ( cartesian [ Z_AXIS ] ) ;
SERIAL_ECHOPGM ( " scara x= " ) ; SERIAL_ECHO ( SCARA_pos [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " y= " ) ; SERIAL_ECHOLN ( SCARA_pos [ Y_AXIS ] ) ;
SERIAL_ECHOPGM ( " delta x= " ) ; SERIAL_ECHO ( delta [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " y= " ) ; SERIAL_ECHO ( delta [ Y_AXIS ] ) ;
SERIAL_ECHOPGM ( " z= " ) ; SERIAL_ECHOLN ( delta [ Z_AXIS ] ) ;
SERIAL_ECHOPGM ( " C2= " ) ; SERIAL_ECHO ( SCARA_C2 ) ;
SERIAL_ECHOPGM ( " S2= " ) ; SERIAL_ECHO ( SCARA_S2 ) ;
SERIAL_ECHOPGM ( " Theta= " ) ; SERIAL_ECHO ( SCARA_theta ) ;
SERIAL_ECHOPGM ( " Psi= " ) ; SERIAL_ECHOLN ( SCARA_psi ) ;
SERIAL_EOL ;
*/
}
# endif // SCARA
# if ENABLED(TEMP_STAT_LEDS)
static bool red_led = false ;
static millis_t next_status_led_update_ms = 0 ;
void handle_status_leds ( void ) {
float max_temp = 0.0 ;
if ( ELAPSED ( millis ( ) , next_status_led_update_ms ) ) {
next_status_led_update_ms + = 500 ; // Update every 0.5s
for ( int8_t cur_hotend = 0 ; cur_hotend < HOTENDS ; + + cur_hotend )
max_temp = max ( max ( max_temp , thermalManager . degHotend ( cur_hotend ) ) , thermalManager . degTargetHotend ( cur_hotend ) ) ;
# if HAS_TEMP_BED
max_temp = max ( max ( max_temp , thermalManager . degTargetBed ( ) ) , thermalManager . degBed ( ) ) ;
# endif
bool new_led = ( max_temp > 55.0 ) ? true : ( max_temp < 54.0 ) ? false : red_led ;
if ( new_led ! = red_led ) {
red_led = new_led ;
digitalWrite ( STAT_LED_RED , new_led ? HIGH : LOW ) ;
digitalWrite ( STAT_LED_BLUE , new_led ? LOW : HIGH ) ;
}
}
}
# endif
void enable_all_steppers ( ) {
enable_x ( ) ;
enable_y ( ) ;
enable_z ( ) ;
enable_e0 ( ) ;
enable_e1 ( ) ;
enable_e2 ( ) ;
enable_e3 ( ) ;
}
void disable_all_steppers ( ) {
disable_x ( ) ;
disable_y ( ) ;
disable_z ( ) ;
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
disable_e3 ( ) ;
}
/**
* Standard idle routine keeps the machine alive
*/
void idle (
# if ENABLED(FILAMENTCHANGEENABLE)
bool no_stepper_sleep /*=false*/
# endif
) {
lcd_update ( ) ;
host_keepalive ( ) ;
manage_inactivity (
# if ENABLED(FILAMENTCHANGEENABLE)
no_stepper_sleep
# endif
) ;
thermalManager . manage_heater ( ) ;
# if ENABLED(PRINTCOUNTER)
print_job_timer . tick ( ) ;
# endif
# if HAS_BUZZER
buzzer . tick ( ) ;
# endif
}
/**
* Manage several activities :
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded ( EXTRUDER_RUNOUT_PREVENT )
*/
void manage_inactivity ( bool ignore_stepper_queue /*=false*/ ) {
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
if ( IS_SD_PRINTING & & ! ( READ ( FIL_RUNOUT_PIN ) ^ FIL_RUNOUT_INVERTING ) )
handle_filament_runout ( ) ;
# endif
if ( commands_in_queue < BUFSIZE ) get_available_commands ( ) ;
millis_t ms = millis ( ) ;
if ( max_inactive_time & & ELAPSED ( ms , previous_cmd_ms + max_inactive_time ) ) kill ( PSTR ( MSG_KILLED ) ) ;
if ( stepper_inactive_time & & ELAPSED ( ms , previous_cmd_ms + stepper_inactive_time )
& & ! ignore_stepper_queue & & ! planner . blocks_queued ( ) ) {
# if ENABLED(DISABLE_INACTIVE_X)
disable_x ( ) ;
# endif
# if ENABLED(DISABLE_INACTIVE_Y)
disable_y ( ) ;
# endif
# if ENABLED(DISABLE_INACTIVE_Z)
disable_z ( ) ;
# endif
# if ENABLED(DISABLE_INACTIVE_E)
disable_e0 ( ) ;
disable_e1 ( ) ;
disable_e2 ( ) ;
disable_e3 ( ) ;
# endif
}
# ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if ( chdkActive & & PENDING ( ms , chdkHigh + CHDK_DELAY ) ) {
chdkActive = false ;
WRITE ( CHDK , LOW ) ;
}
# endif
# if HAS_KILL
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
static int killCount = 0 ; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750 ;
if ( ! READ ( KILL_PIN ) )
killCount + + ;
else if ( killCount > 0 )
killCount - - ;
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if ( killCount > = KILL_DELAY ) kill ( PSTR ( MSG_KILLED ) ) ;
# endif
# if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
static int homeDebounceCount = 0 ; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 2500 ;
if ( ! READ ( HOME_PIN ) ) {
if ( ! homeDebounceCount ) {
enqueue_and_echo_commands_P ( PSTR ( " G28 " ) ) ;
LCD_MESSAGEPGM ( MSG_AUTO_HOME ) ;
}
if ( homeDebounceCount < HOME_DEBOUNCE_DELAY )
homeDebounceCount + + ;
else
homeDebounceCount = 0 ;
}
# endif
# if HAS_CONTROLLERFAN
controllerFan ( ) ; // Check if fan should be turned on to cool stepper drivers down
# endif
# if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if ( ELAPSED ( ms , previous_cmd_ms + ( EXTRUDER_RUNOUT_SECONDS ) * 1000UL ) )
if ( thermalManager . degHotend ( active_extruder ) > EXTRUDER_RUNOUT_MINTEMP ) {
bool oldstatus ;
switch ( active_extruder ) {
case 0 :
oldstatus = E0_ENABLE_READ ;
enable_e0 ( ) ;
break ;
# if EXTRUDERS > 1
case 1 :
oldstatus = E1_ENABLE_READ ;
enable_e1 ( ) ;
break ;
# if EXTRUDERS > 2
case 2 :
oldstatus = E2_ENABLE_READ ;
enable_e2 ( ) ;
break ;
# if EXTRUDERS > 3
case 3 :
oldstatus = E3_ENABLE_READ ;
enable_e3 ( ) ;
break ;
# endif
# endif
# endif
}
float oldepos = current_position [ E_AXIS ] , oldedes = destination [ E_AXIS ] ;
planner . buffer_line ( destination [ X_AXIS ] , destination [ Y_AXIS ] , destination [ Z_AXIS ] ,
destination [ E_AXIS ] + ( EXTRUDER_RUNOUT_EXTRUDE ) * ( EXTRUDER_RUNOUT_ESTEPS ) / planner . axis_steps_per_mm [ E_AXIS ] ,
( EXTRUDER_RUNOUT_SPEED ) / 60. * ( EXTRUDER_RUNOUT_ESTEPS ) / planner . axis_steps_per_mm [ E_AXIS ] , active_extruder ) ;
current_position [ E_AXIS ] = oldepos ;
destination [ E_AXIS ] = oldedes ;
planner . set_e_position_mm ( oldepos ) ;
previous_cmd_ms = ms ; // refresh_cmd_timeout()
stepper . synchronize ( ) ;
switch ( active_extruder ) {
case 0 :
E0_ENABLE_WRITE ( oldstatus ) ;
break ;
# if EXTRUDERS > 1
case 1 :
E1_ENABLE_WRITE ( oldstatus ) ;
break ;
# if EXTRUDERS > 2
case 2 :
E2_ENABLE_WRITE ( oldstatus ) ;
break ;
# if EXTRUDERS > 3
case 3 :
E3_ENABLE_WRITE ( oldstatus ) ;
break ;
# endif
# endif
# endif
}
}
# endif
# if ENABLED(DUAL_X_CARRIAGE)
// handle delayed move timeout
if ( delayed_move_time & & ELAPSED ( ms , delayed_move_time + 1000UL ) & & IsRunning ( ) ) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL ; // force moves to be done
set_destination_to_current ( ) ;
prepare_move_to_destination ( ) ;
}
# endif
# if ENABLED(TEMP_STAT_LEDS)
handle_status_leds ( ) ;
# endif
planner . check_axes_activity ( ) ;
}
void kill ( const char * lcd_msg ) {
# if ENABLED(ULTRA_LCD)
lcd_init ( ) ;
lcd_setalertstatuspgm ( lcd_msg ) ;
# else
UNUSED ( lcd_msg ) ;
# endif
cli ( ) ; // Stop interrupts
thermalManager . disable_all_heaters ( ) ;
disable_all_steppers ( ) ;
# if HAS_POWER_SWITCH
pinMode ( PS_ON_PIN , INPUT ) ;
# endif
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_KILLED ) ;
// FMC small patch to update the LCD before ending
sei ( ) ; // enable interrupts
for ( int i = 5 ; i - - ; lcd_update ( ) ) delay ( 200 ) ; // Wait a short time
cli ( ) ; // disable interrupts
suicide ( ) ;
while ( 1 ) {
# if ENABLED(USE_WATCHDOG)
watchdog_reset ( ) ;
# endif
} // Wait for reset
}
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout ( ) {
if ( ! filament_ran_out ) {
filament_ran_out = true ;
enqueue_and_echo_commands_P ( PSTR ( FILAMENT_RUNOUT_SCRIPT ) ) ;
stepper . synchronize ( ) ;
}
}
# endif // FILAMENT_RUNOUT_SENSOR
# if ENABLED(FAST_PWM_FAN)
void setPwmFrequency ( uint8_t pin , int val ) {
val & = 0x07 ;
switch ( digitalPinToTimer ( pin ) ) {
# if defined(TCCR0A)
case TIMER0A :
case TIMER0B :
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break ;
# endif
# if defined(TCCR1A)
case TIMER1A :
case TIMER1B :
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break ;
# endif
# if defined(TCCR2)
case TIMER2 :
case TIMER2 :
TCCR2 & = ~ ( _BV ( CS10 ) | _BV ( CS11 ) | _BV ( CS12 ) ) ;
TCCR2 | = val ;
break ;
# endif
# if defined(TCCR2A)
case TIMER2A :
case TIMER2B :
TCCR2B & = ~ ( _BV ( CS20 ) | _BV ( CS21 ) | _BV ( CS22 ) ) ;
TCCR2B | = val ;
break ;
# endif
# if defined(TCCR3A)
case TIMER3A :
case TIMER3B :
case TIMER3C :
TCCR3B & = ~ ( _BV ( CS30 ) | _BV ( CS31 ) | _BV ( CS32 ) ) ;
TCCR3B | = val ;
break ;
# endif
# if defined(TCCR4A)
case TIMER4A :
case TIMER4B :
case TIMER4C :
TCCR4B & = ~ ( _BV ( CS40 ) | _BV ( CS41 ) | _BV ( CS42 ) ) ;
TCCR4B | = val ;
break ;
# endif
# if defined(TCCR5A)
case TIMER5A :
case TIMER5B :
case TIMER5C :
TCCR5B & = ~ ( _BV ( CS50 ) | _BV ( CS51 ) | _BV ( CS52 ) ) ;
TCCR5B | = val ;
break ;
# endif
}
}
# endif // FAST_PWM_FAN
void stop ( ) {
thermalManager . disable_all_heaters ( ) ;
if ( IsRunning ( ) ) {
Running = false ;
Stopped_gcode_LastN = gcode_LastN ; // Save last g_code for restart
SERIAL_ERROR_START ;
SERIAL_ERRORLNPGM ( MSG_ERR_STOPPED ) ;
LCD_MESSAGEPGM ( MSG_STOPPED ) ;
}
}
float calculate_volumetric_multiplier ( float diameter ) {
if ( ! volumetric_enabled | | diameter = = 0 ) return 1.0 ;
float d2 = diameter * 0.5 ;
return 1.0 / ( M_PI * d2 * d2 ) ;
}
void calculate_volumetric_multipliers ( ) {
for ( int i = 0 ; i < EXTRUDERS ; i + + )
volumetric_multiplier [ i ] = calculate_volumetric_multiplier ( filament_size [ i ] ) ;
}